
Hierarchical SegmentBoost

A segment level classification approach to object class recognition

by

Jordan M. Reynolds

B.Eng. with Distinction., The University of Victoria, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

Dec, 2006

c© Jordan M. Reynolds 2006

ii

Abstract

In this work we address the problem of object recognition and localization within

cluttered, natural scenes. Specifically we present a new approach to recognizing

deformable objects that uses only local information. We suggest a new method

of computing labels for arbitrary regions within an image using only local color

and texture information. The results demonstrate our success in both identify-

ing and localizing several classes of objects within cluttered scenes. We make

two primary contributions to the field of deformable object recognition. First

we present a new technique for labeling arbitrary regions within an image us-

ing texture and color features. Second we introduce a hierarchical approach to

combining the classification results from segmentations of different granularity.

Since the field of deformable object recognition is still in its infancy, we hope

the work presented here will be used as a stepping stone to developing more

complex, multi-object detection systems.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . vi

List of Figures . vii

Acknowledgements . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Definition . 2

1.2.1 Presence vs. Localization 3

1.2.2 Instance vs. Class Recognition 4

1.2.3 Pixel Labeling vs. Bounding Box Annotation 4

1.3 Challenges . 5

1.3.1 Environmental Changes 6

1.3.2 Intra-class Variations . 6

1.4 Outline of Thesis . 7

2 Related work . 8

2.1 Single class object detection . 8

2.2 Multi-class object detection . 10

2.3 Non-rigid object detection . 12

2.3.1 Generative models . 12

Contents iv

2.3.2 Discriminative models . 15

3 Theory . 19

3.1 Boosting . 19

3.1.1 AdaBoost . 20

3.2 Belief Propagation . 22

4 Segment Boost . 24

4.1 System Overview . 24

4.2 Pre-processing . 25

4.3 Segmentation . 26

4.3.1 Regular Griding . 27

4.3.2 Irregular Region Segmentation 28

4.4 Feature Extraction . 30

4.4.1 Color Histograms . 30

4.4.2 Texture Histograms . 32

4.5 Training and Classification . 36

4.5.1 Combining Features . 37

4.5.2 Training . 37

4.5.3 Classification of new images 38

4.5.4 Logistic Fitting . 39

5 Heirarchical Segment Boost . 40

5.1 Motivation . 40

5.2 Segmentation Tree . 42

5.3 Belief Propagation on the Segmentation Tree 44

6 Results . 47

6.1 Receiver Operating Characteristics 47

6.2 Dataset . 49

6.3 Base classifier . 50

6.4 Hierarchical model . 51

Contents v

6.5 Cow classifier results . 55

6.6 Other class results . 61

6.7 Run time . 69

7 Conclusion and Future Work . 70

7.1 Conclusion . 70

7.2 Future work . 71

7.2.1 Base classifier performance 71

7.2.2 Hierarchical model . 71

Bibliography . 73

A RGB to HSV conversion . 77

B Dataset . 78

vi

List of Tables

6.1 Base classifier performance using only color, only texture, and

combined color and texture features. 51

6.2 Base classifier performance using only color, only texture, and

combined color and texture features. Cow BP shows the results

after running belief propagation over the segment tree. 58

6.3 A comparison of our results with the PASCAL VOC challenge

entries. Segment boost is our base classifier, while Hierarchical

segment boost is after applying our hierarchical model. Please

refer to [8] for the details of the various techniques. 61

6.4 Combined feature performance before and after applying the hi-

erarchical model for the cat and car classes. 63

6.5 Comparison of our results to other entries in the 2006 PASCAL

VOC challenge. Ranking is where our results would be ranked

on similar data within the 20 entries. 63

vii

List of Figures

1.1 Expected system behaviour . 3

1.2 Instance vs. class level labeling 5

1.3 Bounding box vs. pixel level labeling 5

2.1 Example of the failure of rigid bound box labeling on rigid objects 10

2.2 Example of the failure of rigid bound box labeling on non-rigid

objects . 11

4.1 Overall system flow. 24

4.2 Effects of normalization on images of low contrast. 26

4.3 Results of applying regular grid and freeform segmentation tech-

niques to an image. 27

4.4 Regular grid scale problem. 28

4.5 Example of color histogram computations. 32

4.6 Representation of a single scale, single orientation Gabor filter. . 34

4.7 Family of gabor filters, spanning both scale and orientation. . . . 35

4.8 Gabor filters applied to a sample image. 36

5.1 An illustration of the aperture problem. 41

5.2 Segmentation heirarchy. 42

5.3 Segmentation tree produced from a sample segmentation heirarchy. 43

6.1 Perfect and random guess ROC curves. 49

6.2 Silhouette annotations for a sample cow and cat image. 50

6.3 Cow boosted classifier details. 52

List of Figures viii

6.4 Example of a subset of segmentation trees, showing belifs before

and after applying BP. 54

6.5 ROC curves produced by our cow classifier using color, texture,

and combined feature sets. 57

6.6 ROC curve for color only features, showing all levels in the heirar-

chy seperately. 58

6.7 Sample cow detector outputs. 59

6.8 Sample failures produced by the cow classifier. 60

6.9 ROC curve for the cat object detector, using the color and texture

features . 64

6.10 Sample cat detector outputs. 65

6.11 Sample cat detector failures. 66

6.12 ROC curve for the car object detector 67

6.13 Sample car detector outputs. 68

B.1 A sample of images from the PASCAL cow dataset. 79

B.2 A sample of images from the PASCAL cat dataset. 80

ix

Acknowledgements

I would have never achieved the completion of this work without the guidance

and help from a large number of individuals. I would especially like to extend

my thanks to my colleagues in the Lab for Computational Intelligence namely

Scott Helmir, Kenji Okuma, Tristram Southey, and Mike Yurick. Most impor-

tantly, I’d like to extend my special thanks to my supervisors Dr. Kevin Murphy

and Dr. Jim Little for keeping me on the right path to complete my research.

Jordan M. Reynolds

University of British Columbia

Dec 2006

1

Chapter 1

Introduction

1.1 Motivation

One of the most fundamental challenges in computer vision is the problem of

object recognition. With a system capable of identifying objects within a scene

we would be able to simplify many problems in both vision and robotics. Having

a system able to identify and label images based on content would facilitate the

development of a much more powerful image search engine, where, rather then

searching based on the context in which an image appears, one could search

based on the actual content of the image. Robotics could benefit as well, by

integrating recognition systems into autonomous agents one could build much

more powerful and useful robotic systems. Rather then building detailed, fragile

static maps, the agent could localize and navigate by determining its location

based on the objects it is able to identify within its surroundings. For example,

if we are able to identify objects such as televisions and sofas within our current

sourroundings, we can make a strong guess that we are in a living room, if we

identify dishes, a stove, and a sink we are more likely to be in a kitchen. If a

robot is able to identify a large number of objects within its environment, the

task of localisation then becomes one of inferring location through context. The

work of [20] shows the feasibility of this approach to navigation.

Much work has been done in the field of object detection, and strong results

have been shown for the problem of identifying certain classes of objects, such as

cars, that do not deform1 [2, 20, 27, 31, 32]. Less work has been done on identi-
1While cars may rotate in the plain, relative positions between components do not change.

Chapter 1. Introduction 2

fying classes of completely deformable objects such as animals [1, 5, 16, 29]. We

choose to focus our work on the problem of identifying these deformable objects.

The main difficulty in developing a detector that is capable of identifying

the class of fully deformable objects stems from our inability to use positional

information as a cue. When identifying rigid or semi rigid objects, we can use

spatial cues as strong evidence for the class membership of any object. For ex-

ample we would expect a computer screen to have four corners roughly aligned,

and we would expect a car to have two wheels below the main body. We cannot

rely on these cues for deformable objects, as the position of any semi rigid com-

ponent of the object can change relative to any other component as the object

deforms. Because of this, we need to develop new features that are both de-

scriptive enough to allow classification with only local information, and general

enough to allow for intra-class variations2.

1.2 Problem Definition

The problem we are attempting to solve can be stated as :

We wish to construct a classifier that, given a novel image3 is able

to label all pixels belonging to a particular object class. At the same

time, we need to also be able to recognize those pixels that do not

belong to the object class, and instead belong to the generic class

“background”.

The problem becomes one of choosing a method of describing pixels or regions

within the image, and constructing a classifier, based on these descriptors is able

to produce a binary label for the class membership of the pixels or region. Figure

For example we would always expect to see the tires lower then then body.
2Intra-class variations stem from visual differences between objects of the same class, for

example no two cows will look visually identical.
3That is, an image we have never seen before

Chapter 1. Introduction 3

Figure 1.1: Given an input image, we wish to design a classifier that can produce

a correct object level annotation as output.

1.1 shows how we expect the system to behave. The resulting system should

produce pixel level, localized class labels for object we have trained it to detect.

We will now more carefully define what we mean by pixel level annotation, and

class labels.

1.2.1 Presence vs. Localization

We can consider two similar problems in the field of object identification. The

first is the problem of presence detection, the second localization. To solve the

presence problem, one need only annotate each image as to containing the object

of interest or not. For example, if a presence based system were to be asked to

annotate the input image of Figure 1.1, simply indicating that there is a cow

present in the image would be sufficient to be considered a correct detection.

For problems like image searching and indexing, these simple annotations are

sufficient to complete the task of searching for all images that contain a cow. The

more interesting problem is that of localisation. Rather then simply indicating

whether an object is present or absent in an image, one might be interested in

locating the object. For many tasks, it is imperative that we know where things

are within our environment rather then just what exists within our view. In

this thesis we present a solution to the problem of localization of objects within

an image.

Chapter 1. Introduction 4

1.2.2 Instance vs. Class Recognition

We can also sub-divide object recognition problem into the problems of class

and instance level recognition. The problem of instance level recognition is the

problem of identifying and applying a unique label, in a repeatable way to in-

dividual members of a class. Figure 1.2(a) illustrates this, each cow is given a

unique label ”cow #1”, ”cow #2” etc. The repeatability requirement means, if

we see the same object in a different image, possibly from a different viewpoint,

we need to apply the same label. Cow #1 will always be labeled as such, and

no other instance of ”cow” will be given the same label. Simpler techniques

may work well to solve these instance level problems. As we can consider each

instance a unique class, we expect, barring environmental changes, very little

intra-class variation. The problem is still not an easy one, but we need not

consider the effects of intra-class variations.

Class level recognition deals with the problem of applying a higher level label

to a collection of objects. Rather then applying a unique label to each instance of

”cow”, we wish to apply the label “cow” to all instances as illustrated in Figure

1.2(b). We could attempt to learn a family of individual instance level classifiers,

then apply a semantic hierarchy to the results4. However we are much more

interested in constructing a classifier that is able to naturally generalize over a

class of objects, and is able to handle a large amount of intra-class variation. In

our research we tackle the problem of class level recognition.

1.2.3 Pixel Labeling vs. Bounding Box Annotation

There are several possible methods for annotating the final results. Figure 1.3

shows the primary two. In bounding box annotation, we simply wish to draw

a rectangular boundary around the region we believe the object exists. This

method of annotation works quite well for objects that do not deform greatly,
4In this case, an is-a relationship, ”Cow #1” is-a ”Cow”.

Chapter 1. Introduction 5

(a). (b).

Figure 1.2: (a). Instance level labeling for 3 distinct cows, note the number

just represents a unique label applied to that cow, in the way humans apply

names. (b). Class level labeling, all ”cow” objects are assigned the same label.

(a). (b). (c).

Figure 1.3: (a). Input image, (b). Bounding box annotation, (c). Pixel level

labeling, here the dark regions are pixels that have been labeled as “cow”.

and objects we wish to detect from a single viewpoint5. Pixel labeling however

attempts to apply a label to each pixel in the image, producing a much tighter

annotation. The remainder of our work deals only with pixel level labeling.

1.3 Challenges

There are several challenges we need to overcome in developing a successful

object recognition system. Most of these stem from the deformable nature of

objects, intra-class variations, and changes in environmental conditions such as
5Single viewpoint here refers to objects we do not expect to see any rotation within the

object class, “Sides of Cars” would be an example

Chapter 1. Introduction 6

lighting. We will now examine these challenges in more detail.

