
Bayesian network structure learning
for the uncertain experimentalist

With applications to network biology

by

Daniel James Eaton

B.Sc., The University of British Columbia, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

June, 2007

c© Daniel James Eaton 2007

Abstract

In this work, we address both the computational and modeling aspects of

Bayesian network structure learning. Several recent algorithms can handle

large networks by operating on the space of variable orderings, but for tech-

nical reasons they cannot compute many interesting structural features and

require the use of a restrictive prior. We introduce a novel MCMC method that

utilizes the deterministic output of the exact structure learning algorithm of

Koivisto and Sood to construct a fast-mixing proposal on the space of DAGs.

We show that in addition to fixing the order-space algorithms’ shortcomings,

our method outperforms other existing samplers on real datasets by delivering

more accurate structure and higher predictive likelihoods in less compute time.

Next, we discuss current models of intervention and propose a novel approach

named the uncertain intervention model, whereby the targets of an interven-

tion can be learned in parallel to the graph’s causal structure. We validate our

model experimentally using synthetic data generated from known ground truth.

We then apply our model to two biological datasets that have been previously

analyzed using Bayesian networks. On the T-cell dataset of Sachs et al. we

show that the uncertain intervention model is able to better model the density

of the data compared to previous techniques, while on the ALL dataset of Yeoh

et al. we demonstrate that our method can be used to directly estimate the

genetic effects of the disease.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . viii

Dedication . ix

I Thesis 1

1 Introduction . 2

1.1 Motivation . 2

1.2 Outline of Thesis . 4

2 Structure learning by dynamic programming and MCMC . . 6

2.1 Introduction . 6

2.2 Previous work . 8

2.3 Modular priors . 10

2.4 Our method . 13

2.4.1 Likelihood models . 15

2.5 Experimental results . 18

2.5.1 Speed of convergence to the exact posterior marginals . . 18

iii

Table of Contents

2.5.2 Structural discovery . 19

2.5.3 Accuracy of predictive density 20

2.5.4 Convergence diagnostics 26

2.6 Summary and future work . 26

3 Structure learning with uncertain interventions 27

3.1 Introduction . 27

3.2 Models of intervention . 28

3.2.1 No interventions . 29

3.2.2 Perfect interventions . 30

3.2.3 Imperfect interventions 31

3.2.4 Unreliable interventions 32

3.2.5 Soft interventions . 33

3.2.6 Uncertain interventions 34

3.2.7 The power of interventions 36

3.3 Algorithms for structure learning 38

3.3.1 Exact algorithms for p(Hij) and H∗
MAP 38

3.3.2 Local search for ĤMAP 39

3.3.3 Iterative algorithm for ĤMAP 39

3.4 Experimental results . 40

3.4.1 Synthetic data . 40

3.4.2 T-cell data . 46

3.4.3 ALL data . 53

3.5 Summary and future work . 59

Bibliography . 63

II Appendices 69

A Software . 70

iv

List of Tables

1.1 Number of DAGs on d nodes . 3

A.1 Major features of BNSL software 70

v

List of Figures

2.1 Deviation of various modular priors from uniform 12

2.2 Cancer network . 15

2.3 Convergence to edge marginals on Cancer network 16

2.4 Convergence to edge marginals on CHD dataset 16

2.5 Edge recovery performance of MCMC methods on Child network 17

2.6 Path recovery performance of MCMC methods on Child network 17

2.7 Child network . 20

2.8 Test set log likelihood vs training time on Synthetic-15 network . 21

2.9 Test set log likelihood vs training time on Adult dataset 21

2.10 Test set log likelihood vs training time on T-cell dataset 22

2.11 Samplers’ training set log likelihood trace plots on Adult dataset 25

3.1 Intervention model: None . 29

3.2 Intervention model: Perfect . 30

3.3 Intervention model: Imperfect . 31

3.4 Intervention model: Imperfect with unreliable extension 32

3.5 Intervention model: Soft . 33

3.6 Example of a “Fat hand” intervention 36

3.7 Markov equivalence classes on the Cancer network 37

3.8 Perfect vs uncertain interventions on the Cancer network 42

3.9 Cars network ground truth . 43

3.10 Structural recovery performance of perfect vs uncertain interven-

tion models on Cars network . 45

vi

List of Figures

3.11 Structural recovery performance of exact BMA vs point estima-

tion on Cars network . 47

3.12 T-cell dataset . 48

3.13 T-cell dataset results . 50

3.14 Predictive likelihood scores of intervention models on T-cell dataset 51

3.15 ALL dataset . 54

3.16 Highest scoring DAG found on ALL dataset 55

3.17 Predicted expression profile for a patient without ALL 56

3.18 Sampled expression profile for a patient with ALL subtype E2A-

PBX1, MLL or both . 57

3.19 ALL subtypes E2A-PBX1 and BCR-ABL results 60

3.20 ALL subtypes Hyperdip > 50, TEL-AML1, MLL and T-ALL

results . 61

3.21 Other ALL subtypes’ results . 62

vii

Acknowledgements

I owe at least two sigmas of thank you density to my supervisor Dr. Kevin

Murphy. Over the past two years he has been an incredible source of inspiration

and motivation, keeping the Bayes ball rolling even in the face of occasionally

disappointing results or formidable bugs. I found the support of an NSERC

scholarship to be most beneficial, and therefore thank Canada for supporting

my work.

I also appreciate the instruction of several professors in the Computer Sci-

ence department, and the help I received from peers while preparing papers

for conference submission, especially Mark Schmidt, Hoyt Koepke and Hendrik

Kueck.

I would like to acknowledge my family’s contributions: Joan valiantly proof-

read my thesis, while Sheena, Doug and Sarah provided me with motivation to

graduate on time, some in more gentle ways then others.

I also wish to thank Michael Forbes for generously sharing his UBC thesis

LATEX template; it made formatting a breeze.

Daniel Eaton

University of British Columbia

June 2007

viii

Dedication

This thesis is dedicated to my parents, Doug and Joan, in recognition of their

continuous support through each episode of my academic career.

ix

Part I

Thesis

1

Chapter 1

Introduction

1.1 Motivation

Bayesian networks are a powerful tool for modeling stochastic systems, as they

enable high-dimensional joint probability distributions to be represented effi-

ciently. The model is especially popular due to the availability of off-the-shelf

algorithms and software to learn them from data, and then to extract mean-

ingful quantities in support of scientific hypotheses. More importantly, unlike

undirected models, the inter-variable relationships encoded by a Bayesian net-

work can be interpreted causally, meaning that the notion of “smoking causes

cancer” can be characterized directly, rather than simply, “smoking is linked

to cancer”. This distinction may appear subtle, but the notion of causality is

at the heart of modern science [45]. Therefore, it comes as no surprise that

Bayesian networks are rapidly spreading beyond the domains for which they

were originally created.

The systems biology community has recently begun exploiting the model to

analyze high-throughput biological data, such as gene expression microarrays

[12, 20, 25]. In many classical applications, the relationships between variables

were assumed known a priori; in other words, the Bayesian network structure

was given, perhaps by a human expert. The goal then became to learn the

associated model parameters. In contrast, many system biologists aim to learn

the structure of the network from data, for example to infer gene regulatory in-

teractions, discover new drugs, or to guide costly future experiments. Evidence

suggests that cancers and many other diseases manifest themselves by disrupting

specific cellular processes [1]. Gene expression microarrays can measure tran-

2

Chapter 1. Introduction

scription levels for thousands of genes in a cell, offering insight into the complex

cell dynamics that give rise to diseases.

Causal Bayesian network models supply a natural means of modeling systems

biology data, potentially yielding answers about cellular processes, or identify-

ing the effects of external agents, such as diseases or drugs. In order to uniquely

infer causal relationships, it is necessary to perform experiments where variables

are perturbed or manipulated to particular known values. In biological appli-

cations, an intervention might be accomplished by injecting chemicals into a

cell or performing a specific gene knockout. Alternatively, nature provides un-

wanted perturbations in the form of disease, which can be construed as virtual

experiments.

Unfortunately, even if both observational and experimental data is readily

available, Bayesian network structure learning remains a challenging problem,

largely due to the super-exponential growth of the space of valid networks given

the number of variables. Valid structures are represented by directed acyclic

graphs (DAGs), and there are O(d!2(d
2)) DAGs on d nodes [47]. Table 1.1 shows

the growth for small d. Exhaustive search or naive marginalization over such a

space is clearly intractable in general. Therefore, without clever algorithms it

is necessary to resort to local search through a huge hypothesis space.

d 2 3 4 5 6 7 8 9

#DAG(d) 3 25 543 29281 3781503 1.1e9 7.8e11 1.2e15

Table 1.1: Number of DAGs on d nodes

The scarcity of data inherent to most biological applications greatly exacer-

bates this computational problem. Often, the number of variables dwarfs the

sample size, meaning that many DAGs are likely to fit the data well. In this

setting, it would be dangerous to commit to a particular structure and make

any interpretation on the causal relationships between variables, since there

conceivably could be another structure that also fits the data well, and leads to

contradictory conclusions. Full Bayesian model averaging would be the greatly

3

Chapter 1. Introduction

preferable strategy; however, the naive approach becomes intractable for more

than a mere 6 variables.

Lastly, many of the scientific questions that the systems biology community

poses are unanswerable using existing models of intervention. Typically when a

system is intervened on, the experimenter assumes the targets of their pertur-

bation are known, and exploits this knowledge in the prescribed way [8] during

structure learning. The perturbation may instead have a “fat hand” and cause

unexpected side-effects that cannot be explained by the intrinsic relationships

between variables. Perhaps the goal is to learn the intervention’s targets, for

example to measure the side-effects of a new treatment. Unfortunately, it is not

possible to directly answer these, nor other important questions with existing

models.

1.2 Outline of Thesis

This thesis presents novel algorithms and models for Bayesian network structure

learning aimed at overcoming the challenges introduced in Section 1.1. In Chap-

ter 2, we discuss existing computational methods, including Markov chain monte

carlo (MCMC) and exact Bayesian model averaging (BMA), and briefly discuss

their shortcomings. Next, we introduce an algorithm that combines MCMC

with exact BMA to solve them, and show that it simultaneously outperforms

the other sampling methods based on time and accuracy. Chapter 3 presents

a new model of experimental data, allowing for uncertainty in the targets of

interventions. The new model is verified on synthetic data, and then tested on

two gene expression datasets, producing results that agree with other reported

analyses, but also providing novel benefits that the other methods cannot. The

chapter also shows how to adapt a recent exact structure learning algorithm to

handle experimental data.

Chapters 2 (based on [13]) and 3 (based on [14]) are structured in a self-

contained format, each containing background, results and conclusions relevant

to their respective topics. However, it must be noted that each topic is heavily

4

Chapter 1. Introduction

intertwined: algorithms borrowing models to test on data, and models using

algorithms to do computation.

5

Chapter 2

Structure learning by

dynamic programming and

MCMC

2.1 Introduction

Directed graphical models are useful for a variety of tasks, ranging from density

estimation to scientific discovery. One of the key challenges is to learn the

structure of these models from data. Often (e.g., in molecular biology) the

sample size is quite small relative to the size of the hypothesis space. In such

cases, the posterior over graph structures given data, p(G|D), gives support to

many possible models, and using a point estimate (such as MAP) could lead to

unwarranted conclusions about the structure, as well as poor predictions about

future data. It is therefore preferable to use Bayesian model averaging. If we

are interested in the probability of some structural feature f (e.g., f(G) = 1 if

there is an edge from node i to j and f(G) = 0 otherwise), we can compute

the posterior mean estimate E(f |D) =
∑

G f(G)p(G|D). Similarly, to predict

future data, we can compute the posterior predictive distribution p(x|D) =
∑

G p(x|G)p(G|D).

Since there are O(d!2(d
2)) DAGs (directed acyclic graphs) on d nodes [47],

exact Bayesian model averaging is intractable in general. However, if the model

space is restricted special cases arise where full averaging is possible; for example,

over all trees [40] or all graphs consistent with a given node ordering [10]. If

6

Chapter 2. Structure learning by dynamic programming and MCMC

the ordering is unknown, we can use MCMC techniques to sample orders, and

sample DAGs given each such order [19, 21, 29]. However, Koivisto and Sood

[31, 32] showed that one can use dynamic programming (DP) to marginalize

over orders analytically. This technique enables one to compute all marginal

posterior edge probabilities, p(Gij = 1|D), exactly in O(d2d) time. Although

exponential in d, this technique is quite practical for d ≤ 20, and is much faster

than comparable MCMC algorithms on similar sized problems1.

Unfortunately, the DP method has three fundamental limitations, even for

small domains. The first problem is that it can only be used with certain kinds

of graph priors which satisfy a “modularity” condition, which will be described

in Section 2.3. Although this seems like a minor technical problem, it can result

in significant bias. This can lead to unwarranted conclusions about structure

as well as poor predictive performance, even in the large sample setting. The

second problem is that it can only compute posteriors over modular features;

thus it cannot be used to compute the probability of features like “is there a

path between nodes i and j via k”, or “is i an ancestor of j”. Such long-distance

features are often of more interest than direct edges. The third problem is that

it is expensive to compute predictive densities, p(x|D). Since the DP method

integrates out the graph structures, it has to keep all the training data D around,

and predict using p(x|D) = p(x,D)/p(D). Both terms can be computed exactly

using DP, but this requires re-running DP for each new test case x. In addition,

since the DP algorithm assumes complete data, if x is incompletely observed

(e.g., we want to “fill in” some of it), we must run the DP algorithm potentially

an exponential number of times. For the same reason, we cannot sample from

p(x|D) using the DP method.

We propose to fix all three of these shortcomings by combining DP with

the Metropolis-Hastings (MH) algorithm. The basic idea is simply to use the

1 Our Matlab/C implementation takes 1 second for d = 10 nodes and 6 minutes for d = 20

nodes on a standard laptop. The cost is dominated by the marginal likelihood computation,

which all algorithms must perform. Our code is freely available; please see Appendix A for

instructions to obtain it.

7

Chapter 2. Structure learning by dynamic programming and MCMC

DP algorithm as an informative (data driven) proposal distribution for mov-

ing through DAG space, thereby getting the best of both worlds: a fast de-

terministic approximation, plus unbiased samples from the correct posterior,

Gs ∼ p(G|D). These samples can then be used to compute the posterior mean

of arbitrary features, E[f |D] ≈ 1
S

∑S
s=1 f(Gs), or the posterior predictive distri-

bution, p(x|D) ≈ 1
S

∑S
s=1 p(x|Gs). Results presented in Section 2.5 show that

this hybrid method produces more accurate estimates than other approaches,

given a comparable amount of compute time.

The idea of using deterministic algorithms as a proposal has been explored

before e.g. [11], but not, as far as we know, in the context of graphical model

structure learning. Further, in contrast to [11], our proposal is based on an

exact algorithm rather than an approximate algorithm.

2.2 Previous work

The most common approach to estimating the posterior p(G|D), or marginal

features thereof, is to use the Metropolis-Hastings (MH) algorithm, using a

proposal that randomly adds, deletes or reverses an edge; this has been called

MC3 for Markov Chain Monte Carlo Model Composition [36]. (See also [24] for

some improvements, and [35] for a related approach called Occam’s window.)

Unfortunately, this proposal is very local, and the resulting chains do not mix

well in more than about 10 dimensions. An alternative is to use Gibbs sampling

on the adjacency matrix [37]. In our experience, this gets “stuck” even more

easily, although this can be ameliorated somewhat by using multiple restarts,

as the experimental results will demonstrate.

A different approach, first proposed in [21], is to sample in the space of node

orderings using MH. It is based on the fact that conditioned on a node ordering

≺, the probability of the data and a feature factorizes

p(X, f |I,≺) =
d∏

i=1

∑

Gi⊆U≺i

p(Gi|Ui)p(Xi|XGi , I)fi(Gi) (2.1)

8

Chapter 2. Structure learning by dynamic programming and MCMC

where p(x, f) means p(x, f(G) = 1) and U≺
i = {j : j ≺ i} are the set of nodes

that preceed i. This fact was first observed by [3], and was exploited by [21]

using a MH proposal that randomly swaps the ordering of nodes. For example,

(1, 2, 3, 4, 5, 6) → (1, 5, 3, 4, 2, 6)

where we swapped 2 and 5. This is a smaller space (“only” O(d!)), and is

“smoother”, allowing chains to mix more easily. [21] provides experimental

evidence that this approach gives much better results than MH in the space

of DAGs with the standard add/ delete/ reverse proposal. Unfortunately, in

order to use this method, one is forced to use a modular prior, which has var-

ious undesirable consequences that we discuss in Section 2.3. Ellis and Wong

[19] realized this, and suggested using an importance sampling correction. How-

ever, computing the exact correction term is #P-hard, and our empirical results

suggest that their approximate correction yields inferior structure learning and

predictive density compared to our method.

An alternative to sampling orders is to analytically integrate them out using

dynamic programming (DP) [31, 32]. The algorithm is complex, but the key

idea can be stated simply: when considering different variable orderings — say

(3, 2, 1) and (2, 3, 1) — the contribution to the marginal likelihood for some

nodes can be re-used. For example, p(X1|X2, X3) is the same as p(X1|X3, X2),

since the order of the parents does not matter. By appropriately caching terms,

one can devise an O(d2d) algorithm to exactly compute the marginal likelihood

and marginal posterior features. The inputs to this algorithm are a modular

prior (see Section 2.3) and the local conditional marginal likelihoods, which must

be computed for every node i and every possible parent set Gi (up to size k).

There are
∑k

p=0

(
d
p

)
= O(dk) such terms, therefore the time complexity of the

DP algorithm including marginal likelihood computation is O(d2d+dk+1C(N)).

Here, C(N) is the amount of time needed to compute each marginal likelihood

term as a function of the sample size N . In practise, the polynomial term usually

strongly dominates the exponential term.

To compute the posterior predictive density, p(x|D), the standard approach

9

Chapter 2. Structure learning by dynamic programming and MCMC

is to use a plug-in estimate p(x|D) ≈ p(x|Ĝ(D)). Here Ĝ may be an approximate

MAP estimate computed using local search [27], or the MAP-optimal DAG

which can be found by the recent algorithm of [50] (which takes o(d22d−2)

time.) Alternatively, Ĝ could be a tree; this is a popular choice for density

estimation since one can compute the optimal tree structure in O(d2 log d) time

[7, 41].

It can be proven that averaging over the uncertainty in G will, on average,

produce higher test-set predictive likelihoods [34]. The DP algorithm can com-

pute the marginal likelihood of the data, p(D) (marginalizing over all DAGs),

and hence can compute p(x|D) = p(x,D)/p(D) by calling the algorithm twice.

(We only need the “forwards pass” of [32], using the feature f = 1; we do

not need the backwards pass of [31].) However, this is very expensive, since

we need to compute the local marginal likelihoods for every possible family on

the expanded data set for every test case x. In Section 2.5 we will show that

by averaging over a sample of graphs our method gives comparable predictive

performance at a much lower cost.

2.3 Modular priors

Some of the best current methods for Bayesian structure learning operate in

the space of node orders rather than the space of DAGs, either using MCMC

[19, 21, 29] or dynamic programming [31, 32]. Rather than being able to define

an arbitrary prior on graph structures p(G), methods that work with orderings

define a joint prior over graphs G and orders ≺ as follows:

p(≺, G) =
1
Z

d∏

i=1

qi(U≺
i)ρi(Gi)× I(consistent(≺, G))

where U≺
i is the set of predecessors (possible parents) for node i in ≺, and

Gi is the set of actual parents for node i. We say that a graph structure

G = (G1, . . . , Gd) is consistent with an order (U1, . . . , Ud) if Gi ⊆ Ui for all i.