1.3.1 Environmental Changes

Images can come from a number of places, digital cameras, scans of photographs,

cellular telephones. With these variability in sources also comes variability in

the quality of the image. While some digital cameras have high quality optical

elements and sensors, cell phones tend to have lower quality elements. One of

the largest problems caused by low quality sensors is a lack of contrast under low

lighting conditions. As the lighting conditions change, the color, and amount of

detail we can see within the image also changes. In Section 4.2 we discuss some

pre-processing steps that will help reduce the impact caused by these changing

lighting conditions.

1.3.2 Intra-class Variations

The largest problem we need to address in building a class level recognition

system is that of intra-class variation. We can break these variations down into

three primary types.

• Normal visual differences that stem from individualization. No two cows

look exactly alike, so we need to account for this by building some gener-

alization into our system.

• Object deformation, as a non-rigid object deforms it changes in visual

appearance. Not only do parts of the object that may have been visible

before become occluded and new ones become visible, but the relative

position between parts of the object changes as well.

• Viewpoint changes, even a rigid object looks different depending on our

viewpoint. A car looks visually different from the front then it does from

the side.

We must carefully design our detector to handle these intra-class variations.

While some are easier to design around, such as training multiple detectors based

Chapter 1. Introduction 7

on viewpoint, the problems caused by object deformation are much harder.

Our system attempts to handle the variations caused by deformation by only

examining local information, and ignoring spactial constraints. Because of this,

we are able to construct a classifier that is independent of deformations as well

as viewpoint changes6

1.4 Outline of Thesis

Developing a class level object recognition system for deformable objects is a

challenging task. In the following chapters we outline one approach to solving

this problem. Our system is comprised of two primary components. The first is

a patch level classifier that is able to classify each patch in a segmented image

as either belonging to the class of interest, or being background. The second

component takes the output of several classifiers, all run at different segmenta-

tion granularities, and applies belief propagation to combine the results into a

single, more accurate classification.

In the next chapter we outline previous work in the field of both rigid and

deformable object recognition. Chapter 3 presents some background material to

the reader who may not be familiar with the field of image processing or machine

learning. In Chapter 4 we present our approach to solving the problem of

object recognition and localization by applying hierarchical boosted classifiers.

Chapter 6 shows how our system performs on a set of real world data. The final

chapter summarizes our work, and presents some possible future extensions that

may further improve our results.

6Viewpoint changes can be considered large scale deformations.

8

Chapter 2

Related work

2.1 Single class object detection

First we focus on the problem of class level recognition of rigid objects, that

is objects for which we can draw a fixed aspect ratio bounding box. A fixed

aspect ratio bounding box in this context is one that we are allowed to change

the scale of, but not the relative x and y dimensions.

Viola and Jones [32] developed a system for class level recognition of faces

in natural images. They approached the problem by computing a pyramid of

images across multiple scales. Features were then computed by correlating all

of the images within the pyramid with a collection of hand chosen patches. The

integral of the pixels that fell within a fixed dimension region (or window) were

then computed at fixed spacing within the image, essentially producing an inte-

gral response to each filter at each scale within the pyramid. The single valued

integral responses for each region were then concatenated to produce a feature

vector for each of the windows at each scale. A discriminative classifier, namely

boosted decision stumps, was then trained using a collection of hand labeled

data. The resulting detector was then used to label each window at each scale

as to being in the object class or not. To reduce computational complexity, the

detector was run at each scale in turn, starting with the largest. If a region

at the largest scale was classified as not containing the object, windows falling

within the same region in smaller scales were not examined, and were summarily

considered to not contain the object of interest.

Chapter 2. Related work 9

Schneiderman [27] extends the idea of the cascade by not only reducing com-

putational complexity across scales, but across features within a scale. Early

stages in the feature cascade use simple to compute features, while later stages

use more complex models. By using simple detectors early in the cascade, it is

possible to eliminate regions within the image that we can be sure do not con-

tain the object of interest, while only computing the more expensive features in

areas which we have some belief the object may exist.

Murphy, Torralba, and Freeman [20] further extend the ideas of [32] by

including the concept of spacial masks. Features in the Viola detector were

computed as the sum of filter responses over whole windows. Spacial masks

not only consider the filter responses, but the location within the window the

response occurs. Essentially each element in the feature vector consists of the

sum of value of the filter responses within a sub-region inside the window. This

allows for better object localization within the image due to the fact that the

feature vector will change even when the same object is found, in whole or part

within the window. Consider a square box, smaller then the window. With-

out the use of spactial masks the feature vector would remain the same as the

window moved around, provided the box remained fully contained within the

window, as we are computing the sum of filter responses over the window as a

whole. By applying spacial masks, the feature vector will change as the window

moves around, as edges and corners will move between different mask regions.

This leads to high detector responses in a fewer number of windows, and better

overall object localization.

For object classes that do not deform, or in situations we are not expecting

viewpoint changes, these techniques work quite well. They begin to fail however

when object undergo out of plane rotations, or deformations. Even fully rigid

object, such as cars, have a visually different appearance when viewed from

the front or side. Additionally, the aspect ratio of the object begins to change

Chapter 2. Related work 10

(a). (b).

Figure 2.1: Two images containing the object “car”. The box is of equal aspect

ratio in both images. In (a), the box tightly constrains the object of interest.

Due to the affine viewpoint change, (b) contains as much background as it does

positive class.

as it undergoes these transformations. Figure 2.1 illustrates the problems that

occur when a rigid object undergoes out of plane rotation, a bounding box that

correctly annotates the object class ”car” in (a), does not correctly annotate the

same object class in (b). We will discus a technique to overcome this problem

in section 2.2. Figure 2.2 illustrates the problems caused by deformable classes

of objects. In both images the object we are interested in is ”dog”, due to the

deformable nature of animals, it would be impossible to define a fixed dimension

bounding box that would correctly annotate all instances.

2.2 Multi-class object detection

One possible solution for the out of plane rotation problems discussed in section

2.1 is to train multiple detectors, one for each expected view1. In its simplest

form, we would train N independent detectors, one per expected viewpoint,

and simply run each detector over a query image in turn. We could then take
1Though there are an infinite number of possible view points, each detector has some

invariance to rotational changes, and we need only train a few detectors who’s invariance

windows overlap to cover all possible viewpoints.

Chapter 2. Related work 11

(a). (b).

Figure 2.2: Two images containing the object ”dog”. The box is of equal aspect

ratio in both images. Due to the deformable nature of the object class, the

bounding box that correctly annotates the object in (a), fails to do so in (b).

the most probable detection as our final result. This approach suffers from

computational complexity issues, as the time required to run the process grows

with the number of expected viewpoints N . An additional problem we could

encounter with such a naive system is that it would require a vast amount of

annotated data, as each classifier would require its own unique set of labeled

data.

Torralba, Murphy, and Freeman [30] have developed a system that jointly

trains the detectors for each viewpoint, making use of common features when

possible. The joint boosting approach presented in [30], attempts to learn single

decision boundaries at each step that septate a single class from the rest, thus

casting the multi-class detection problem into a collection of one vs. rest single

class problems. By applying Joint boosting, they are able to reduce the number

of features required for N classifications problems from linear in N to roughly

logarithmic. As Torralba suggests, we can use this joint approach to train our

family of multi-view detectors simultaneously, and reduce both the number of

Chapter 2. Related work 12

features we need to learn, as well as the application time.

Using joint boosting it would be possible to train a detector capable of

identifying an object that we would expect to go though a countable number of

viewpoint changes. That is, we know a priori what rotational changes we expect

the object to undergo. In the case of cars for example, we can reasonably expect

it to rotate within the plane, and would normally not account for inversions and

such. For freely rotating objects, while it is certainly possible to collect and label

data for each expected view, it quickly becomes impractical to do so. Such a

system is also incapable of dealing with completely deformable objects for the

same reason. We cannot expect to collect and uniquely label images containing

all possible positions and views for “dog”, or similar objects.

2.3 Non-rigid object detection

As we have discussed in the previous section, several techniques exist to solve

the problem of viewpoint changes for rigid objects. We will now examine some

existing solutions for the identification and localization of deformable objects.

These techniques can be broadly divided into two categories. First, generative

models attempt to learn a statistical model for a class. We can then pose

the question what is the probability that a new object was generated using our

model? Discriminative models on the other hand, try to find decision boundaries

within the data (be it features or raw pixel values) that separate the class

of interest from the distractor or background data. The method discussed in

Sections 2.2 and 2.1 are examples of discriminative classifiers.

2.3.1 Generative models

The one advantage to generative models is that they do not require any nega-

tive class data to train. The problem of choosing a fully representative set of

Chapter 2. Related work 13

non-class exemplars is very hard, and would require large amounts of data2.

Generative models however, only look at statistical relationships within purely

positive class data, and therefore do not require the notion of negative class

exemplars.

Rikert, Jones, and Viola [24] developed a statistical clustering generative

model for object detection. In their model they compute texture based features

using steerable pyramids to provide an affine invariant feature set. The steerable

pyramid can be considered a local texture response calculated across a family

of directional filters. These directional filters are applied to an image pyramid3.

A feature vector, or ”parent vector” is then computed by integrating the filter

responses within a regular grid over both scale and directions. These parent

vectors are then clustered using a greedy algorithm in a bottom up fashion.

Each cluster represents a collection of repeatedly occurring features within the

class of interest. The resulting clusters are then used to generate a Gaussian

mixture model. An additional discriminative step was added by computing the

the same descriptors and applying clustering to a set of negative examples, to

remove elements from the mixture model that occurred in both positive and

negative class data4. The final classification of a novel test image is achieved

by computing the probability as to the image having been generated from the

positive class model, as opposed to the negative class model.

This system was only designed and tested on pre-extracted patches, classi-

fying the whole patch as to being either positive or negative class. Due to the

computational cost of querying the class of a patch, applying this technique in

a sliding window framework would be very costly, and therefore was unable to
2If for example we wish to train a “car” classifier, to fully train the discriminative model

we would need to provide the training algorithm with at least one example of every instance

of ”not-car”. In practice we make due with a subsample of negative class data.
3An image pyramid is a collection of blurred and re-sampled images, effectively creating a

hierarchy of scales.
4Thus making this approach more of a hybrid generative/discriminative classifier

Chapter 2. Related work 14

be used to both classify and localize an object within an image.

In [16] Leibe, Leonardis, and Schiele learn a generative model that is able

to overcome the inability of the method of [24] to localize the object of interest

within a cluttered scene. They proceed by running an interest point detector,

such as the Difference of Gaussian operator [18] to find salient points within the

image. A patchlet is then extracted from around each of these interest points,

these patchelets are of a size depending on the scale they were detected at. The

patchlets are then resized to be of a fixed dimension (in the case of their exper-

iments 25 × 25 pixels). A clustering algorithm is then run on these patches to

to group visually similar patches. Each cluster can be considered as a codebook

entry, with the whole codebook representing the collection of possible patches

we may see being generated in an image by the object of interest. In the next

step, each of these codebook entries are compared against the images used to

generate them, and their position relative to the annotation center is recorded

with the entry. Consider a car tire as a codebook entry, this patch may occur

in a visually similar way at the front and back of a car. We would annotate the

codebook entry with the information that the center of the object could exist

above and forward of the patch (in the case of the rear tire) or above and behind

(in the case of the front tire). To detect the object of interest in a novel im-

age, the interest point detector is once again run, and patches extracted. These

patches are then compared against the existing codebook entries, and either

assigned as a match to an existing entry, or discarded if they are not visually

similar to any entry. In the next step, each of the patches that match a code-

book entry use their positional information to vote in Hough space as to where

it believes the center of the object is. This additional voting step allows for the

localization of the object within a cluttered scene. A final back projection step

is then applied, where codebook entries that did not appear in the image, but

are supported by the hough estimate of the center are invoked to segment the

object from the background.