(In addition we require that G be acyclic, so that ≺ exists.) Note that Ui and

Gi are not independent. Thus the qi and ρi terms can be thought of as factors

10

Chapter 2. Structure learning by dynamic programming and MCMC

or constraints, which define the joint prior p(≺, G). This is called a modular

prior, since it decomposes into a product of local terms. It is important for

computational reasons that ρi(Gi) only give the prior weight to sets of parents,

and not to their relative order, which is determined by qi(Ui). This feature is

what enables the order space algorithms to re-use scores for all orderings of a

parent set, and turn a sum over the super-exponential structure space into a

sum over the factorial order space, and then further reduce it to an exponential

complexity.

From the joint prior, we can infer the marginal prior over graphs, p(G) =
∑
≺ p(≺, G). Unfortunately, this prior favors graphs that are consistent with

more orderings. For example, the fully disconnected graph is the most probable

under a modular prior, and trees are more probable than chains, even if they

are Markov equivalent (e.g., 1←2→3 is more probable than 1→2→3). This

can cause problems for structural discovery. To see this, suppose the sample

size is very large, so the posterior concentrates its mass on a single Markov

equivalence class. Unfortunately, the effects of the prior are not “washed out”,

since all graphs with the equivalence class have the same likelihood. Thus we

may end up predicting that certain edges are present due to artifacts of our

prior, which was merely chosen for technical convenience.

In the absence of prior knowledge, one may want to use a uniform prior

over DAGs2. However, this cannot be encoded as a modular prior. To see

this, let us use a uniform prior over orderings, qi(Ui) = 1, so p(≺) = 1/(d!).

This is reasonable since typically we do not have prior knowledge on the order.

For the parent factors, let us use ρi(Gi) = 1; we call this a “modular flat”

prior. However, this combination is not uniform over DAGs after we sum over

orderings: see Figure 2.1. A more popular alternative (used in [19, 21, 31, 32])

is to take ρi(Gi) ∝
(
d−1
|Gi|

)−1
; we call this the “Koivisto” prior. This prior says

that different cardinalities of parents are considered to be equally likely a priori.
2 One could argue that we should use a uniform prior over PDAGs, but we will often be

concerned with learning causal models from interventional data, in which case we have to use

DAGs.

11

Chapter 2. Structure learning by dynamic programming and MCMC

Modular-Flat: KL from uniform = 0.56

Ellis: KL from uniform = 1.03

Koivisto: KL from uniform = 2.82

DAG Index1

0

8

0

4

0

6

29,281

x 10
−3

x 10
−3

x 10
−4

Figure 2.1: Deviation of various modular priors from uniform. Priors on

all 29,281 DAGs on 5 nodes. Koivisto prior means using ρi(Gi) ∝
(
d−1
|Gi|

)−1
. Ellis

prior means the same ρi, but dividing by the number of consistent orderings for

each graph (computed exactly). Modular flat means using ρi(Gi) ∝ 1. This is

the closest to uniform in terms of KL distance, but will still introduce artifacts.

If we use ρi(Gi) ∝ 1 and divide by the number of consistent orders. we will

get a uniform distribution, but computing the number of consistent orderings

is #P-hard.

12

Chapter 2. Structure learning by dynamic programming and MCMC

However, the resulting p(G) is even further from uniform: see Figure 2.1.

Ellis and Wong [19] recognized this problem, and tried to fix it as follows. Let

p∗(G) = 1
Z

∏
i ρ∗i (G) be the desired prior, and let p(G) be the actual modular

prior implied by using ρ∗i and qi = 1. We can correct for the bias by using an

importance sampling weight given by

w(G) =
p∗(G)
p(G)

=
1
Z

∏
i ρ∗i (Gi)∑

≺
1
Z

∏
i ρ∗i (Gi)I(consistent(≺, G))

If we set ρ∗i = 1 (the modular flat prior), then this becomes

w(G) =
1∑

≺ I(consistent(≺, G)

Thus this weighting term compensates for overcounting certain graphs, and in-

duces a globally uniform prior, p(G) ∝ 1. However, computing the denom-

inator (the number of orders consistent with a graph) is #P-complete [2].

Ellis and Wong approximated this sum using the sampled orders, w(G) ≈
1∑S

s=1 I(consistent(≺s,G))
. However, these samples ≺s are drawn from the poste-

rior p(≺ |D), rather than the space of all orders, so this is not an unbiased esti-

mate. Also, they used ρi(Gi) ∝
(
d−1
|Gi|

)−1
, rather than ρi = 1, which still results

in a highly non-uniform prior, even after exact reweighting (see Figure 2.1). In

contrast, our method can cheaply generate samples from an arbitrary prior.

2.4 Our method

As mentioned above, our method is to use the Metropolis-Hastings algorithm

with a proposal distribution that is a mixture of the standard local proposal,

that adds, deletes or reverses an edge at random, and a more global proposal

that uses the output of the DP algorithm:

q(G′|G) =





qlocal(G′|G) w.p. β

qglobal(G′) w.p. 1− β.

The local proposal chooses uniformly at random from all legal single edge

additions, deletions and reversals. Let nbd(G) denote the set of acyclic neighbors

13

Chapter 2. Structure learning by dynamic programming and MCMC

generated in this way. We have the proposal distribution

qlocal(G′|G) =
1

|nbd(G)|I(G′ ∈ nbd(G)),

and accept moves proposed from qlocal(G′|G) with probability

αlocal = min
(

1,
p(D|G′)p(G′)
p(D|G)p(G)

|nbd(G)|
|nbd(G′)|

)
.

The global proposal includes an edge between i and j with probability pij +

pji ≤ 1, where pij = p(Gij |D) are the exact marginal posteriors computed using

DP (using a modular prior). If this edge is included, it is oriented as i→j w.p.

qij = pij/(pij + pji), otherwise it is oriented as i←j. After sampling each edge

pair, we check if the resulting graph is acyclic. (The acyclicity check can be done

in amortized constant time using the ancestor matrix trick [24].) This leads to

qglobal(G′) =


∏

i

∏

j>i

(pij + pji)I(G′ij+G′ji>0)




×

∏

ij

q
I(G′ij=1)

ij


 I(acyclic(G′)).

We then accept moves proposed from qglobal(G′) with probability

αglobal = min
(

1,
p(D|G′)p(G′)
p(D|G)p(G)

qglobal(G)
qglobal(G′)

)
.

If we set β = 1, we get the standard local proposal. If we set β = 0, we get a

purely global proposal. Note that qglobal(G′) is independent of G, so this is an

independence sampler. We tried various other settings of β (including adapting

it according to a fixed schedule), which results in performance somewhere in

between purely local and purely global.

For β > 0 the chain is aperiodic and irreducible, since the local proposal

has both properties [36, 46]. However, if β = 0, the chain is not necessarily

aperiodic and irreducibile, since the global proposal may set pij = pji = 0. This

problem is easily solved by truncating edge marginals which are too close to 0 or

1, and making the appropriate changes to qglobal(G′). Specifically, any pij < C

is set to C, while pij > 1 − C are set to 1 − C. We used C = 1e − 4 in our

experiments.

14

Chapter 2. Structure learning by dynamic programming and MCMC

 E

 C B

D

 A

Figure 2.2: Cancer network. First reported in [22].

2.4.1 Likelihood models

For simplicity, we assume all the conditional probability distributions (CPDs)

are multinomials (tables), p(Xi = k|XGi = j, θ) = θijk, though our software

(see Appendix A) can handle the linear-Gaussian case as well. We make the

usual assumptions of parameter independence and modularity [27], and we use

uniform conjugate Dirichlet priors θij ∼ Dir(αi, . . . , αi), where we set αi =

1/(qiri), where qi is the number of states for node Xi and ri is the number of

states for the parents XGi . The resulting marginal likelihood,

p(D|G) =
∏

i

p(Xi|XGi)

=
∏

i

∫
[
∏
n

p(Xn,i|Xn,Gi , θi)]p(θi|Gi)dθi

can be computed in closed form, and is called the BDeu (Bayesian Dirichlet

likelihood equivalent uniform) score [27]. We use AD trees [43] to compute these

terms efficiently. Note that our technique can easily be extended to other CPDs

(e.g., decision trees [5]), provided p(Xi|XGi) can be computed or approximated

(e.g., using BIC).

15

Chapter 2. Structure learning by dynamic programming and MCMC

0.

0.

0.

0.

Time (seconds)

E
d

g
e

 M
a

rg
in

a
l S

A
D

0 20 40 60 80 100 120 140
0

2

4

6

8

1

Local

Global

Hybrid

Order
Raw DP

E
d

g
e

 M
a

rg
in

a
l S

A
D

Cancer

0 20 40 60 80 100 120 140
0

1

2

3

Local
Global

Hybrid

Gibbs

Order
Raw DP

Figure 2.3: Convergence to edge marginals on Cancer network. SAD

error vs running time on the 5 node Cancer network (shown in Figure 2.2). The

Gibbs sampler performs poorly, therefore we replot the graph with it removed

(bottom figure). Note that 140 seconds corresponds to about 130,000 samples

from the hybrid sampler. The error bars (representing one standard deviation

across 25 chains starting in different conditions) are initially large, because the

chains have not burned in. This figure is best viewed in colour.

Time (seconds)

E
d

g
e

 M
a

rg
in

a
l S

A
D

Coronary

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Hybrid

Global

Local
Gibbs

Order

Raw DP

Figure 2.4: Convergence to edge marginals on CHD dataset. Similar to

Figure 2.3, but on the 6 node CHD dataset.

16

Chapter 2. Structure learning by dynamic programming and MCMC

Local Order Global Hybrid
0.7

0.85

1

A
U

C

Edge Features

Figure 2.5: Edge recovery performance of MCMC methods on Child

network. Area under the ROC curve (averaged over 10 MCMC runs) for

detecting edge presence for different methods on the d = 20 node Child network

with n = 10k samples using 200 seconds of compute time. The AUC of the

exact DP algorithm is indistinguishable from the global method and hence is

not shown.

Local Order Global Hybrid

0.7

0.8

0.9

1

A
U

C

Path Features

Figure 2.6: Path recovery performance of MCMC methods on Child

network. Area under the ROC curve (averaged over 10 MCMC runs) for

detecting path presence for different methods on the d = 20 node Child network

with n = 10k samples using 200 seconds of compute time.

17

Chapter 2. Structure learning by dynamic programming and MCMC

2.5 Experimental results

2.5.1 Speed of convergence to the exact posterior

marginals

In this section we compare the accuracy of different algorithms in estimating

p(Gij = 1|D) as a function of their running time, where we use a uniform graph

prior p(G) ∝ 1. (Obviously we could use any other prior or feature of interest

in order to assess convergence speed, but this seemed like a natural choice, and

enables us to compare to the raw output of DP.) Specifically, we compute the

sum of absolute differences (SAD), St =
∑

ij |p(Gij = 1|D) − qt(Gij = 1|D)|,
versus running time t, where p(Gij = 1|D) are the exact posterior edge marginals

(computed using brute force enumeration over all DAGs) and qt(Gij |D) is the

approximation based on samples up to time t. We compare 5 MCMC methods:

Gibbs sampling on elements of the adjacency matrix, purely local moves through

DAG space (β = 1), purely global moves through DAG space using the DP

proposal (β = 0, which is an independence sampler), a mixture of local and

global (probability of local move is β = 0.1), and an MCMC order sampler

[21] with Ellis’ importance weighting term.3 (In the figures, these are called as

follows: β = 1 is “Local”, β = 0 is “Global”, β = 0.1 is “Hybrid”.) In our

implementation of the order sampler, we took care to implement the various

caching schemes described in [21], to ensure a fair comparison. However, we did

not use the sparse candidate algorithm or any other form of pruning.

For our first experiment, we sampled data from the 5 node “Cancer network”

of [22] (shown in Figure 2.2) and then ran the different methods. In Figure 2.3,

we see that the DP+MCMC samplers outperform the other samplers. We also

ran each method on the well-studied coronary heart disease (CHD) dataset [18].

This consists of about 200 cases of 6 binary variables, encoding such things as

“is your blood pressure high?”, “do you smoke?”, etc. In Figure 2.4, we see
3 Without the reweighting term, the MCMC order sampler [21] would eventually converge

to the same results (as measured by SAD) as the DP method [31, 32].

18

Chapter 2. Structure learning by dynamic programming and MCMC

again that our DP+MCMC method is the fastest and the most accurate.

2.5.2 Structural discovery

In order to assess the scalability of our algorithm, we next looked at data gen-

erated from the 20 node “Child” network used in [55] (shown in Figure 2.7).

We sampled n = 10, 000 records using random multinomial CPDs sampled from

a Dirichlet, with hyper-parameters chosen by the method of [6], which ensures

strong dependencies between the nodes4. Stronger dependencies increase the

likelihood that the distribution will be numerically faithful to the conditional

independency assumptions encoded by the structure. Next, we compute the

posterior over two kinds of features: edge features, fij = 1 if there is an edge

between i and j (in either orientation), and path features, fij = 1 if there is a

directed path from i to j. (Note that the latter cannot be computed by DP; to

compute it using the order sampler of [21] requires sampling DAGs given an or-

der.) We can no longer compare the estimated posteriors to the exact posteriors

(since d = 20), but we can compare them to the ground truth values from the

generating network. Following [28, 31], we threshold these posterior features

at different levels, to trade off sensitivity and specificity. We summarize the

resulting ROC curves in a single number, namely area under the curve (AUC).

The results for edge features are shown in Figure 2.5. We see that the

DP+MCMC methods do very well at recovering the true undirected skeleton of

the graph, obtaining an AUC of 1.0 (same as the exact DP method). We see

that our DP+MCMC samplers are significantly better (at the 5% level) than

the DAG sampler and the order sampler. The order sampler does not do as

well as the others, for the same amount of run time, since each sample is more

expensive to generate.

The results for path features are shown in Figure 2.6. Again we see that
4For example, consider a node ` with 3 states and 4 parent states. The method of [6]

prescribes that we pick a “basis vector” (1, 1/2, 1/3), and then, for the j’th parent state, we

sample θij· ∼ Dir(sαij·), where αi1· ∝ (1, 1/2, 1/3), αi2· ∝ (1/2, 1/3, 1), αi3· ∝ (1/3, 1, 1/2),

αi4· ∝ (1, 1/2, 1/3), and s = 10 is an effective sample size.

19

Chapter 2. Structure learning by dynamic programming and MCMC

 2

 1

 3

 9 8 7 6 5 4

121110 1413

1918171615 20

Figure 2.7: Child network. First reported in [9].

the DP+MCMC method (using either β = 0 or β = 0.1) yields statistically

significant improvement (at the 5% level) in the AUC score over other MCMC

methods on this much harder problem.

2.5.3 Accuracy of predictive density

In this section, we compare the different methods in terms of the log loss on a

test set:

` = E log p(x|D) ≈ 1
m

m∑

i=1

log p(xi|D)

where m is the size of the test set and D is the training set. This is the ultimate

objective test of any density estimation technique, and can be applied to any

dataset, even if the “ground truth” structure is not known. The hypothesis

that we wish to test is that methods which estimate the posterior p(G|D) more

accurately will also perform better in terms of prediction. We test this hypoth-

esis on three datasets: synthetic data from a 15-node network, the “Adult” US

census dataset from the UC Irvine repository and a biological dataset related

to the human T-cell signalling pathway [48].

20

Chapter 2. Structure learning by dynamic programming and MCMC

L
o

g
(p

re
d

. l
ik

)

Synthetic−15

0 50 100 150 200
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Gibbs

Local

Global

Hybrid

Order

Optimal Tree

Optimal Dag

Raw DP

L
o

g
(p

re
d

. l
ik

)

Time (seconds)

0 50 100 150 200
−10

−9

−8

−7

−6

−5
x 10

−3

Global

Hybrid

Order

Optimal Dag

Raw DP

Figure 2.8: Test set log likelihood vs training time on Synthetic-15

network. d = 15, N = 1500. The bottom figure presents the “good” algorithms

in higher detail by removing the poor performers. Results for the factored model

are an order of magnitude worse and therefore not plotted. Note that the DP

algorithm actually took over two hours to compute.

Time (seconds)

L
o

g
(p

re
d

. l
ik

.)

Adult (US Census)

0 50 100 150 200
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Gibbs

Local

Global

Hybrid

Order

Optimal Dag

Raw DP

Figure 2.9: Test set log likelihood vs training time on Adult dataset.

d = 14, N = 49k. DP algorithm actually took over 350 hours to compute. The

factored and maximum likelihood tree results are omitted since they are many

orders of magnitude worse and ruin the graph’s vertical scale.

21

Chapter 2. Structure learning by dynamic programming and MCMC

L
o

g
(p

re
d

. l
ik

.)

Sachs (T−cell signalling pathway)

0 50 100 150 200
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Gibbs

Local

Global

Hybrid

Order

Optimal Dag

Raw DP

Time (seconds)

L
o

g
(p

re
d

. l
ik

.)

0 50 100 150 200
−0.27

−0.26

−0.25

−0.24

Global

Hybrid

Order

Raw DP

Figure 2.10: Test set log likelihood vs training time on T-cell dataset.

d = 11, N = 5400. DP algorithm actually took over 90 hours to compute.

The factored model and optimal tree plugins are again omitted for clarity. The

bottom part of the figure is a zoom in of the best methods.

22

Chapter 2. Structure learning by dynamic programming and MCMC

In addition to DP and the MCMC methods mentioned above, we also measured

the performance of plug-in estimators consisting of: a fully factorized model (the

disconnected graph), the maximum likelihood tree [7], and finally the MAP-

optimal DAG gotten from the algorithm of [50]. We measure the likelihood of

the test data as a function of training time, `(t). That is, to compute each term

in ` we use p(xi|D) = 1
St

∑St

s=1 p(xi|Gs), where St is the number of samples that

can be computed in t seconds. Thus a method that mixes faster should produce

better estimates. Note that, in the Dirichlet-multinomial case, we can quickly

compute p(x|Gs) by plugging in the posterior mean parameters:

p(x|Gs) =
∏

ijk

θ
I(xi=j,xGi

=k)

ijks

where θijks = E[θijk|D,Gs]. If we have missing data, we can use standard Bayes

net inference algorithms to compute p(x|Gs, θ).

In contrast, for DP, the “training” cost is computing the normalizing con-

stant p(D), and the test time cost involves computing p(xi|D) = p(xi, D)/p(D)

for each test case xi separately. Hence we must run the DP algorithm m times

to compute ` (each time computing the marginal likelihoods for all families on

the augmented data set xi, D). DP is thus similar to a non-parametric method

in that it must keep around all the training data, and is expensive to apply at

run-time. This method becomes even slower if x is missing components: sup-

pose k binary features are missing, then we have to call the algorithm 2k times

to compute p(x|D).

For the first experiment, we generated several random networks, sampling

the nodes’ arities uniformly at random from between 2-4 and the parameters

from a Dirichlet. Next, we sampled 100d records (where d is the number of

nodes) and performed 10-fold cross-validation. Here, we just show results for

a 15-node network, which is representative of the other synthetic cases. Fig-

ure 2.8 plots the mean predictive likelihood across cross-validation folds and 5

independent sampler runs against training time. On the zoomed plot at the

bottom, we can see that the hybrid and global MCMC methods are signifi-

cantly better than order sampling. Furthermore, they seem to be better than

23

Chapter 2. Structure learning by dynamic programming and MCMC

exact DP, which is perhaps being hurt by its modular prior. All of these Bayes

model averaging (BMA) methods (except Gibbs) significantly beat the plugin

estimators, including the MAP-optimal structure.