Chapter 2. Related work 15

While this technique produces very good results for deformable objects, it

suffers from a few drawbacks. The first is the problem of choosing a fully rep-

resentative codebook. While most objects have several similar features, large

intra class variations can only be modeled by insuring that images representing

the entire range of dis-similarities is available at training time. In addition if

we wish to train a multi view detector in this way, we need a fully representa-

tive set of views. The amount of data to achieve this for an object class with

high intra-class visual variation quickly becomes large. Additionally such an

approach is unable to reject false positives with elements similar to the class

of interest. That is, if two object classes share visual similarities, it is hard for

such a model to distinguish between them.

Fritz, Leibe, Caputo and Schiele [10] extend their work in [16] by introducing

an additional discriminative step to reduce the impact of the problems previ-

ously mentioned. In this approach they compute their hypotheses in the same

way as they did in [16], where it is possible for each matching codebook entry

to have come from a different training example. In this approach, the initial

implicit shape model is used to produce a set of hypotheses. A SVM based

discriminative model is then used to verify the correctness of each of these hy-

potheses. The resulting system, due to the use of negative class data is able

to eliminate a large number of false positive matches. However the problem of

choosing a fully representative set of data still remains.

2.3.2 Discriminative models

Our work, along with a few new techniques take a purely discriminative ap-

proach to the problem of deformable object recognition.

In [29] Shotton, Winn, Rother and Criminisi develop a technique for solving

the deformable object recognition problem using a mix of conditional random

fields, and boosted discriminative classifiers. Using a collection of hand anno-

Chapter 2. Related work 16

tated images they proceed to learn a conditional random field model of class

labellings within the training set. This model attempts to learn contextual re-

lationships between objects and their co-locations within an image. The local

potentials are produced by the output of joint boosting [30], and provided a

likelihood that each pixel is a member of a given object class. The joint boost-

ing detector is trained using features generated by a learned texton model [17].

Textons here are used in a similar way to the hand chosen features of [20] and

as they are learned from data, provide a much stronger feature set. These filter

responses are combined with spatial masks for better localization. In addition a

color model is learned as a component of the local potential, as color can provide

a strong cue to class membership. The resulting system is able to both segment

the image into regions, and provide object labels for each region. Training is

done using a small set of hand labeled data, with the result being both a seg-

mentation of the image and a per-segment label

A lot of the power of Shotton’s approach comes from learning the joint appear-

ance models, that is having high confidence in one region label, and a strong

correlation between the label for that region and another region, serves to boost

the confidence in the label of the second region. Some of this power however

can be lost when objects appear in scenes out of context from the norm, a car

appearing inside perhaps at a car show, or a person swimming for example.

Additionally there is the requirement to learn a detector for all region labels

that occur within the training set, that is, if our training set has a large number

of cluttered images, with high per-image object count, the number of classifiers

that need to be learned quickly becomes large. In their paper, Shotton states

that it takes up-wards of 42 hours of computational time to learn a 21 object

detector.

The work of [4] is similar to our own. In this work they present a method for

combining bottom up segmentations using global image features, and the result

of a top down classifier. The top down classifier in the case is a parts based

model, while the bottom up classifier is a region growth algorithm similar to

the method of [9]. In their approach they proceed to learn a series of represen-

Chapter 2. Related work 17

tative fragments for each class of interest. These fragments are very similar to

the patchlets of [16]. They then proceed to build a hierarchy of segmentations,

and compute a saliency measure for each node in the hierarchy. This saliency

measure is a rank ordering of the distinctiveness of the each region. They then

proceed to minimize the global energy of the system using a two part cost func-

tion. We need to note here that the structure of the tree depends only on the

segmentation information, and not on the classifier output. The first part of the

cost function penalises leaf nodes for which the top down labeling differ from

the bottom up labels (this penalty can only be applied at the leaf nodes as they

only have classification information at one scale). The second part of the cost

function penalises low saliency regions whose labels differ from their parents,

while not penalizing high saliency segments. This allows segments with distinct

appearance to have labels dis-similar to their parents.

In [3] Borenstein extends this work by building a full Bayesian model. First

a prior over all possible foreground background segmentations is computed by

constructing a soft segmentation hierarchy similar to that used in [4]. Next this

prior is used by a top down segmenter, based on shape templates to construct

a global approximation of the segmentation. Finally inference is used to com-

bine the top down and bottom up segmentations. The shape templates used

by the top down segmenter do not look at any underlying image features, but

rely purely on the boundaries produced by the segmentation. These templates

consist of a simple binary mask of fixed size, that label all pixes as being fore-

ground or background and do not inherently contain any information about the

underlying image appearance (for example, they do not consider internal color

or texture information). Because of this, these shape templates have a natural

invariance to intra-class appearance variations, but it is still required to learn

a fully representative set of templates for all possible object deformations and

rotations.

These work differs from our own in several fundamental ways. First they

Chapter 2. Related work 18

makes no attempt to overcome the problems caused by learning a representa-

tive set of fragments for a deformable object class. The underlying patch based

model still needs exemplars from all possible object deformations to provide

strong base classifications. Secondly the nodes within the hierarchy only con-

tain information as to their global saliency, and not to their direct belief in being

either positive or negative class. Because of this it is unable to correct errors in

classification due to too little local information. While their approach attempts

to solve for a single best global labeling, we are integrating the belief at each

level of the hierarchy to either strengthen or weaken our belief in the labels at

the leaf nodes.

Our approach attempts to solve several of these problems. By pre-segmenting

the image, we are able to produce results similar to [29] and [4] without the need

to learn classifiers for all objects that may occur in the scene. In addition, ob-

jects appearing out of context pose little problem to our system, as we have no

notion of co-occurrence. We combine elements of the sliding window approach,

by computing fixed length descriptors over regions, with the power of segmen-

tation, to allow the windows to change as the object deforms. By introducing

a hierarchical segmentation, we can help ensure correct segmentation at one or

more scales, without the need to explicitly search across scales as is required in

sliding window approaches [32]. While the work of [4] uses a similar hierarchical

segmentation it does not attempt to classify these segments, and rather opts for

a single global classification. Because of this we are able to correct errors in the

classification at lower scales by introducing the classification results from higher

up in the segmentation tree. Our features are similar to those used in [29], but

we choose Gabor filters rather then requiring the need to learn a representative

family of Textons. We are able to learn a strong classifier without the need for

large amounts of data as may be need in the multi view approaches, and can do

so computationally faster then most Generative models are able to. Our result-

ing system is able to produce results similar to those of [29], with considerably

less training time.

19

Chapter 3

Theory

3.1 Boosting

Given a set of features that describe some underlying data, and a set of labels

for these features, we wish to learn a classifier. This predictor should, given a

new set of features, be able to produce the correct label. The task of construct-

ing this predictor is one of the fundamental problems in machine learning.

Rather then attempt to construct a single, monolithic predictor that is able

to separate the label classes, we choose to approach the problem slightly differ-

ently. If we can build a family of simple predictors, who are able to separate the

classes correctly better then chance1 and have a mechanism to combine these

predictions, we could produce a predictor with an error rate much better then

any of the inidividual predictors. Adaboost attempts to construct such a pre-

dictor from a family of weak predictors, or weak learners. It does so by choosing

a new predictor at each round of an iterative process, that minimizes the clas-

sification error, then re-weighting the training data and repeating. Effectively

we are boosting the performance of many weak classifiers by allowing them all

to vote on their belief of the final label.

1That is, they are able to predict the correct label for the data greater then 50% of the

time.

Chapter 3. Theory 20

3.1.1 AdaBoost

One of the most popular boosting algorithms is AdaBoost [25] [26]. Consider

the following problem ; given a collection of features F , and an associated set

of labels Y ∈ {0, 1} we wish to construct a predictor G(F) that, given a set

of input vectors F ′ returns a set of labels Y ′ ∈ {0, 1}. The error rate of this

predictor is given by [12]:

ε =
1
N

N∑
i=1

I(y′i 6= G(f ′i)) (3.1)

Where I(y′i 6= G(f ′i)) is the indicator function, which takes the value one

when y′i 6= G(f ′i) which is true when the predictor returns the wrong label, and

zero otherwise.

As was briefly mentioned in the previous section, boosting works by applying a

sequence of weak predictors and taking as the label, the weighted majority vote

:

G(F) =
I∑

i=1

αiGi(F) (3.2)

Here Gi(F) is the i’th weak predictor and αi is its associated weight. The

problem of training an AdaBoost classifier then becomes one of choosing the

family of weak predictors, and their associated weights.

Algorithm 1 outlines the AdaBoost procedure. At each iteration, we choose

the current best weak classifier2, compute the classification error, and re-weight

the data. It is the re-weighting step that gives AdaBoost most of its power.

Intuitively we would like to guide the AdaBoost algorithm to focus more on

choosing weak predictors that can separate previously mis-classified examples,

and reduce its focus on example that have already been correctly classified in a

previous step. We achieve this by weighting each of the training examples, at
2It is possible to choose the same classifier in multiple iterations, though each will have a

different weight assigned

Chapter 3. Theory 21

each iteration t using the following re-weighting scheme as introduced in [26]:

wt
i = wt−1

i · exp
[
log

[
1− εt−1

εt−1

]
· I(yj 6= Gt−1(xi))

]
, i = 1, ..., N (3.3)

Algorithm 1 AdaBoost
1: Set all the initial weights equal wj = 1

N , j = 1, ..., N

2: for i = 1 to I do

3: Fit a weak learner Gi(x) to the currently weighted data.

4: Compute the error εi =
PN

j=1 wj ·I(yj 6=Gi(xj))PN
j=1 wj

5: Compute the classifier weight αi = log (1−εi)
εi

6: Re-compute the data weights wj ← wj · eαj ·I(yj 6=Gj(xj)), j = 1, ..., N

7: end for

8: Return the strong classifier G(x) =
∑I

i=1 αi ·Gi(x)

We assign the weight wt
i to the same value it took in the previous iteration

if the weak classifier Gt−1 we chose previously correctly classifies the example.

Otherwise we increase the weight by the factor 1−εt−1

εt−1 . Because of this, the

predictor we fit in iteration t will lend more weight to examples that were mis-

classified in the previous iteration. We continue to iterate until we have selected

the desired number of weak learners. There does not, at this time seem to be

a good theoretical stopping condition for this algorithm. Continuing to iterate

after the error rate has stabilised can, in some cases continue to increase test

set performance of the final strong predictor.

We have not addressed the problem of choosing a weak predictor here, as any

predictor able to classify the data with greater then 50% success will work in

the boosting framework. Several such weak predictors include decision stumps,

and trees [7].

Chapter 3. Theory 22

3.2 Belief Propagation

We are interested in examining the inference problem in graphical models. Our

goal is to compute a marginal probability P (xi) for each node xi in a graph G.

This belief should take into account not only its local evidence, but information

from its surroundings, in this case from its neighboring nodes. Computing of the

full marginal for each node would require marginalizing out all other variables

in the graph :

P (xi) =
∑

xj ,∀j∈(G−xi)

P (x1, x2, ..., xN) (3.4)

For large complicated graph structures, the time to compute the marginal for

each node grows with the graph size. We desire instead to find a way to re-use

information, as summation is a commutable operator, rather then re-computing

the sum of Equation (3.4) for each node xi we can re-use summations that do

not include the current query node xi. This simple operation gives rise to the

belief propagating algorithm [13]. We will only consider the case where the

graph G is singly connected, and loop free. We can decompose any such graph

into a factor graph [34] containing local evidence φ(xi), and clique potentials

ψ(xi, xj). Our marginal probability at node xi can be expressed in terms of its

local evidence, and clique potentials as :

P (xi) =
1
Z

∑
xj ,∀j∈(G−xi)

∏
i,j

ψ(xi, xj)
∏

i

φ(xi) (3.5)

We can now define the concept of a message mi→j as the re-usable compu-

tation stored at each node. If we define the message as :

mi→j(xj)←
∑

b(xi) · ψ(xi, xj) (3.6)

Which is the product of the local belief and the clique potential. The local belief

can be defined as :

b(xi) =
1
Z
φi(xi)

∏
j∈N(i)

mj→i(xi) (3.7)

Chapter 3. Theory 23

Where Z is a normalization constant, to ensure our local belief is a strict prob-

ability. We can see that, by expanding Equation (3.5), we have the marginal-

isation over a product of all local evidences and clique potentials. Iteratively

Expanding Equation (3.7), will yield the same result for any given loop-free

graph. The advantage we gain in using Equation (3.7) is we can compute the

message mi→j(xj) once for each pair of nodes, store the result, and re-compute

our local belief b(xi) for each node in the graph with no need for further mes-

sages to be passed.