In the next experiment we used the “Adult” US census dataset, which con-

sists of 49,000 records with 14 attributes, such as “education”, “age”, etc. We

use the discretized version of this data as previously used in [42]. The average

arity of the variables is 7.7. The results are shown in Figure 2.9. The most

accurate method is DP, since it does exact BMA (although using the modular

prior), but it is also the slowest. Our DP+MCMC method (with β = 0.1) pro-

vides a good approximation to this at a fraction of the cost (it took over 350

hours to compute the predictive likelihood using the DP algorithm). The other

MH methods also do well, while Gibbs sampling does less well. The plug-in

DAG is not as good as BMA, and the plug-in Chow-Liu tree and plug-in fac-

tored model do so poorly on this dataset that their results are not shown (lest

they distort the scale). (These results are averaged over 10 MCMC runs and

over 10 cross-validation folds.)

Finally, we applied the method to a biological data set [48] which consists

of 11 protein concentration levels measured (using flow cytometry) under 6

different interventions, plus 3 unperturbed measurements. 600 measurements

are taken in each condition yielding a total dataset of N = 5400 records. Sachs

et al. discretized the data into 3 states, and we used this version of the data.

We modified the marginal likelihood computations to take into account the

interventional nature of the data as in [8]. The results are shown in Figure 2.10.

Here we see that DP gives the best result, but takes 90 hours. The global,

hybrid and order samplers all do almost as well at a fraction of the cost. The

local proposal and Gibbs sampling perform about equally. All methods that

perform BMA beat the optimal plugin.

24

Chapter 2. Structure learning by dynamic programming and MCMC

0 50 100 150 200
−3.9

−3.8

−3.7
x 10

5 Hybrid

0 50 100 150 200
−3.9

−3.8

−3.7
x 10

5 Gibbs

Adult - Training set likelihood trajectories

0 50 100 150 200
−3.9

−3.8

−3.7
x 10

5 Order

0 50 100 150 200
−3.9

−3.8

−3.7
x 10

5 Local

0 50 100 150 200
−3.9

−3.8

−3.7
x 10

5 Global

0 5 10 15 20 25
−3.73

−3.725

−3.72
x 10

5 Order & Global

Figure 2.11: Samplers’ training set log likelihood trace plots on Adult

dataset. 4 traceplots of training set likelihood for each sampler, starting from

randomly initialized values. The bottom-right figure combines runs from the

order and global samplers and shows the behaviour of the chains in the first 25

seconds.

25

Chapter 2. Structure learning by dynamic programming and MCMC

2.5.4 Convergence diagnostics

In Figure 2.11 we show a traceplot of the training set marginal likelihood of the

different methods on the Adult dataset. (Other datasets give similar results.)

We see that Gibbs is “sticky”, that the local proposal explores a lot of poor

configurations, but that both the global and order sampler do well. In the

bottom right we zoom in on the plots to illustrate that the global sampler

is lower variance and higher quality than the order sampler. Although the

difference does not seem that large, the other results in this section suggest that

the DP proposal does in fact outperform the order sampler.

2.6 Summary and future work

We have proposed a simple method for improving the convergence speed of

MCMC samplers in the space of DAG models. Alternatively, our method may

be seen as a way of overcoming some of the limitations of the DP algorithm of

Koivisto and Sood [31, 32].

The logical next step is to attempt to scale the method beyond its current

limit of 22 nodes, imposed by the exponential time and space complexity of

the underlying DP algorithm. One way forward might be to sample partitions

(layers) of the variables in a similar fashion to [37], but using our DP-based

sampler rather than Gibbs sampling to explore the resulting partitioned spaces.

Not only has the DP-based sampler been demonstrated to outperform Gibbs,

but it is able to exploit layering very efficiently. In particular, if there are d

nodes, but the largest layer only has size m, then the DP algorithm only takes

O(d2m) time. Using this trick, [32] was able to use DP to compute exact edge

feature posteriors for d = 100 nodes (using a manual partition). In future work,

we will try to simultaneously sample partitions and graphs given partitions.

This is a non-trivial task because the DP algorithm marginalizes over structure.

The method of [37], for example, requires DAG samples to estimate parameters

associated with partitioning.

26

Chapter 3

Structure learning with

uncertain interventions

3.1 Introduction

The use of Bayesian networks to represent causal models has become increasingly

popular [45, 51]. In particular, there is much interest in learning the structure

of these models from data. Given observational data, it is only possible to iden-

tify the structure up to Markov equivalence. For example, the three models

X→Y→Z, X←Y←Z, and X←Y→Z all encode the same conditional inde-

pendency statement, X ⊥ Z|Y . To distinguish between such models, we need

interventional (experimental) data [16].

Most previous work has focused on the case of “perfect” interventions, in

which it is assumed that an intervention sets a single variable to a specific state

(as in a randomized experiment). This is the basis of Pearl’s “do-calculus” (as in

the verb “to do”) [45]. A perfect intervention essentially “cuts off” the influence

of the parents to the intervened node, and can be modeled as a structural change

by performing “graph surgery” (removing incoming edges from the intervened

node). Although some real-world interventions can be modeled in this way (such

as gene knockouts), most interventions are not so precise in their effects.

One possible relaxation of this model is to assume that interventions are

“stochastic”, meaning that they induce a distribution over states rather than

a specific state [33]. A further relaxation is to assume that the effect of an

intervention does not render the node independent of its parents, but simply

27

Chapter 3. Structure learning with uncertain interventions

changes the parameters of the local distribution; this has been called a “mech-

anism change” [52, 53] or “parametric change” [17]. For many situations, this

is a more realistic model than perfect interventions, since it is often impossible

to force variables into specific states.

Here, we propose a further relaxation of the notion of intervention, and

consider the case where the targets of intervention are uncertain. This extension

is motivated by problems in systems biology and drug target discovery, where

the effects of various chemicals that are added are not precisely known. In

particular, each chemical may affect a hidden variable, which can in turn affect

multiple observed variables, often in unknown ways. We model this by adding

the intervention nodes to the graph, and then performing structure learning in

this extended, two-layered graph.

Our contributions are four fold. First, we show how to combine models of

intervention — perfect, imperfect and uncertain — with a recently proposed al-

gorithm for efficiently determining the exact posterior probabilities of the edges

in a graph [31, 32]. Second, we show empirically that it is possible to infer

the true causal graph structure, even when the targets of interventions are un-

certain, provided the interventions are able to affect enough nodes. Third, we

apply our exact methodology to T-cell data that had previously been analyzed

using MCMC [19, 48] and show that our uncertain intervention model is the

best density estimator. Fourth, we utilize uncertain interventions to identify

gene targets of cancer on the childhood acute lymphoblastic leukemia (ALL)

data gathered by [58] and analyzed in [12, 58]. We believe our method is the

first well-principled application of Bayesian networks to drug/disease target dis-

covery.

3.2 Models of intervention

We will first describe our probability model under the assumption that there

are no interventions. Then we will describe ways to model the many kinds

of interventions that have been proposed in the literature, culminating in our

28

Chapter 3. Structure learning with uncertain interventions

X
n

i

n

i

µi

®i
X
n

Gi

®i

X
1

Gi
X
2

Gi
X
3

Gi

X
1

i X
2

i X
3

i

µi

X
4

Gi

X
4

i

(a) (b)

Figure 3.1: Intervention model: None. (a) Plate notation, (b) the same

model unrolled across 4 data cases.

model of uncertain interventions. This will serve to situate our model in the

context of previous work.

3.2.1 No interventions

For the intervention-free case, we will assume that the conditional probabil-

ity distribution (CPD) of each node in the graph is given by p(Xi|XGi , θ, G) =

fi(Xi|XGi , θi), where Gi are the parents of i in G, θi are i’s parameters, and fi()

is some probability density function (e.g., multinomial or linear Gaussian). For

the parameter prior p(θ|G), we will make the usual assumptions of global and

local independence, and parameter modularity (see [27] for details). We will fur-

ther assume that each p(θi) is conjugate to fi, which allows for closed form com-

putation of the marginal likelihood p(X1:N |G) =
∫

p(X1:N |G, θ)p(θ)dθ, where

N is the number of data cases. For example, for multinomial-Dirichlet, the

marginal likelihood for a family (a node and its parents) is given by [27]

p(x1:N
i |x1:N

Gi
) =

∫
[

N∏
n=1

p(xn
i |xn

Gi
, θi)]p(θi)dθi

=
ri∏

j=1

Γ(αij)
Γ(αij + Nij)

qi∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

where Nijk =
∑N

n=1 I(xn
i = k, xn

Gi
= j) are the counts, and Nij =

∑
k Nijk.

(I(e) is the indicator function in which I(e) = 1 if event e is true and I(e) = 0

otherwise.) Also, αijk are the pseudo counts (Dirichlet hyper parameters),

29

Chapter 3. Structure learning with uncertain interventions

X
n

i

n
i

µi

®i X
n

Gi

I
n

i

X
1

Gi
X
2

Gi
X
3

Gi

X
1

i X
2

i X
3

i

X
4

Gi

X
4

i

®
0

i

µ
0

i

I
1

i=0 I
2

i=1 I
3

i=0 I
4

i=1

(a) (b)

Figure 3.2: Intervention model: Perfect. (a) Plate notation, (b) the same

model unrolled across 4 data cases.

αij =
∑

k αijk, ri is the number of discrete states for Xi, and qi is the number of

states for XGi
. We will usually use the BDeu prior αijk = 1/qiri [27]. (An anal-

ogous formula can be derived for the normal-Gamma case [23].) The marginal

likelihood of all the nodes is then given by p(X1:N |G) =
∏d

i=1 p(X1:N
i |X1:N

Gi
),

where d is the number of nodes. Figure 3.1 shows the non-interventional case

as a graphical model.

3.2.2 Perfect interventions

If we perform a perfect intervention on node i in data case n, then we set

Xn
i = x∗i , where x∗i is the desired “target state” for node i (assumed to be fixed

and known). We modify the CPD for this case to be p(Xi|XGi , θ) = I(Xi = x∗i).

We see that Xi is effectively “cut off” from its parents XGi . Figure 3.2.(a) shows

the perfect intervention model in plate notation, while (b) illustrates the idea on

a local family with 4 data points. Namely, for i fixed, Figure 3.2.(b) “unrolls”

the plate notation across 4 data. We see that in data cases 2 and 4 (marked

in red) the perfect intervention was performed (Ii = 1), cutting off Xi from its

parents and corresponding parameters. Although not shown, the probability

function over Xi’s states has been collapsed onto the target state x∗i .

30

Chapter 3. Structure learning with uncertain interventions

I
n

i X
n

i

µ
1

iµ
0

i®
0

i
®
1

i

n

i

X
n

Gi

X
1

Gi
X
2

Gi
X
3

Gi

X
1

i X
2

i X
3

i

X
4

Gi

X
4

i

µ
1

i®
0

i

µ
0

i
®
1

i

I
1

i=0 I
2

i=1 I
3

i=0 I
4

i=1

(a) (b)

Figure 3.3: Intervention model: Imperfect. (a) Plate notation, (b) the same

model unrolled across 4 data cases. Xn
i is node i in case n, Xn

Gi
are its parents.

In
i acts like a switching variable: If In

i = 1 (representing an intervention), then

Xi uses the parameters θ1
i ; If In

i = 0, then Xi uses the parameters θ0
i . α

0/1
i are

the hyper-parameters.

3.2.3 Imperfect interventions

A simple way to model interventions is to introduce intervention nodes, that act

like “switching parents”: if In
i = 1, then we have performed an intervention on

node i in case n and we use a different set of parameters than if In
i = 0, when

we use the “normal” parameters. Specifically, we set p(Xi|XGi , Ii = 0, θ, G) =

fi(Xi|XGi , θ
0
i) and p(Xi|XGi , Ii = 1, θ, G) = fi(Xi|XGi , θ

1
i). (Note that the

assumption that the functional form fi does not change is made without loss of

generality, since θi can encode within it the specific type of function.) Tian and

Pearl [52, 53] refer to this as a “mechanism change”: see Figure 3.3. A special

case of this is a perfect intervention, in which p(Xi|XGi , Ii = 1, θ,G) = I(Xi =

x∗i). To simplify notation, we assume every node has its own intervention node;

if a node i is not intervenable, we simply clamp In
i = 0 for all n.

When we have interventional data, we modify the local marginal likelihood

formula by partitioning the data into those cases in which Xi was passively

31

Chapter 3. Structure learning with uncertain interventions

R
n

iI
n

i X
n

i

µ
1

iµ
0

i®
0

i
®
1

i

n

i

X
n

Gi

Figure 3.4: Intervention model: Imperfect with unreliable extension.

Compare to Figure 3.3. We can optionally add another switch node Rn
i , which

can be used to model the degree of effectiveness of the intervention.

observed, and those in which Xi was set by intervention:

p(x1:N
i |x1:N

Gi
, I1:N

i) =
∫

[
∏

n:In
i =0

p(xn
i |xGi

, θ0
i)]p(θ0

i)dθ0
i

×
∫

[
∏

n:In
i =1

p(xn
i |xGi , θ

1
i)]p(θ1

i)dθ1
i

In the case of perfect interventions, this second factor evaluates to 1, so we can

simply drop cases in which node i was set by intervention from the computation

of the marginal likelihood of that node [8].

3.2.4 Unreliable interventions

An orthogonal issue to whether the intervention is perfect or imperfect is the

reliability of the intervention, i.e., how often does the intervention succeed? One

way to model this is to assume that each attempted intervention succeeds with

probability φi and fails with probability 1 − φi; this is what Korb et al. [33]

call the degree of “effectiveness” of the intervention. We can associate a latent

binary variable Rn
i to represent whether or not the intervention succeedeed or

failed in case n, resulting in the mixture model

p(Xi|XGi , Ii = 1, θ, G)

=
∑

r

p(Ri = r)p(Xi|XGi , Ii = 1, Ri = r, θ, G)

= φifi(Xi|XGi , θ
1
i) + (1− φi)fi(Xi|XGi , θ

0
i). (3.1)

32

Chapter 3. Structure learning with uncertain interventions

I
n

i X
n

i

µ
1

iµ
0

i

®
0

i ®
1

i

n

i

X
n

Gi

x
¤

i

wi

X
1

Gi
X
2

Gi
X
3

Gi

X
1

i X
2

i X
3

i

X
4

Gi

X
4

i

µ
1

i®
0

i

µ
0

i
®
1

i

I
1

i=0 I
2

i=1 I
3

i=0 I
4

i=1

w1

x
¤

1

(a) (b)

Figure 3.5: Intervention model: Soft. (a) Plate notation, (b) the same

model unrolled across 4 data cases. Proposed by [38]. x∗i is the known state

into which we wish to force node i when we perform an intervention on it;

wi is the strength of this intervention. α1
i , the hyper-parameters of θ1

i , are a

deterministic function of α0
i , x∗i and wi.

Figure 3.4 illustrates the idea on the unreliable intervention model. An unreli-

able, but otherwise perfect, intervention is modeled by setting

p(Xi|XGi , Ii = 1, Ri = 1, θ, G) = I(Xi = x∗i).

Unfortunately, computing the exact marginal likelihood of a data case now

becomes exponential in the number of R variables, because we have to sum over

all 2|R| latent assignments. Although Figure 3.4 adds the indicator Rn
i to the

imperfect model only, any of the other models of intervention under discussion

could be augmented with the unreliable assumption also.

3.2.5 Soft interventions

Another way to model imperfect interventions is as “soft” interventions, in which

an intervention just increases the likelihood that a node enters its target state

x∗i . Markowetz et al. [38] suggest using the same model of p(Xi|XGi , Ii, θ,G)

as before, but now the parameters θ0
i and θ1

i have dependent hyper-parameters.

In particular, for the multinomial-Dirichlet case, θ
0/1
ij· ∼ Dir(α0/1

ij·), they assume

the deterministic relation α1
ij· = α0

ij·+wi~et, where j indexes states (conditioning

cases) of xGi , t = x∗i is the target value for node i, ~et = (0, . . . , 0, 1, 0, . . . , 0)

33

Chapter 3. Structure learning with uncertain interventions

with a 1 in the t’th position, and wi is the strength of the intervention. As

wi→∞, this becomes a perfect intervention, while if wi = 0 it reduces to an

imperfect intervention. If the intervention strength wi is unknown, Markowetz

et al. suggest putting a mixture model on wi, but it may be more appropriate to

use the Ri mixture model mentioned above, where an intervention can succeed

or fail on a case by case basis. Figure 3.5 shows the model graphically using

plate notation.

3.2.6 Uncertain interventions

Finally we come to our proposed model for representing interventions with un-

certain targets, as well as uncertain effects. We no longer assume a one to

one correspondence between intervention nodes Ii and “regular” nodes Xi. In-

stead, we assume that each intervention node Ii may have multiple regular

children. (Such interventions are sometimes said to be due to a “fat hand”,

which “touches” many variables at once.) If a regular node has multiple inter-

vention parents, we create a new parameter vector for each possible combination

of intervention parents: see Figure 3.6 for an example.

We are interested in learning the connections from the intervention nodes

to the regular nodes, as well as between the regular nodes. We do not allow

connections between the intervention nodes, or from the regular nodes back to

the intervention nodes, since we assume the intervention nodes are exogenous

and fixed. We enforce these constraints by using a two layered graph structure,

V = X ∪I, where X are the regular nodes and I are the intervention nodes. The

addition of I motivates new notation, since the augmented adjacency matrix

has a special block structure. The full adjacency matrix, denoted by H, is

comprised of the intervention block F containing I nodes, and the backbone

block G comprised of X nodes:

H =


 0 G

0 F


 .

We call the elements of F “target edges” since they correspond to edges I→X

34

Chapter 3. Structure learning with uncertain interventions

and the elements of G “backbone edges”. As we will see in Section 3.3.1, the

block structure of H reduces the time complexity of the DP algorithm that we

use to perform exact Bayesian inference.

To explain how we modify the marginal likelihood function, we need some

more notation. Let XGi
be the regular parents of node i, and IGi

be the inter-

vention parents. Let θ`
i be the parameters for node i given that its intervention

parents have state `. Then the marginal likelihood for a family becomes

p(x1:N
i |x1:N

Gi
, I1:N

Gi
)

=
∏

`

∫ 
 ∏

n:In
Gi

=`

p(xn
i |xn

Gi
, θ`

i)


 p(θ`

i)dθ`
i .

It is crucial that we assume that the interventions have local (albeit un-

known) effects, otherwise they would not help us resolve Markov equivalency.

To see this, note that if the distribution after an intervention, call it p(X|θ1), is

unrelated to the distribution before an intervention, p(X|θ0), then the overall

marginal likelihood becomes a product of standard marginal likelihoods (gotten

by integrating out θ0 and θ1). This gives us more data, but does not help us

learn the causal structure (see [53] for more details).

To see this, let us consider a simpler scenario (inspired by the analysis of

[53]) in which we have a single intervention node Ii with target ch(Ii) = `.