Algorithm 2 lays out the basic framework for performing message passing

belief propagation on a loop free graph. We start with an arbitrary leaf node,

and begin passing messages to all of its immediate neighbors. We then begin

working inward toward the root, passing messages forward through the graph.

When we reach the root node of the graph, we begin working backward, passing

messages from the root node back toward the leafs. Once we again reach the leaf,

every node in the graph has received messages from its immediate neighbors,

and is ready to compute its local belief.

Algorithm 2 Belief Propagation
1: let U be the set of all nodes that have yet received messages from its neigh-

bors N(xi).

2: while U is not empty do

3: Choose a node xj from U that has not sent messages to its neighbors

N(xj).

4: Compute a message mj−>n, ∀n ∈ N(xj) using Equation (3.6)

5: end while

6: Compute the local belief b(xi) for all xi in G using Equation (3.7)

24

Chapter 4

Segment Boost

4.1 System Overview

Figure 4.1 provides a visual outline of how our system operates. An input image

undergoes a pre-processing step to lessen the impact of environmental lighting

conditions as well as poor contrast caused by low grade optical elements in the

capture device. Next the image is segmented using a fast over-segmentation

method. A fixed length descriptor is then computed for each region which is

then labeled using a learned boosted classifier. The process is then repeated

at several granularities of segmentation. The results are then combined using

a hierarchical belief propagation technique. The final result is a label for each

segment in the image, as well as an associated confidence.

Figure 4.1: Overall system flow.

We will now examine each component of the system outlined in Figure 4.1

in detail.

Chapter 4. Segment Boost 25

4.2 Pre-processing

Due to poor environmental and lighting conditions or poor quality equipment,

we often find images that are of very low contrast. It is difficult to extract

feature information from such images, as much of the data is compressed into

a small brightness range. We choose histogram equalisation as our method for

dealing with such problems. Histogram equalisation attempts to increase overall

image contrast by stretching the intensity values within an image across the

entire available dynamic range. The desired result is a monotonically increasing

cumulative intensity histogram.

Let p(i) be the probability of observing a pixel with intensity value i in an image

I, we can write this probability as :

p(i) =

∑N
j=1 δ(vj − i)

N
, i ∈ 0, ..,M (4.1)

Where N is the total number of pixels in the image, vj is the intensity value

of pixel j, and M is the maximal intensity value. We can define the cumulative

density at i as :

c(i) =
i∑

j=1

p(j) (4.2)

Our desire is for c(i) to be linearly increasing. To achieve this, we fit a

transfer function v′i = τ(vi) to map current intensity values vi into new values

v′i in our normalized image, where c(i)′. The function is fit by minimizing the

residual between the cumulative density of the desired histogram c(j)1, and the

histogram produced by the transfer function c(τ(j)) for all intensities M :

Minimize ‖c(τ(j))− c(j)‖∀j∈M (4.3)

Figure 4.2 shows the result of applying histogram equalisation to a low con-

trast image. One can see much more detail in the body of the cat in the

normalized image.
1In this case the desired histogram is flat.

Chapter 4. Segment Boost 26

(a) (b)

Figure 4.2: (a). Un-normalized image, (b). Image normalized using histogram

equalization. Note the extra detail visible on the body

4.3 Segmentation

We wish to decompose the image into a number of discrete regions. Ideally the

boundary of these regions would exist along the boundaries of objects within

the image. We will consider a good segmentation one that exhibits the following

properties :

1. Does not merge dis-similar regions.

2. Does not heavily over-segment the image2.

Rule (1) asks that the segmenter does not return a segment that contains both

a large portion of the object of interest and background. Rule (2) ensures that

the regions are large enough that we can compute meaningful descriptors.

We will consider two primary segmentation techniques. The first, regular

griding, does not look at the underlying image data, rather it chooses to sub-

divide the image into fixed size regions. This method satisfies rule (2), but

will fail to satisfy rule (1) in many cases. The second method we consider is

the graph based image segmentation technique of [9]. This technique is not

2Some over segmentation is acceptable, but segmentation into single pixel regions is not.

Chapter 4. Segment Boost 27

(a). (b). (c).

Figure 4.3: (a). Input image, (b). Regular grid segmentation of the cat image,

(c). output produced by applying the segmentation technique of [9]. In both

(b), and (c) areas of similar color represent regions contained within the same

segment.

guaranteed to satisfy either rule (1) nor rule (2), but does so in most practical

cases.

4.3.1 Regular Griding

We first consider the naive technique of regular grid segmentation. This tech-

nique sub divides the image into a number of N×M rectangular regions. Figure

4.3(b) shows the result of this type of segmentation. As we do not examine any

of the underlying image structure when performing the segmentation, we need

to ensure that we choose region sizes that do not combine too much positive

and negative class in the same segment. We also have to consider the problem

of small positive class objects in the image. These may be smaller then a sin-

gle rectangular region, and possibly only contribute a small fraction to each of

several segments. Figure 4.4 represents this problem, the positive class circle,

while the same size as the rectangular grid, spans 4 segments rather then being

centered in a single one. This serves to pollute the information we can extract

from each of these regions regarding the positive class with a great deal of neg-

ative class information.

Early experimentation showed that this technique was sufficient for posi-

Chapter 4. Segment Boost 28

Figure 4.4: Regular grid segmentation. Here the circle is the positive class

object.

tive class objects that are large relative to the image size, but fail due to the

aforementioned problem for smaller positive class objects.

4.3.2 Irregular Region Segmentation

Rather than use fixed grid segmentation that does not exploit any underlying

image structure, we now examine a technique that is able to dynamically choose

segment sizes and shape based on underlying image information. One such ap-

proach is that proposed in [9] which views the image as a graph, and attempts

to build segments from the bottom up.

We will consider a graph G representation of the image, where each pixel

is represented by a vertex vi ∈ V , and the connection between neighboring

pixels as edges ei,j ∈ E. We will also define a weight w(e), as a measure of the

visual difference between two vertexes3. For simplicity we can use the absolute

intensity difference as a measure of w(e) =| vi − vj |. We can now compute a

metric measuring the strength of the internal connections within a component

(or segment) C:

INT (C) = max
e∈MST (C,E)

w(e) (4.4)

3This can be viewed as the weight of the edge in the graph

Chapter 4. Segment Boost 29

We are computing here the cost of the most expensive edge in the minimum

spanning tree (MST (C,E)) in component C.

Algorithm 3 lays out the basic procedure for segmenting the image graph. At

each iteration we consider the pairwise weight between two components, and

the internal weight within the components. If by merging the independent

components Ci and Cj we do not increase the measure INT (Ci ∪ Cj) then we

merge, otherwise we leave them as independent components.

Algorithm 3 Efficient tree based segmentation.
1: Sort E into π = (o1, ...oM) by non-decreasing edge weight.

2: Start with segmentation S0 where each vertex vi is its own segment

3: for q = 1 to M do

4: let vi, vj be the vertexes connected by eq, the q-th edge in the ordering π

5: if vi, vj are dis-joint components of Sq−1 then

6: if wq is small compared to INT (vi) and INT (vj) then

7: Merge vi and vj in Sq

8: else

9: Sq = Sq−1

10: end if

11: end if

12: end for

13: Assign each pixel to a segment in S to R(x), the collection of regions.

In practice we first smooth the image before applying the procedure outlined

in Algorithm 3 to reduce large changes in w(e) due to image noise. The amount

of smoothing applied in the pre-processing step is controlled by a parameter

σseg. We also define a runtime parameter that controls our measure of ”small”

used in step 6 of the segmentation algorithm. This parameter k ultimately

controls the level of over-segmentation produced by the algorithm. The result

is a segmentation similar to that shown in Figure 4.3 (c).

Chapter 4. Segment Boost 30

4.4 Feature Extraction

Now that we have divided the image up into a number of unique segments,

we need to compute a descriptor over each region. This summary over regions

should uniquely describe the information within the patch, in a way that is

independent of patch size and shape. Without this requirement, it would be

impossible to compare the descriptor from two un-equal sized regions.

We choose to describe the image information in a region using two sets of fea-

tures, color and texture histograms.

4.4.1 Color Histograms

Color can provide a very strong separator between objects of a particular class,

and background. Rarely do we see blue cows, or red dogs. Because of this we

choose to include color information, in the form of Hue, Saturation and Intensity

histograms in our feature set. We choose to use histograms as a representation,

as it allows us to construct a vector of fixed size from a region containing an

arbitrary number of pixels.

We desire to construct a color feature vector that is as robust to intensity

changes as possible, to achieve this we construct the histogram over the HSV

space image rather then the RGB space image. The HSV space naturally decou-

ples the intensity information from the inherent color4, and therefore provides

the robustness we seek.

Histogram Binning

To maintain this HS and V separation we will construct two separate histograms,

the first being of size Nh · Ns will contain the HS channel information, while

the second of size Nv will be constructed over the Value space. The resulting
4The color information is contained in the Hue and saturation components, while the

intensity is represented in the Value component. Refer to Appendix A for details on conversion

from RGB space to HSV.

Chapter 4. Segment Boost 31

histogram will therefore be of size N = Nh ·Ns +Nv. For our experiments we

have set Nh = Hs = Nv = 10. We chose 10 bin histograms, as this seems to be

a standard value within the literature [?]

For each pixel in the region of interest R(x) we can compute a color vec-

tor yhs(i) = [Hi, Si] consisting of the HS channel information, and a second

vector yv(i) = [Vi] containing the V channel information. We can then de-

note bh(i) ∈ (1, ..., Nh), bs(i) ∈ (1, ..., Ns) as the bin indexes for the color

vector yhs(i) and bv(i) ∈ (1, ..., Nv) as the bin index for the intensity vec-

tor yv(i). We can now construct a kernel density estimate over the region,

qhs(x) = {q(m,n;x)}m=1...Nh,n=1...Ns
is given by [22]:

qhs(m,n;x) = Zhs

∑
i∈R(x)

δ[(bh(i)−m)(bs(i)− n)] (4.5)

And a second density estimator qv(x) = {q(l;x)}l=1...Nv
as :

qv(l;x) = Zv

∑
i∈R(x)

δ[(bv − l)] (4.6)

where δ is the Kronecker delta function, and Zhs, Zv are normalizing con-

stants to ensure the total bin weights sum to 1. It should be noted that the

HS and V space histograms are normalized separately, to ensure that we do not

over count. That is, every pixel is represented once in the HS space histogram,

and again in the V space. As the total number of bins in the V space histogram

is smaller then the HS space, normalizing the histograms after combining will

reduce the power in the HS space, and lend more weight to the V space.

Figure 4.5 shows a sample color histogram computed across the given image,

note that the HS and V histograms are shown separately. In our implementation

we compute the HS histogram as a two dimensional grid of bins which we then

convert to a single linear index vector, the V histogram is then concatenated to

achieve our final color feature vector.

Chapter 4. Segment Boost 32

We choose to compute this color histogram over the un-normalized image, as

the normalization process tends to introduce some hue changes into the image.

Figure 4.5: Color Histograms : (left). Input image, (top right). Two dimen-

sional hue and saturation histogram computed over the whole image, (bottom

right). Intensity histogram computed over the same region

4.4.2 Texture Histograms

Rather then simply look at the color in each region, it makes sense to also ex-

amine the texture information. This will help us distinguish a brown horse from

the trunk of a tree, or the side of a barn. Many techniques exist to compute the

textural information within an image including Fourier Transform [14], Textons

[17], and Gabor filters [33]. Textons require some notion of examplars, either

learned or hand chosen, we wish to avoid the problem associated with choosing

a fully representative set of basis patches and opt instead to compute frequency

Chapter 4. Segment Boost 33

domain information over regions. Both the Fourier Transform, and Gabor filters

provide tools to extract frequency domain information, the Fourier transform

however computes the frequency domain content as a function of the image as

a whole, thus discarding any locational information. The Gabor filters however

allow us to retain locational information, allowing us to isolate texture infor-

mation produced by a smaller region in the image rather then the image as a

whole.