Suppose we observe N0 cases in which Ii = 0 and N1 cases in which Ii = 1. Let

N0
ijk be the counts in the first batch, N1

ijk be the counts in the second batch,

and Nijk = N0
ijk + N1

ijk. Let GX be the graph induced by the regular nodes. If

the post interventional distribution is unconstrained (i.e., the parameters that

generated the second batch of data are unrelated to the first set of parameters),

then we get

p(X1:N1 , XN1+1:N2 |I1:N1
i = 0, IN1+1:N2

i = 1, GX)

=
∏

i

qi∏

j=1

Γ(αij)
Γ(αij + N0

ij)

ri∏

k=1

Γ(αijk + N0
ijk)

Γ(αijk)

×
∏

i

qi∏

j=1

Γ(αij)
Γ(αij + N1

ij)

ri∏

k=1

Γ(αijk + N1
ijk)

Γ(αijk)
,

35

Chapter 3. Structure learning with uncertain interventions

I
n

1

I
n

2
X
n

1

X
n

3

X
n

2

µ1 µ
1

2j1µ
0

2j1 µ
00

3j2 µ
01

3j2 µ
10

3j2 µ
11

3j2

n

Figure 3.6: Example of a “Fat hand” intervention. Intervention 1 affects

nodes 2 and 3, intervention 2 affects node 3. The parameters for node 3 are

θij
3|2(k, `), where I1 = i, I2 = j, X2 = k and X3 = `.

which is just the regular BDe likelihood applied to a larger dataset. But if we

constrain the intervention to only affect node `, we get

p(X1:N1 , XN1+1:N2 |I1:N1
i = 0, IN1+1:N2

i = 1, GX , `)

=
∏

i 6=`

qi∏

j=1

Γ(αij)
Γ(αij + Nij)

ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

×
q∏̀

j=1

Γ(α`,j)
Γ(α`,j + N0

`,j)

r∏̀

k=1

Γ(α`,j,k + N0
`,j,k)

Γ(α`,j,k)

×
q∏̀

j=1

Γ(α`,j)
Γ(α`,j + N1

`,j)

r∏̀

k=1

Γ(α`,j,k + N1
`,j,k)

Γ(α`,j,k)
.

The unconditional marginal likelihood is then given by the mixture distribution

p(X|I, GX) =
∑

`

p(ch(Ii) = `)p(X|I, GX , `).

In Section 3.3 we present an efficient way to compute this mixture, even in the

case where there are multiple intervention nodes, each with potentially multiple

targets.

3.2.7 The power of interventions

The ability to recover the true causal structure (assuming no latent variables)

using perfect and imperfect interventions has already been demonstrated both

36

Chapter 3. Structure learning with uncertain interventions

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

D E

(a)

A

B C

D E
(h)

A

B C

D E
(e)

(b) (c) (d)

A

B C

D E
(f)

A

B C

D E
(g)

Figure 3.7: Markov equivalence classes on the Cancer network. (a) The

Cancer network, from [22]. (a-d) are Markov equivalent. (c-g) are equivalent

under an intervention on B. (h) is the unique member under an intervention

on A. Based on [53].

theoretically [16, 17, 52, 53] and empirically [8, 39, 52, 53, 57]. Specifically, each

intervention determines the direction of the edges between the intervened nodes

and its neighbors; this in turn may result in the direction of other edges being

“compelled” [4].

For example, in Figure 3.7, we see that there are 4 graphs that are Markov

equivalent to the true structure; given observational data alone, this is all we

can infer. However, given enough interventions (perfect or imperfect) on B,

we can eliminate the fourth graph (d), since it has the wrong parents for B.

Given enough interventions on A, we can uniquely identify the graph, since we

can identify the arcs out of A by intervention, the arcs into D since it is a v-

structure, and the C→E arc since it is compelled. In general, given a set of

interventions and observational data, we can identify a graph up to intervention

equivalence (see [52] for a precise definition).

In Section 3.4.1, we will experimentally study the question of whether one

can still learn the true structure from uncertain interventions (i.e., when the

targets of intervention are a priori unknown), and if so, how much more data

one needs compared to the case where the intervention targets are known.

37

Chapter 3. Structure learning with uncertain interventions

3.3 Algorithms for structure learning

The Bayesian approach to structure learning avoids many of the conceptual

problems that arise when trying to combine the results of potentially inconsis-

tent conditional independency tests performed on different (“mutated”) models

[15]. In addition, it is particularly appropriate when the sample sizes are small,

but “soft” prior knowledge is available, as in many systems biology experiments.

However, for large structure learning problems Bayesian inference becomes in-

tractable, and we will still have to resort to approximate and/or point estimation

methods.

3.3.1 Exact algorithms for p(Hij) and H∗
MAP

On problems of less than d u 22 variables, we use the algorithm of Koivisto

and Sood [31, 32], which can compute the exact posterior probabilities of all

edges, p(Hij), using dynamic programming in O(d2d) time, as we discussed

in Section 2.2. The inputs to this algorithm are a “prior” over node orderings

qi(Ui), a “prior” over possible parent sets, ρi(Gi), and a local marginal likelihood

function for every node and every possible parent set, p(Xi|XGi). They were

also described in Chapter 2.

Though we increase the effective number of nodes in using the uncertain

intervention model, the block structure of H permits a reduction in the time

complexity of the DP algorithm. Let dI = |I| be the number of intervention

nodes, and dX = |X | be the number of regular nodes. The time complexity of

the DP algorithm in this case is O(d2dX + dk+1C(N)), where d = dI + dX , and

C(N) is the cost of computing each local marginal likelihood term. Note that

layering is crucial for efficiently handling uncertain interventions, otherwise the

algorithm would take O(d2d) instead of O(d2dX) time.

Silander and Myllmaki recently devised an elegantly simple algorithm to

compute the globally optimal DAG [50], which takes o(d22d−2) time and expo-

nential space. The premise is that the optimal DAG must have a sink (a node

without outgoing edges), which, by optimality, must have parents that score

38

Chapter 3. Structure learning with uncertain interventions

the highest amongst all possible sets thereof. If this best sink and its incoming

edges are fixed and removed from further consideration, the remaining nodes

and edges must be optimal in the same fashion. When carried out recursively,

these steps will construct the globally optimal DAG. We use this algorithm to

compute the exact MAP, H∗
MAP .

3.3.2 Local search for ĤMAP

For much larger problems, Bayesian model averaging becomes infeasible to carry

out, even by approximation methods. For the 271 variable ALL data (see Sec-

tion 3.4.3), we will approximate the MAP by finding a structure ĤMAP by

local search that fits the training data well. As with BMA, there also exist two

flavours of local search, which differ by the space they operate on: structure

or order. In structure search, given a starting DAG, the algorithm considers

all neighbouring DAGs that differ by a single edge addition, deletion or rever-

sal then greedily chooses the one that most increases the training set marginal

likelihood [27]. Recently, Schmidt et al. [49] compared the two approaches on

several datasets and found that DAG search consistently outperformed order

search on the structure learning task. Neighbour pruning is an optional pre-

processing step that tests for independencies between variables, and rules out

many structures or orders a priori. [49] found that if an appropriate neighbour

pruning method is applied, DAG search scores better on training and test set

likelihood as well. Therefore, we adopt the structure-space local search, forcing

it to restart whenever a local maximum is reached, and taking only the highest

scoring DAG based on training set marginal likelihood.

3.3.3 Iterative algorithm for ĤMAP

The block-H notation introduced in Section 3.2.6 is suggestive of a coordinate

ascent algorithm, which learns an ĤMAP by alternating between learning F

given G fixed, then G given F fixed. Even if the number of nodes dX is large,

with a target edge fan-in constraint it will still be feasible to determine FMAP .

39

Chapter 3. Structure learning with uncertain interventions

This algorithm would seem particularly attractive for applications where the

goal is to learn F only (G may be irrelevant). We implemented such an al-

gorithm, and tested it according to the same procedures used in Section 3.4.1.

However, we found that it becomes consistently trapped in local maxima, espe-

cially when the globally optimal DAG algorithm of [50] is used for both steps.

The culprit is in fixing F; when we do so, we effectively break the interventional

nature of the data and create new local maxima. If the algorithm was allowed to

look a sufficient number of steps into the future, it could escape these maxima;

however, the extra computation required for the look-ahead would defeat the

algorithm’s original purpose. The problem can be somewhat ameliorated by

using stochastic local search rather than finding the MAP, though in practise it

appears to be preferable to simply learn F and G jointly.

3.4 Experimental results

We first present some results on synthetic data generated from a Bayesian net-

work of known structure, and then present results on a real biological dataset.

3.4.1 Synthetic data

In this section, we experimentally study the question of whether one can still

learn the true structure, even when the targets of intervention are a priori

unknown, and if so, how much more data one needs compared to the case

where the intervention targets are known5. We assessed this using the following

experimental protocol. We considered the Cancer network shown in Figures 2.2

and 3.7, and then generated random multinomial CPDs by sampling from a

Dirichlet distribution with hyper-parameters chosen by the method described

in [6] (outlined in Section 2.5.2). For simplicity, we used binary nodes. We then

5 Tian and Pearl [52] briefly mention the case of “unknown focal variables” (which we are

calling uncertain targets of intervention) in the context of constraint based learning methods,

but do not present any algorithms for identifying focal variables. We are not aware of any

other papers that address this question.

40

Chapter 3. Structure learning with uncertain interventions

generated data using forwards sampling; the first 2000 cases D0 were from the

original model, the second 2000 cases D1 from a “mutated” model, in which we

performed a perfect intervention either on A or B, forcing it to the “off” state

in each case.

Next we tried to learn back the structure using varying sample sizes of

N ∈ {100, 500, 2000}. Specifically we used N observational samples and N

interventional samples, D = (D1:N
0 , D1:N

1). We ran the algorithm using data

D and under increasingly vague prior knowledge: (1) using the perfect inter-

ventions model; (2) using the soft interventions model6; (3) using the imperfect

model; and (4) using the uncertain interventions model. In the latter case, we

also learned the children of the intervention node. As a control, we also tried

just using observational data, D = D1:2N
0 .