Gabor Filter

The use of Gabor filters in texture classification is quite widespread [15, 33].

Gabor filters partially owe their popularity to their similarity to processes that

occur in the primary visual cortex [19]. As well these filters have been shown to

posses optimal localization properties in both spatial and frequency domain [33].

A single Gabor filter F (x, y) can be viewed as the product of a complex

sinusoidal s(x, y)of particular angle and frequency and a Gaussian G(x, y) as

Equation (4.7) shows. Figure 4.6 shows a single scale and orientation Gabor

filter.

This complex filter is then convolved with a query signal I(x, y) to produce a

complex response. The real component of this response represents the amount

of power I(x, y) has in the band represented by the filter, at location (x,y).

While the angular component represents the phase of the response.

F (x, y) = s(x, y) ·G(x, y) (4.7)

Where:

s(x, y) = e−j2π(u0x+v0y)

G(x, y) = e
−(x2+y2)

2σ2

(4.8)

We can view this complex filter as a symmetric filter (Equation (4.9)) and

Chapter 4. Segment Boost 34

Figure 4.6: A two dimensional, single orientation and frequency Gabor filter.

The Gaussian envelope can be clearly seen in the exponential decay of the

sinusoidal function.

an asymmetric filter (Equation (4.10)) using the Euler identity5. This decom-

position is done for reasons of simplicity in implementation.

Fsym(x, y) = cos (u0x+ v0y) · e
−
h

x2+y2

2σ2

i
(4.9)

Fasym(x, y) = sin (u0x+ v0y) · e
−
h

x2+y2

2σ2

i
(4.10)

Rather then performing a single complex convolution between the filter and

target signal, we can now perform two simpler real convolutions:

Rsym(x, y) = I(x, y) ∗ Fsym(x, y)

Rasym(x, y) = I(x, y) ∗ Fasym(x, y)
(4.11)

The resulting magnitude can be calculated as Equation (4.12). This magni-

tude is referred to as the Gabor energy [28]. We can also calculate the phase

response as in Equation (4.13).

Rmag(x, y) = ·
√
Rsym(x, y)2 +Rasym(x, y)2 (4.12)

5Euler’s identity can be expressed as : ejπθ = cos θ + j · sin θ

Chapter 4. Segment Boost 35

Rphase(x, y) = arctan
[
Rasym

Rsym

]
(4.13)

Filter Banks

A single Gabor filter will most likely not provide enough information to perform

any sort of texture classification, as it is only capable of analysing the texture

at a single scale and orientation. To overcome this we build a family of Gabor

filters, of varying orientation and scales.

Figure 4.7 shows such a family of filters. In our system, we choose to apply

Gabor filters of 4 scales and 6 orientations. This is primarily motivated by

wishing to capture as much textural information as possible, while avoiding

examining responses from large scale image features, such as edges and object

boundaries. Figure 4.8 shows the Gabor energies for a collection of Gabor filters

of a single orientation, but varying frequencies.

Figure 4.7: Gabor filters showing (top) a progression across scales, and (bottom)

progression across orientations.

Given a family of Gabor filters, Fi(x, y), we compute the response of the

image to each filter in turn, Ri(x, y) = Fi(x, y) ∗ I(x, y).

Chapter 4. Segment Boost 36

Figure 4.8: A progression of Gabor filters of increasing frequency applied to

an image. The left most response shows the highest frequency band (smallest

texture), the right most image shows the lower frequency (largest texture).

Histogram Binning

As we discussed in Section 4.5, we desire to construct a vector of fixed length

from regions of arbitrary size. Once again we choose to use histograms as our

mechanism. We compute these histograms over the Gabor energy responses,

one per scale and orientation.

In our experiments we choose a collection of Gabor filters spanning 6 ori-

entations, and 4 scales, resulting in 6 · 4 = 24 Gabor energy fields. We chose

to quantize the responses into 10 discrete bins. As in the previous section, we

will denote b(s,θ)(i) ∈ (1, ..., N) as the bin index for pixel i, in scale s and orien-

tation θ. We again construct a density estimator r(s,θ)(x) = {q(m;x)}m=1...N

over their region R(s,θ)(x).

q(m;x) = Z
∑

i∈R(s,θ)(x)

δ[(b(s,θ)(i)−m)] (4.14)

The factor Z is a normalizing constant to insure that the histogram bins sum

to one.

4.5 Training and Classification

In the previous section we discussed how to compute a set of fixed length de-

scriptor for regions of variable size within the image. We will now discuss how

Chapter 4. Segment Boost 37

these descriptor can be used to classify each region as either coming from the

object of interest or not.

4.5.1 Combining Features

We have computed a family of histograms for each region, one in HS space

qhs(x), on in V qv(x) space, as well as one per scale and orientation in Gabor

energy space r(s,θ)(x). We compute our region descriptor by concatenating these

locally normalized histograms into a single vector. This process also includes

flattening the two dimensional qhs(x) histogram into a single dimensional vector.

D(x) = [qhs(x), qv(x), r(s,θ)(x)]s=1...S,θ∈Θ (4.15)

Where S is the total number of scales for which we have computed Gabor en-

ergies, and Θ is the family of orientations. We do not further normalize the

resulting histogram, as this would tend to cause numerical underflow, and in-

formation could potentially be lost. The length of the resulting region descriptor

D(x) is independent of the region size.

4.5.2 Training

Given a set of labeled training images, we wish to learn a general classification

rule. We choose to use boosting as discussed in Section 3.1. For each image in

the training set, we first perform the segmentation, then compute a a descriptor

D(x) for each region. We additionally compute a label y(x) where :

y(x) =

 1 if µ(x) ≥ T

0 otherwise

As our ground truth labels are in-dependant of the segmentation, it is possible

for a segment to span both positive and negative class regions. To overcome

this, we calculate an overlap factor µ(x) as the fraction of pixels within a region

Chapter 4. Segment Boost 38

labeled as positive class:

µ(x) =

∑
i∈R(x) I(pi = 1)∑

i∈R(x) 1
(4.16)

For our experiments, we choose T = .75, that is for a region R(x) to be

labeled as positive class, at least 75% of its pixels must be labeled as positive

class.

Boosted Stumps

As we discussed in Section 3.1, the boosting framework can use any weak learner

to achieve a high classification rate. In our system we choose to use decision

stumps, as they are computationally simple, and very powerful in practice.

Equation (4.17) gives the basic form of the decision stump. Here Fk is the

k’th element of the feature vector F , it should be noted that the decision stump

only considers a single element of the feature vector rather then the feature

vector as a whole. Effectively we are choosing the linear decision boundary that

best separates the underlying data in a single dimension.

g(F, ρ) = sign[w1 · Fk − w0]

where ρ = {k,w0, w1}
x (4.17)

To apply the classifier to novel inputs, we need only store a collection of ρ pa-

rameters, one per boosting round.

We now use the boosting procedure outlined in 3.1 to fit a family of weak

learners gi(F, ρi), i = 1..N to the training data that can be used to classify new

feature vectors.

4.5.3 Classification of new images

Given a query image I′, we can compute a fixed length descriptor D′(x) using

the process outlined in section 4.4 for each region R(x). We now wish to apply

Chapter 4. Segment Boost 39

a class label L(x) and a score S(x) to each region using the classifier we learned

in the previous section.

Equation (4.18) outlines the process of applying a score and label to the

boosted output. Effectively the score is computed as the weighted sum of votes

from the individual weak learners.

S(x) =
I∑

i=1

αigi(D′(x), ρi)

L(x) = sign(S(x))

(4.18)

The final label is taken as the sign of the resulting score. It should be noted

that the boosting classifier does not use all of the feature elements of D′, it is

indeed possible for the boosting classifier to only look at a small number of the

elements of D′.

4.5.4 Logistic Fitting

While the labels produced by boosting are somewhat useful for classification,

we are much more interested in the scores. These can be viewed as a confidence

in our prediction. As the score is simply a total of the class label votes, we need

to apply some extra machinery to convert it to a usable confidence value. To

do this we reserve a portion of our test data, and fit a logistic function to the

resulting scores, using the ground truth labels as calculated in section 4.5.2.

We fit the regression parameters θ = [α, β] to a small subset of the data using

a standard logistic regression package. We can then predict the confidence that

a new segment label is in the positive class P (L(x) = 1|D′(x), θ) using Equation

4.19.

P (L(x) = 1|D′(x), θ) =
eφ

1− eφ

where φ = α+ β · S(x)
(4.19)

40

Chapter 5

Heirarchical Segment Boost

5.1 Motivation

We noticed in early experiments that combining or splitting segments could

change the probability that the segment would receive a particular label. We

can explain this change by reconsidering our feature set. Because our features

are histograms, they combine the information from an entire region, effectively

averaging over whole region. The segmenter may choose segmentation bound-

aries that span areas of subtle texture and color changes, or regions where these

changes are smooth. The histograms therefore average over these changes in

color and texture, effectively diluting the information contained in the descrip-

tor. While the classifier is still able to apply the correct label to the segment,

it does so with a lesser confidence.

To overcome the problem of choosing a single best segmentation level we

build a hierarchy of segmentations, and combine the results from each layer in

the segmentation tree using belief propagation. Figure 5.1 provides us with an

example that motivates our choice of this hierarchical model. In Figure 5.1(a).

we see one possible segment within an image, it would be hard as a human to

apply the label ”cow” to this segment as there simply is not enough information

to do so. Our detector has the same problem, while it may label the region

as cow, it will do so at a much lower certainly then it may if it were given

more information. In Figure 5.1(b). we see a second possible segmentation, it

would not be surprising that a human would apply the label ”cow” given the

Chapter 5. Heirarchical Segment Boost 41

additional information, as well we would expect our detector to be much more

certain that this is a cow. Figure 5.1(c). shows the other extreme, with the

segment comprising the whole image. In this case there is too much informa-

tion to apply a consistent label. We would expect a human to maybe apply the

label ”cow in field” or ”field” rather then labeling it ”cow” and ignoring the

background information. We would expect our feature vector computed over

this under segmentation to be polluted with both positive and negative class

data, once again leading to a high level of uncertainty produced by our detector.

(a). (b). (c).

Figure 5.1: An illustration of the aperture problem. (a) Is a small segment of

a cow, it would be hard for a human to apply a label given only that much

information. (b) the right scale segmentation, it would be easy for a human to

apply the label ”cow”. (c) indiscriminating, again it would be hard to apply the

unique label ”cow” while ignoring the background.

As we wish to build a classifier that is able to identify objects at any scale

within an image, it would be impossible to tweak a segmenter that would pro-

duce a best segmentation for all objects we expect to see within the data set. So

we are motivated to run our system with different segmentation parameters, in

the hopes that we will at some scale, get close to the best possible segmentation

for all objects. We then face the problem of combining the resulting information.

Simply taking the highest certainty detection for each pixel would possibly lead

to inclusion of mis-classifications at the smallest scale that have no support at

higher scales. Belief propagation gives us a much cleaner mechanism to combine

Chapter 5. Heirarchical Segment Boost 42

Figure 5.2: Hierarchy of segmentations produced by varying the parameters

ϕ = {0.5, 500, 50}, {0.75, 500, 200}, {0.75, 500, 500}.

the information across scales. In the next section we present our approach to

applying belief propagation to our problem.

5.2 Segmentation Tree

As we discussed in Section 4.3, the segmenter has three degrees of freedom

ϕ = {σ, k,min}. By controlling these parameters we can produce segmentations

at finer or coarser levels of granularity. Figure 5.2 shows such a hierarchy, the

strong object boundaries remain very similar, only the internal segmentation

changes over scales.

It is intuitive to view these segmentation hierarchies in tree form, where the

root node represents a segment in the highest level of pyramid. And children,

segments that occupy the same space in the lower levels of the pyramid. Figure

5.3 shows a simplified tree constructed from the given segmentation. In practice

the lower level segments may overlap one or more segments in the level above.

We choose to assign the child node to the parent it most overlaps by computing

the pixel-wise overlap between the parent R(p) and the child R(c):

O(p, c) =
∑
R(p) ∩R(c)∑

R(c)
(5.1)

Let P be the set of all parent candidates, that is, all the segments that R(c)

Chapter 5. Heirarchical Segment Boost 43

Figure 5.3: The tree (right) built from the corresponding hierarchy of segmen-

tations (left). Here we present a pesudo segmentation.

overlap by at least one pixel. We assign the parent of R(c) to be :

Parent(R(c)) = R(p), where p = arg max
q∈P

O(q, c) (5.2)

The resulting structure is guaranteed to be a n-ary tree, as each child is as-

signed only a single parent, and each parent is allowed to have multiple children.

The reason for choosing this structure will become apparent in the next section.

Rather then building a single monolithic tree we build a family of trees, each

rooted at a segment in the highest level of the segmentation hierarchy.

We now apply the methods we have previously discussed to compute a prob-

ability P (L(x) = 1|D′(x)) for each region R(x) in each level of the segmentation

hierarchy independently. The result is a unique probability that each segment

takes on the positive class label, for each segment in the hierarchy. It should

be noted that, by decomposing the larger segments, we can drastically change

our belief in the label for the same underlying pixels at different levels in the

Chapter 5. Heirarchical Segment Boost 44

hierarchy. This is due to the fact that the features produced by a small segment

lower in the hierarchy may be drowned out when it is merged with a larger

segment higher up in the tree.

5.3 Belief Propagation on the Segmentation

Tree

We now wish to merge the results from each level in the segmentation hierarchy.

Simply averaging beliefs for each pixel would not lead to a consistent label for

every element in a segment. Rather we choose to use belief propagation to al-

low the nodes in the segment tree to share their belief as to the label that each

should take.

The local belief φ(x) represents our belief that node x takes the positive

class label. We compute the local belief as shown in Equation (5.3), where we

simply take the logistic thresholded value from the detector.

φ(x) = P (L(x) = 1|D(x)) (5.3)

We also store the full patch descriptor D(x) at each node, we require the

vector to facilitate comparing two nodes in the tree. We can now compute an

inter-node comparability measure λi,j for all connected pairs of nodes i, j in

the tree. As D(x) is a histogram, we choose to compute the χ2 distance (see

Equation 5.4 as a measure of similarity. We additionally exponentiate the χ2

measure to both constrain the result in the range (0, 1), and invert the result.

This inversion is required as the χ2 measure is small for two similar D(x) and

large for two dis-similar D(x), we desire our compatibility score to be large for

similar descriptors, and small otherwise.

χ2
i,j =

k∑
m=1

(Dm(i)−Dm(j))2

(Dm(i) + Dm(j))

λi,j = e−χ2
i,j

(5.4)

Chapter 5. Heirarchical Segment Boost 45

Our local potential function ψi,j should reflect our intuition as to how the prob-

abilities should flow through the segmentation tree. If a node i is similar to is

neighbor j, that is, the χ2 distance between D(i) and D(j) is small, we want i

and j to have similar beliefs. If D(i) is dis-similar to D(j) we don’t care whether

i and j have similar beliefs or not. To achieve this, we adopt the local potential

function of Equation (5.5), as λi,j ∈ (0, 1) we can control the growth of the

exponentials.

ψi,j =

 eλi,j ·γ e−λi,j ·γ

e−λi,j ·γ eλi,j ·γ

 (5.5)

Where γ is a free parameter that controls the rate of growth of the exponential.

In our experiments, setting γ = 100 was determined empirically as the best

value for all object classes.

Examining Equation (5.5) more closely, we can see that when λi,j → 0 the

exponentials approach 1, and the ψi,j matrix becomes constant. This occurs

when the χ2 measure is large1. This basically serves to sever the link between i

and j in the tree. When the similarity measure λi,j is large, ψi,j approaches a

diagonal matrix, enforcing our desire for i and j to have the same belief.

As the underlying graph structure is strictly an N-ary tree, we can achieve

convergence in our beliefs using a single forward-backward pass, making the

computational time linear in the number of nodes. Let C(i) be the i’th node

at the current level, and P (i) = Parent(C(i)) be its parent in the tree. We

can make our first pass by computing the message m(C(i)→P (i)) for each C(i)

in the lowest level of the segmentation tree, we then proceed upward through

the tree. We can effectively ignore the tree structure in this computation, and

simply scan across all nodes at each level linearly, propagating, and storing the

message at the next highest level as we go. We proceed in this way until we

have passed a message to the root node in each segmentation tree.
1D(i) is very dis-similar to D(j)

Chapter 5. Heirarchical Segment Boost 46

After completing the forward pass, the root node has received messages from all

of its neighbors, and is ready to compute its final message. Let P (i) be the i’th

node at the current level, and Cj(i) be the j’th child of P (i). We now compute

the message m(P (i)→Cj(i))j∈J , for each child in the set of all children J . Each

message will be different, as the ψP (i),Cj(i) matrix will differ for each child in J .

We once again proceed down the tree in this fashion, scanning linearly across a

level in the tree, and propagating messages down to the child nodes.

Upon completion of the backward pass, all nodes have received messages

from all neighbors, and are ready to compute their final beliefs using Equation

(3.7). The final probability at each node is equal to its belief after receiving all

messages from its neighbors N(x) in the tree:

P (L(x) = 1|D(x), b(y))y∈N(x) =
1
Z
φ(x)

∏
j∈N(x)

mj→x (5.6)

This final probability value can be thresholded to produce a final label for

the patch.

47

Chapter 6

Results

We will now examine the performance of our classifier using a standard quantita-

tive metric. Our classifier is trained using a standardized dataset, and therefore

allows us to compare our results to other pre-existing systems. First we will

discuss our comparative metric, then we will examine our dataset, finally we

will examine the results of training our classifier to detect several object classes.

6.1 Receiver Operating Characteristics

To allow for comparison between different system configurations, we need to

choose a metric that is independent of any underlying threshold values we may

choose. For example, if we choose to simply summarise our results as a detec-

tion rate figure1 we are loosing a great deal of information about the underlying

performance of our classifier. We do not know where the majority of classifi-

cations fall relative to the threshold, or how changing the threshold affects our

classification rate.

To counter these limitations of simple detection rate statistics, we choose

to use the Receiver Operating Characteristic (ROC) curve as our main qualita-

tive metric. This metric has been shown [6, 11] to be a very good measure of

performance in classification tasks, and is used in both the vision and medical

communities. The ROC curve is constructed by plotting the correct detection
1Detection rate can be calculated by thresholding the beliefs at some value τ , then com-

puting the number of correctly classified regions divided by the total number of ground truth

positive regions

Chapter 6. Results 48

rate versus the false alarm rate, as we sweep the detection threshold through all

possible values. We can then summarize the curve into a single statistic by in-

tegrating the area under the curve, to compute the AROC (area under receiver

operating curve) statistic.

To construct a ROC curve we use the following process. First let R represent

all regions within the image I, next let N represent all regions in R that have

ground truth negative labels, and P represent all regions with ground truth

positive labels. We must ensure N ∪P = R which ensures every region is given

a ground truth label. We now concatenate all of our belief values into a list

T (i) = P (L(i) = 1|D(i)), i ∈ R, this will be the set of thresholds we will sweep

over to construct the curve, we then sort this list such that T (i) > T (i+ 1),∀i.

For each τ ∈ T we compute a correct detection rate using Equation (6.1),

and a false alarm rate using Equation (6.2). Here I is the indicator function,

and takes the value 1 when the regions belief is equal to or greater then the

current threshold value.

CD =
∑

i∈P I(P (L(i) = 1|D(i)) ≥ τ)∑
i∈P 1

(6.1)

FA =
∑

i∈N I(P (L(i) = 1|D(i)) ≥ τ)∑
i∈N 1

(6.2)

Finally we plot the correct detection rate versus the false alarm rate for

each threshold value in their sorted order. Figure 6.1 shows the ROC curves we

would expect from a perfect classifier and a random guess classifier. The perfect

classifier shows a 100% correct detection rate with a 0% false alarm rate, while

the random guess classifiers correct detecton and false alarm rate should grow

in synch with each other. The AROC values for the perfect and random guess

classifiers should be 1 and .5 respectivly, and we would expect any classifier to

fall within these bounds2.
2An AROC value of less then .5 indicates the classifier is performing worse then random,

and therefore is of no use

Chapter 6. Results 49

Figure 6.1: ROC curves showing a perfect classifier, as well as the curve we

would expect to be generated using a random guess classifier.

6.2 Dataset

We use the PASCAL visual object challenge (PASCAL VOC) dataset [21] for

both training and evaluating the performance of our detector. We make this

choice as it allows us to compare our results against the published performance

of several other state of the art detectors. Please refer to Appendix B for some

sample images from the data set.

We have chosen to re-annotate the images in the dataset with silhouettes.

We discovered early in the development of our detector that bounding box

annotations were insufficient to train our classifier, as many regions were given

incorrect ground truth labels. This is due to the fact that we are applying a

ground truth label to each region based on its overlap to the annotation. With a

base rectangular bounding box, we would apply a positive ground truth label to

regions between the a cows legs for example. The result of these mis-annotations

is a weaker base classifier, as the positive class training set presented to boosting

is polluted with negative class segments. The silhouette annotations as shown

Chapter 6. Results 50

Figure 6.2: Silhouette annotations for a sample cow and cat image.

in Figure 6.2, eliminate this dataset pollution.

6.3 Base classifier

We begin to examine the results of our system at the base classifier level. For the

cow class data we can examine the features chosen by boosting. The first ten

features chosen alternate between color and texture [C, T,C, T, C, T, T, C, T],

which shows that boosting does not focus on a specific feature type, rather

chooses the most discriminative from all possible features.

Figure 6.3 shows the details of the features chosen by boosting, as well as

their associated thresholds. We can see by examining the feature vectors and

thresholds that not all features are discriminative or even correct, but when

combined in the boosting framework return higher scores in segments that are

of the positive class. Table 6.1 shows the performance of the base classifier on

several object classes. We have trained classifiers using the color and texture

features independently, as well as a final classifier that combines both. This

is done to ensure that we are not over fitting, or only using color or texture

information. It is interesting to note that the color features are a stronger base

Chapter 6. Results 51

classifier for the cow objects, while the texture serves as a stronger individual

classifier for the cat images. This is not surprising as cows tend to exist in

outdoor environments, and learning that green and blue never belong to the

object class serves to quickly label large regions as background. While cats

tend to exist in a mix of both indoor and outdoor environments, where a larger

variance in background color exists. In both cases the combined features provide

a stronger base classification then either of the individual feature sets.

Object class Base classifier AROC

Color Features Texture Features Combined Features

Cow 0.818 0.809 0.894

Cat 0.734 0.792 0.816

Car N/A N/A .736

Table 6.1: Base classifier performance using only color, only texture, and com-

bined color and texture features.

6.4 Hierarchical model

We will now examine the behaviour of the hierarchical model in more detail. For

all of our experiments we use a 3 level hierarchy, this was chosen as it provides a

good trade off between a range of reasonable segmentations and overall memory

usage. Forcing the segmenter to choose patches larger then our coarsest grain

segmentation leads to strong under-segmentation, which in turn leads to poor

classification results3. Choosing segmentations finer grained then our minimum

segmentation leads to a large number of very small, meaningless patches.

Figure 6.4 shows the segmentation trees generated by three segments in the

example image. We can see many interesting interactions in these three small
3Strong under-segmentation leads to regions that are a mix of both positive and negative

class.

Chapter 6. Results 52

Figure 6.3: The details of the first 50 features chosen by boosting. The top right

bar graph shows the raw histogram bin values of the first 50 features extracted

from a positive patch within the image on the left. The second graph shows the

features extracted from a negative patch. The third bar graph is the threshold

value chosen by boosting for that feature, while the fourth graph indicates the

sign (in this case which side of the threshold we expect the positive class to

be on). The final graph is the α thresholds chosen by the boosting algorithm.

The bottom left image is the resulting score assigned to each segment by the

boosting algorithm.

Chapter 6. Results 53

trees. The first is in the small positive class subtree (nodes ii and d in Figure

6.4(d).) that corresponds to the cows ear. In the coarsest segmentation it is

lumped in with the large background segment, and given a very low probability

of being positive class. When it is segmented separately in the next level of the

hierarchy, it is assigned a much higher belief. Due to the dis-similarity between

the large background segment (Node 1) and the cows ear(Node ii) in feature

space, our belief propagation algorithm assigns a low compatibility score to the

connection between the nodes in the hierarchy. Consequently Node 1 does not

force its belief on Node ii, and our belief in the label of the ear segment remains

high as we would expect.

We can see another interesting behavior in Node c of Figure 6.4(d). We

see that it is initially assigned a relatively large probability of taking on the

positive class label, it is also given a fairly high weight connecting it to its

parent. Consequently the belief propagation algorithm pushes the belief in it

being a positive class node down, and we become more certain that it is a

negative class node, as ground truth indicates it is.

Chapter 6. Results 54

(a
).

(b
).

(c
).

(d
).

F
ig

ur
e

6.
4:

T
he

tr
ee

in
(d

).
is

th
e

C
R

F
in

du
ce

d
by

th
e

se
gm

en
ta

ti
on

s
of

(a
),

(b
),

an
d

(c
).

T
he

da
rk

no
de

s
re

pr
es

en
t

gr
ou

nd
tr

ut
h

ne
ga

ti
ve

no
de

s,
w

hi
le

th
e

lig
ht

er
no

de
s

re
pr

es
en

t
gr

ou
nd

tr
ut

h
po

si
ti

ve
.

T
he

to
p

va
lu

e
in

ea
ch

no
de

is
ou

r
be

lie
f

P
(L

(i
)

=
1|

D
(i

))
,

w
hi

le
th

e
bo

tt
om

no
de

is
ou

r
be

lie
f

af
te

r
ru

nn
in

g
be

lie
f

pr
op

ag
at

io
n

ov
er

th
e

tr
ee

.
T

he
th

ic
kn

es
s

of
th

e

co
nn

ec
ti

ng
lin

es
re

pr
es

en
ts

th
e

co
m

pa
ti

bi
lit

y
sc

or
e
λ

i−
j

be
tw

ee
n

th
e

tw
o

no
de

s.

Chapter 6. Results 55

6.5 Cow classifier results

Figure 6.5 presents the ROC curves for our cow classifier. Each graph presents

both the base classifier performance, and the results after running belief prop-

agation on the segment tree. Table 6.2 summarizes the AROC values for these

curves. We can see that the hierarchical approach provides a larger improve-

ment in ROC performance for the color and texture only classifier cases then

it does for the combined feature classifier. This is due mainly to the fact that

the underlying classifier performance improves to the point that the is not much

room left for the hierarchical model to further improve results. Patches that

the underlying classifier mis-classify in the combined model are assigned such

low confidence in all scales of the hierarchy that the belief propagation has no

information to be able to correct the errors. While an improvement of two per-

cent in classifier performance does not, on the surface seem to be large, a recent

object detection competition4 shows that the difference in performance between

many current leading techniques is in the same order of magnitude. The leading

classifier submitted during the 2006 PASCAL VOC challenge was the work of

Perronnin [23], which reports AROC performance of 0.940 (as reported in [8]).

Table 6.3 compares our technique to several PASCAL VOC entries, the results

show that we are competitive on similar data with several other leading tech-

niques.

Figure 6.6 plots the ROC curves at each level of the hierarchy before running

belief propagation, as well as the final ROC curve at the finest grain segmenta-

tion after applying our hierarchical model. We can see that in this case, the base

classifier performance at the fine grain segmentation is quite poor in compari-

son to the coarser grain segmentations. However our hierarchical model is able

to boost the overall classifier performance up to match the best base classifier,

while maintaining the fine grain segmentation boundaries.

4The PASCAL Visual Object Challenge 2006

Chapter 6. Results 56

Figure 6.7 shows a sample of detector outputs. The left most image is the

raw input image, the middle image shows the confidence in our detections after

running belief propagation over the resulting tree. We are able to detect single

and multiple cows in a variety of natural scenes, at a large variety of scales with

very high confidence.

Figure 6.8 shows two examples where our classifier fails to correctly label

the regions. In the first image we label a large portion of the ground as being

cow. In feature space, the large patch of ground looks cow like, having both a

similar color and texture. Due to this, boosting assigns the region a high base

probability of having a positive class label. Our hierarchical model is unable to

correct this error as at no level of the hierarchy does the region not look cow like,

and our belief in the label is re-enforced. In the second image of Figure 6.8, we

fail to correctly label the positive class cow. In this particular example the cow

has an unusual color and very fine hair. It is not unexpected that we would have

regions of dead grass in many of our training images with similar coloration, and

therefore our underlying classifier has learned to label such regions as belonging

to the non-object class. The majority of the errors being made are not of such

a large scale, and primarily consist of small regions that are mis-labeled, or

regions in very heavy shadows where little color or texture information exists.

In the case of areas in heavy shade we would expect our segmenter to choose the

same boundaries in all levels of the hierarchy, as they tend to have very strong

boundaries. Therefore our hierarchical model is unable to improve our belief in

the label, as all nodes in the resulting tree have low belief.

Chapter 6. Results 57

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
de

te
ct

io
n

ra
te

false alarm rate

Patch Labels Pre BP AROC : 0.818, post BP AROC : 0.877

Post BP
Pre BP

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
te

ct
io

n
ra

te

false alarm rate

Patch Labels Pre BP AROC : 0.809, post BP AROC : 0.853

Post BP
Pre BP

(a). (b).

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
te

ct
io

n
ra

te

false alarm rate

Patch Labels Pre BP AROC : 0.894, post BP AROC : 0.916

Post BP
Pre BP

(c).

Figure 6.5: ROC curves for (a). Color only Features, (b). Texture only features,

and (c). combined color and texture features. Both base classifier and post belief

propagation curves are plotted. Generated using (a). RunCowDetectorColor.m,

(b). RunCowDetectorTexture.m, (c). RunCowDetectorCT.m

Chapter 6. Results 58

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
te

ct
io

n
ra

te

false alarm rate

Post BP
Scale 1
Scale 2
Scale 3

Figure 6.6: ROC curve for the color feature only base classifier plotted for

each level independently in the hierarchy. The ROC curve after running belief

propagation lives within the maximal hull of all of the segmentation granularity

performances. Generated using RunCowDetectorColor.m

Object class classifier AROC

Color Features Texture Features Combined Features

Cow base classifier 0.818 0.809 0.894

Cow BP 0.877 0.853 0.916

Improvement 0.059 0.044 0.022

Table 6.2: Base classifier performance using only color, only texture, and com-

bined color and texture features. Cow BP shows the results after running belief

propagation over the segment tree.

Chapter 6. Results 59

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 6.7: Sample detector outputs. The left most image is the input to the

detector, the middle image represents our positive class label beliefs. The right

most image shows those pixels that have a greater then 50% confidence in pos-

itive class labels. The top row shows our belif before applying our heirarchical

model, while the bottom row shows the results after running BP. Generated

using RunCowDetectorCT.m

Chapter 6. Results 60

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 6.8: Failures in detection. The first labels a large portion of the back-

ground as belonging to the positive class, while the second fails to correctly

label the positive class region. Generated using RunCowDetectorCT.m

Chapter 6. Results 61

Method AROC

XRCE 0.94

QMUL LSPCH 0.938

INRIA Marszalek 0.922

* Hierarchical Segment Boost 0.916

RWTH Dischist 0.910

INRIA Moosmann 0.895

* Segment Boost 0.894

Table 6.3: A comparison of our results with the PASCAL VOC challenge entries.

Segment boost is our base classifier, while Hierarchical segment boost is after

applying our hierarchical model. Please refer to [8] for the details of the various

techniques.

6.6 Other class results

We trained our classifier on two additional object classes available in the PAS-

CAL VOC dataset; Cat and Car. Table 6.4 summarizes these results. Table 6.5

compares our results to other techniques applied on similar data as part of the

2006 PASCAL VOC. Our performance gain by applying the hierarchical model

on the cat class data is similar to that we see in the cow class. Figure 6.9 shows

the ROC curve produced by our cat detector, while Figure 6.10 shows some

sample detections. We can see in this case, some of our gains are coming in the

form of removing false positive patches. Additionally, the classifier performance

while not as great as some approaches presented in [8], falls within the mean

of performances reported on similar PASCAL data. However our base classifier

model does not perform as well as the cow detector in this case. The weaker

base classifier performance can be attributed to two main factors:

• Larger intra class variation. Cats have a larger coloration and textural

variability then cows.

Chapter 6. Results 62

• Larger non-object class appearance variations. While the environments in

which we expect to encounter cows is somewhat limited5 the environments

in which we may encounter cats is unlimited.

We will now look at each of these factors in more detail.

The larger intra class variation in appearance of cats makes the task of learn-

ing a discriminative classifier more difficult. As boosting chooses features and

weights that best separate data within the training set, encountering novel color

and texture combinations in the test set decreases our overall confidence in our

positive class label. While the boosted classifier is able to generalize over some

changes by having different sets of weak classifiers activate, it does so at the cost

of confidence in the final label. For example, if we encounter a long haired cat

with a coloration that we have not seen in our training data, the texture features

will strongly tell us that the region is cat, however the color features will tell

us that were unsure of the label for the region. As we sum these resulting weak

classifier outputs, our overall belief in the label moves toward uncertainty.

The larger variability in non-object class appearance can lead to a higher

false positive rate. As cats can appear in a large variety of environments, it

is not inconceivable that we will encounter an image with a rug or upholstery

with similar local appearance features as a cat. These cat like local descriptors

lead to high base probability assigned to negative ground truth region. Our

hierarchical model should be able to correct some of these, at least those that

at a larger scale include enough information to dis-ambiguate the true label of

the region. Figure 6.11 shows some sample failures in detection.

We additionally trained our detector on car objects. While cars are not

deformable objects, we were interested in evaluating our performance on objects

for which the system was not designed. Figure 6.12 shows the resulting ROC
5We would not expect to find a cow inside a house, or in a city

Chapter 6. Results 63

Object class classifier AROC

Base classifier post BP Improvement

Cat 0.799 0.819 0.02

Car 0.736 0.744 0.008

Table 6.4: Combined feature performance before and after applying the hierar-

chical model for the cat and car classes.

Class Our result Best VOC Ranking

Cat 0.819 0.937 12

Car 0.744 0.977 19

Table 6.5: Comparison of our results to other entries in the 2006 PASCAL VOC

challenge. Ranking is where our results would be ranked on similar data within

the 20 entries.

curve for our car detector, while Figure 6.13 shows some sample detections. We

knew a priori that cars would present a different problem to our approach. As

we are computing descriptors over local regions, we could predict that our base

classifier would be very weak due to two primary factors :

• Locally car objects have very little texture. As we know our segmenter

will choose strong image boundaries (for example it will segment a cars

windshield, and the hood separately) we will not see any edge texture

information.

• Cars tend to be of similar color to many objects in the environments in

which we expect to encounter them.

The first factor limits the usefulness of textural information in assigning a pos-

itive class label to cars. It does however allow us to label regions as not car,

that is if we encounter areas of high texture (for example trees, the road surface,

grass) we can be quite sure that it is not a car. The second limits the usefulness

Chapter 6. Results 64

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
te

ct
io

n
ra

te

false alarm rate

Patch Labels Pre BP AROC : 0.799, post BP AROC : 0.819

Post BP
Pre BP

Figure 6.9: ROC curve for the cat object detector, using the color and texture

features. Generated using RunCatDetectorCT.m

of color features. It would not be surprising to find many buildings or signs

that have coloration similar to cars. Our hierarchical model fails to provide a

large boost in this case due to the fact that our segmenter will always choose

boundaries on strong image boundaries. We can see in the examples presented

in Figure 6.13 that the regions we tend to correctly label are the ones that con-

tain some textural information, while the large flat surfaces such as the hood,

windshield, and side panels are missed.

The outline of a car and the surrounding environment will, in most cases,

be a very strong image boundary, as will the outline of a cars windows or doors.

Because of this the segmenter will choose to segment the image on these strong

image bounds regardless of the parameter settings (for example we cannot easily

force our segmenter to segment a car as a single region). This leads to building

chains rather then trees in the segmentation hierarchy in which each node will

have a similar or the same belief. In the belief propagation step, our belief in

the labels will not change, as the parent has nearly the same belief sate as the

child.

Chapter 6. Results 65

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 6.10: Sample detector outputs. The left most image is the input to the

detector, the middle image represents our positive class label beliefs. The right

most image shows those pixels that have a greater then 30% confidence in pos-

itive class labels. The top row shows our belief before applying our heirarchical

model, while the bottom row shows the results after running BP. Generated

using RunCatDetectorCT.m

Chapter 6. Results 66

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 6.11: Sample failed detector outputs for our cat class detector. Generated

using RunCatDetectorCT.m

Chapter 6. Results 67

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
te

ct
io

n
ra

te

false alarm rate

Patch Labels Pre BP AROC : 0.736, post BP AROC : 0.744

Post BP
Pre BP

Figure 6.12: ROC curve for the car object detector, using the color + texture

features. Generated using RunCarDetectorCT.m

Chapter 6. Results 68

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 6.13: Sample detector outputs from our car detector. The left most image

is the input to the detector, the middle image represents our positive class label

beliefs. The right most image shows those pixels that have a greater then 30%

confidence in positive class labels. Generated using RunCarDetectorCT.m

Chapter 6. Results 69

6.7 Run time

We have implemented our system entirely in the Matlab environment under

Windows. Computing the training set features and training the classifier with

100 images takes approximately 3 hours total computation time on a modern

Pentium 4 2.66GHz desktop PC with 1 GB of RAM. Processing and classifying

a new image takes approximately 2 min per image on the same machine. Most

of this computational cost comes from the Gabor filter operations. As our

Gabor filter function is implemented in Matlab, it creates a large computational

bottleneck. We are confident that, with a proper C implementation we can get

the total processing time into the order of twenty to thirty seconds per image.

70

Chapter 7

Conclusion and Future

Work

7.1 Conclusion

We have presented a new approach to identifying non rigid objects in natural

images. This new approach uses only local information computed over segments

to apply a base label to each pixel. Additionally we construct a hierarchy over

several granularities of segmentation in order to solve the aperture problem. We

then introduced a method employing belief propagation to allow information to

flow through this hierarchy. Our final detections integrate the information from

all levels of the hierarchy, while maintaining the object bounds we find at the

finest grain level of segmentation.

We have shown that our hierarchical model improves the performance of our

base classifier for several object classes. And that the overall system perfor-

mance is close to many current techniques. While there is still room for im-

provement in the final classification results, we have shown that our approach

is a viable method for identifying completely deformable objects within natural

images of varying resolution and quality.

We have further shown that the hierarchical model we present does boost

the performance of a fairly weak base classifier. It is quite possible that this

technique, when integrated with a better base classifier, will produce even better

Chapter 7. Conclusion and Future Work 71

classification performance on a larger range of objects.

7.2 Future work

We have presented here an approach that is capable of identifying deformable

objects in natural images. There is still however room for improvement in our

current approach. Here we present some still open problems, and some possible

extensions to build on this work.

7.2.1 Base classifier performance

While we have shown that our hierarchical model is able to improve the perfor-

mance of our classifier, the overall system performance is still heavily dependant

on the underlying base classifier. We chose to use simple color and texture his-

tograms as region descriptors, but it is quite possible that a different set of

base features would provide stronger base classifier performance. For example,

textons or patch shape information may provide stronger base classification for

semi-ridgid object classes.

Several other approaches may also be adopted to train the classifier, we

have chosen boosting as it provides a reasonable level of performance with only

a small computational overhead. It also produces a fairly robust classifier, that

is able to handle moderate amounts of intra class variation. Improvement in

both the feature set and base classifier performance will reflect directly in the

final overall system performance.

7.2.2 Hierarchical model

We have chosen to build a simple disconnected forest within our segmentation

hierarchy, we can suggest two possible extensions on this model.

First we could form a single tree, with a super node who’s child set contains

Chapter 7. Conclusion and Future Work 72

all nodes in the coarsest grain segmentation. This super node would have a

feature descriptor computed across the whole image, and would provide a prior

over our belief that the object exists within the image. This prior could be

trained independent of the classifier.

Secondly we could choose to construct a planar CRF over each level of the

segmentation hierarchy, and perform label smoothing. We chose not to do this

in our implementation for two reasons :

• We assume that the boundaries at which the CRF would choose not to

propagate labels would be the same boundaries our segmentation algo-

rithm would cut on, and therefore we would never propagate labels be-

tween connected regions1.

• We would need to devise some mechanism to either alternate between tree

based belief propagation and planar operations, or solve the whole system

as a three dimensional CRF. The first option may never converge, while

the second would drastically increase our computational cost.

While it is not clear that these modifications will improve the performance im-

provements we see by applying the hierarchical model, they are certainly open

areas to explore.

We have shown the power of our simple hierarchical model in improving

the performance of a simple classifier. Integrating further information into the

model will also increase the performance boost we are achieving. While we have

simply integrated the information across a hierarchy of segmenters, it is quite

possible to apply this same model using different classifier techniques at each

level of the hierarchy, or building a more complete CRF model that is able to

integrate information across both granularities, and techniques.

1That is, if two regions are similar enough that the planar CRF would choose to smooth

the labels, they should have been segmented as a single region.

73

Bibliography

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images

via a sparse, part-based representation. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 26(11):1475–1490, 2004.

[2] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition

using low distortion correspondence. Technical report, UC Berkeley, 2004.

[3] E. Borenstein and J. Malik. Shape guided object segmentation. In IEEE

Conf. on Computer Vision and Pattern Recognition, volume 1, pages 969–

976, 2006.

[4] E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-

up segmentation. In IEEE Conf. on Computer Vision and Pattern Recog-

nition, pages 46–46, 2004.

[5] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid

objects using mean shift, 2000.

[6] D. Dorfman and E. Alf. Maximum likelihood estimation of parameters

of signal detection theorya direct solution. Psychometrika, 33(1):117–124,

1968.

[7] G. Eibl and K.P. Pfeiffer. Multiclass boosting for weak classifiers. J. of

Machine Learning Research, 6:189–210, 2005.

[8] M. Everingham, A. Zisserman, C. Williams, and L. Van Gool. The pascal

visual object classes challenege 2006 (voc2006) results, Accessed : Aug

2006.

Bibliography 74

[9] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmen-

tation. Intl. J. Computer Vision, 59(2):167–181, 2004.

[10] M. Fritz, B. Leibe, B. Caputo, , and B. Schiele. Integrating representative

and discriminant models for object category detection. In IEEE Conf.

on Computer Vision and Pattern Recognition, volume 2, pages 1363–1370,

October 2005.

[11] J. Hanley and B. McNeil. The meaning and use of the area under the

receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The elements of Statistical

Learning. Springer, 2001.

[13] D. Heckerman. A tutorial on learning with bayesian networks.

http://research.microsoft.com/research/pubs/view.aspx?msr tr id=MSR-

TR-95-06 : Accessed June 2006, 1995.

[14] T.I. Hsu, A. Calway, and R. Wilson. Texture analysis using the multires-

olution fourier transform. In Proc 8th Scandinavian Conference on Image

Analysis, pages 823–830, 1993.

[15] A. Jain, N. Ratha, and S. Lakshmanan. Object detection using gabor

filters. Pattern Recognition, 30:295–309, 1997.

[16] B. Leibe, A. Leonardis, , and B. Schiele. Combined object categorization

and segmentation with an implicit shape model. In ECCV’04 Workshop

on Statistical Learning in Computer Vision, May 2004.

[17] T. Leung and J. Malik. Representing and recognizing the visual appearance

of materials using three-dimensional textons. In Intl. J. Computer Vision,

pages 29–44, 2001.

[18] D. Lowe. Distinctive image features from scale-invariant keypoints. Intl.

J. Computer Vision, 60(2):91–110, 2004.

Bibliography 75

[19] T. N. Mundhenk and L. Itti. A model of contour integration in early visual

cortex. In Lecture Notes in Computer Science, volume 2525, pages 80–89,

Nov 2002.

[20] K. Murphy, A. Torralba, and W. Freeman. Using the forest to see the

trees:a graphical model relating features, objects and scenes. Advances in

Neural info. Proc. sys., 16, 2003.

[21] PASCAL. Pascal voc 2006 dataset : http://www.pascal-

network.org/challenges/voc/databases.html, Accessed : May 2006.

[22] P. Perez, C. Hue, J. Vermaak, and M. Ganget. Color-based probabilistic

tracking. In ECCV, volume 2350, pages 661–675, 2002.

[23] F. Perronnin, C. Dance, and G. Csurka. Adapted vocabularies for generic

visual categorization. In ECCV, 2006.

[24] T. Rikert, M. Jones, and P. Viola. A cluster-based statistical model for

object detection. In IEEE Conf. on Computer Vision and Pattern Recog-

nition, pages 1046–1053, 1999.

[25] R. Schapire. The boosting approach to machine learning: An overview. In

RSRI Workshop on Nonlinear Estimation and Classification., 2001.

[26] R. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: a

new explanation for the effectiveness of voting methods. In Intl. Conf. on

Machine Learning, pages 322–330, 1997.

[27] H. Schneiderman. Feature-centric evaluation for efficient cascaded object

detection. In IEEE Conf. on Computer Vision and Pattern Recognition,

pages 29–36, 2004.

[28] N. Petkov S.E. Grigorescu and P. Kruizinga. Comparison of texture features

based on gabor filters. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 11(10):1160–1167, 2002.

Bibliography 76

[29] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint

appearance, shape and context modeling for multi-class object recognition

and segmentation. In ECCV, 2006.

[30] A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for

multiclass and multiview object detection. Proc. IEEE Intl. Conf. on Image

Processing, 2006 To appear.

[31] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. In IEEE Conf. on Computer Vision and Pattern Recogni-

tion, volume 1, pages 511–525, 2001.

[32] P. Viola and M. Jones. Robust real-time object detection. Intl. J. Computer

Vision, 57(2):137–154, 2004.

[33] T. Weldon, W. Higgins, and D. Dunn. Efficient Gabor filter design for

texture segmentation. Pattern Recognition, 29(12):2005–2015, 1996.

[34] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation

and its generalizations. In Intl. Joint Conf. on AI, 2001.

77

Appendix A

RGB to HSV conversion

If we consider the RGB color space as a rectangular co-ordinate system, with

red along one axis, blue along a second and green along the third, we can in a

similar fashion consider the HSV space as a cylindrical co-ordinate system with

hue as the radial distance from the center, saturation as the angular displace-

ment, and intensity as the vertical locaiton on the cylinder. It is the nature of

this co-ordinate system that makes the HSV space useful to us. If we look at

a single slice through the cylinder, one would see all possible colors, at a fixed

intensity. Each slice through the cylinder would produce the same colors, but

at a different intensity. Because of this examining only the HS values within an

HSV image provides an intensity insensitive way to examine the color content.

The conversion between RGB and HSV is a simple co-ordinate mapping. Equa-

tion (A.1) outlines the required transformations.

H(x,y) = arccos

[
.5 · [(R(x,y) −G(x,y)) + (R(x,y) −B(x,y))]√

(R(x,y) −G(x,y))2 + (R(x,y) −B(x,y)) · (G(x,y) −B(x,y))

]

S(x,y) = 1−
3 ·min(R(x,y), G(x,y), B(x,y))
R(x,y) +G(x,y) +B(x,y)

V(x,y) =
R(x,y) +G(x,y) +B(x,y)

3
(A.1)

78

Appendix B

Dataset

Figures B.1 and B.2 show sample images from the PASCAL VOC Cow and Cat

datasets respectivly.

Appendix B. Dataset 79

Figure B.1: A sample of images from the PASCAL cow dataset.

Appendix B. Dataset 80

Figure B.2: A sample of images from the PASCAL cat dataset.