Our results for the perfect and uncertain models are shown in Figure 3.8. On

this network, the imperfect and soft intervention models perform very similar

to the perfect case, though they require more data to achieve the same result.

We see that with observational data alone, we are only able to recover the v-

structure B→D←C, with the directions of the other arcs being uncertain (e.g.,

P (C→E) ≈ 0.75.) With perfect interventions on B, we can additionally recover

the A→B arc, and with perfect interventions on A, we can recover the graph

uniquely, consistent with the theoretical results in Section 3.2.7. With uncertain

interventions, we see that the entropy of the posterior on the regular edges is

higher than when using perfect interventions, but it too reduces with sample

size. Eventually the posterior converges to a delta function on the intervention

equivalence class. We obtain similar results with other experiments on random

graphs. This suggests that our proposed mechanism is able to learn causal

structure even from uncertain interventions.

Next, we turned our attention to the larger synthetic network “Cars Diag-

nosis” introduced by [26], shown in Figure 3.9. Here, we will contrast the struc-

tural recovery abilities of the perfect and uncertain models Receiver Operating
6 [38] do not discuss how to set the pushing strength wi. We set it equal to 0.5N , so that

the data does not overwhelm the hyper-parameter α1
ijk.

41

Chapter 3. Structure learning with uncertain interventions

Ground Truth
O

b
se

rv
a

ti
o

n
 O

n
ly N = 20 N = 50 N = 500 N = 2000

A B C D E H = 6.31

H = 5.65

H = 6.53

H = 4.11

H = 6.06 H = 3.62 H = 0.76 H = 0.38

H = 2.53 H = 0.45 H = 0.09

H = 5.58 H = 1.73 H = 1.73

H = 4.29 H = 1.34 H = 1.16

H = 5.40 H = 1.86 H = 1.49
A
B
C
D
E

P
e

rf
e

ct
 B

 A B C D E
A
B
C
D
E

U
n

ce
rt

a
in

 B A B C D E I*
A
B
C
D
E
I*

P
e

rf
e

ct
 A

 A B C D E
A
B
C
D
E

U
n

ce
rt

a
in

 A

A B C D E I*
A
B
C
D
E
I*

0 0.2 0.60.4 0.8 1

Figure 3.8: Perfect vs uncertain interventions on the Cancer network.

Results of structure learning on the Cancer network (Figure 3.7). Left column:

ground truth. Subsequent columns: posterior edge probabilities p(Gij = 1|D)

for increasing sample sizes N , where dark red denotes 1.0 and dark blue denotes

0.0. H is the entropy of the factored posterior
∏

ij p(Gij |D). See text for details.

This figure is best viewed in colour.

42

Chapter 3. Structure learning with uncertain interventions

 4

 5

 3
 6

 2

 7

 8 12

11
10

 9

 1

Figure 3.9: Cars network ground truth. d = 12 model for car malfunction

troubleshooting used by [26]. By selecting the appropriate two intervention

nodes, marked here in red, it is possible to uniquely recover the structure.

Characteristic (ROC) curve analysis, as in [31]. Again, we assign multinomial

CPDs according to the method [6]. Without interventional data, it would be

impossible to learn the orientation of some edges on the Cars Diagnosis network;

however, if we intervene on nodes 1 and 9, it is possible to uniquely recover the

original structure. Referring to Figure 3.9 we can see that under these two in-

terventions, all edges become compelled that were not in the observational case.

In this experiment, we account for sampling variability by creating 10 datasets

for each of N = (20, 200, 2000). For a given N , half of the data is observational

and half interventional, with interventions generated according to the perfect

model. Next, we attempted to learn the structure back for all 10 sets of data

per sample size N , assuming both the perfect and uncertain models.

Figure 3.10 presents the results using ROC plots to illustrate the effects

of sampling different data sets. Since the DP algorithm outputs edge feature

marginal probabilities, it is necessary to threshold them to induce hard decisions

on edge presence. Let Gθ
ij denote the marginal (i, j) thresholded by θ ∈ [0, 1],

and G
gt
ij be the corresponding ground truth. We say that Gθ

ij is a True Positive

(TP) if G
gt
ij = 1 ∧ Gθ

ij = 1, or else if G
gt
ij = 1 ∧ Gθ

ij = 0, then Gθ
ij is labeled a

False Negative (FN). Similarly, G
gt
ij = 0∧Gθ

ij = 0 means Gθ
ij is a True Negative

(TN), else if G
gt
ij = 0 ∧Gθ

ij = 1, we say that Gθ
ij is a False Positive (FP). The

four classes {TP, FP, TN, FN} are mutually exclusive and exhaustive. Next,

43

Chapter 3. Structure learning with uncertain interventions

let #TP indicate the sum of true positives over (i, j), with identical definitions

for the other classes. We now define Sensitivity = #TP/(#TP + #FN),

Specificity = #TN/(#FN+#TN) and InverseSpecificity = 1−Specificity.

A ROC curve shows the inherent trade-off between specificity and sensitivity as

the threshold θ is varied. ROC plots are often summarized by a single quantity

known as the AUC, which is simply the area under the curve. A perfect predictor

receives an AUC of 1, while a random predictor gets 0.5.

Given that the interventions are perfect in the generating network, we ex-

pect the matching assumption for learning to perform best. As we can see from

Figure 3.10, this is the case on average but the difference is not significant.

As the sample size is increased, the gap between uncertain and perfect inter-

vention performance closes. The AUC scores for the target edges suggest that

learning the target edges requires less data, and happens before the backbone

is determined.

In Section 3.4.3, we analyze a d = 271 dataset for which Bayesian inference

is intractable and instead use local search to approximate the MAP, yielding

ĤMAP . However, it is not clear how much is lost when estimating structure

via approximate plugin (local search), versus exact plugin (MAP), versus exact

BMA. Therefore, we repeated the synthetic Cars experiments, but this time

comparing BMA, MAP and local search, all under the uncertain intervention

model. For sample sizes of N ∈ 20, 100, 400, 2000, we generated 20 independent

datasets and ran each algorithm to obtain H as edge marginal probabilities

(BMA) or single-DAG estimates (MAP and local search). Local search was

allowed to run for 20 seconds (3 times as long as it took to compute the BMA

or MAP). Since ROC curves do not exist for hard assignments, we instead chose

to show the specificity and sensitivity of each estimate. For BMA, we selected

the equal-error rate point to threshold the marginals. This is the threshold for

which the specificity equals the sensitivity, a fair measure of performance for this

experiment. The results in Figure 3.11 suggest that except for extremely low

sample sizes, point estimates are adequate estimates of both the backbone and

target edges. Furthermore, local search performs within one standard deviation

44

Chapter 3. Structure learning with uncertain interventions

1 1
1

1

1

1
11

1

1

1

1

1

1

1

0.6

0.6

0.6

0
0

0

0 0

0

0
0

0

0

0

0

Structure Recovery
Perfect Interventions

Structure Recovery
Uncertain Interventions

Mean AUC

N = 20

N = 200

N = 2000

Inv. speci!city Inv. speci!city Perfect
Uncertain

Target edges

se
n

si
ti

v
it

y
se

n
si

ti
v

it
y

se
n

si
ti

v
it

y

Figure 3.10: Structural recovery performance of perfect vs uncertain

intervention models on Cars network. Each row of the figure denotes a

different sample size (N = 200 means there were 100 observational and 100

interventional data cases). The first two columns contain ROC curves showing

the trade-off between specificity and sensitivity in thresholding the edge feature

marginals produced by perfect and uncertain interventions. There are 10 curves

per plot, corresponding to the 10 datasets generated per sample size. In the right

column, the ROC curves have been summarized as AUC. The “Perfect” and

“Uncertain” bars show structure recovery performance for the graph backbone

(G), while “Target edges” applies only to the uncertain model, and is the AUC

on intervention to backbone edges only (H).

45

Chapter 3. Structure learning with uncertain interventions

of the exact MAP estimate.

3.4.2 T-cell data

We now apply our methodology to a real biological dataset, which had pre-

viously been analyzed using MCMC by Sachs et al. [48] (who used multiple

restart simulated annealing in the space of DAGs), Werhli et al. [57] (who used

Metropolis-Hastings in the space of node orderings), and Ellis and Wong [19]

(who used equi-energy sampling in the space of node orderings). The purpose

of our experiment is to determine the exact posterior over edges, and hence to

assess the quality of the MCMC techniques, and also to learn the effects of the

interventions that were performed.

The dataset consists of 11 protein concentration levels measured under 6 dif-

ferent interventions, plus 3 unperturbed measurements. The proteins in question

constitute part of the signaling network of human T-cells, and therefore play

a vital role in the immune system. See Figure 3.13(a) for a depiction of the

commonly accepted “ground truth” network, including hidden nodes.

The data in question were gathered using a technique called flow cytome-

try, which can record phosphorylation levels of individual cells. This has two

advantages compared to other measurement techniques: first, it avoids the in-

formation loss commonly incurred by averaging over ensembles of cells; second,

it creates relatively large sample sizes (we have N = 5400 data points in total,

600 per condition).

The raw data was discretized into 3 states, representing low, medium and

high activity. We obtained this discretized data directly from Sachs; see Fig-

ure 3.12 for a visualization. This constituted the input to our algorithm.

We tried two different analyses. In the first version, we assumed that the

targets of intervention were known, and we modeled these using perfect inter-

ventions (as did Sachs et al.). The results are shown in Figure 3.13(c). These

should be compared with the results of the MCMC analysis of Sachs et al., which

are shown in Figure 3.13(b), and the ground truth network, which is shown in

46

Chapter 3. Structure learning with uncertain interventions

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

Specificity

Performance on backbone Performance on target edges

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

Sensitivity

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

Specificity

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

Sensitivity

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

BMA MAP Search
0

0.2

0.4

0.6

0.8

1

N = 20

N = 100

N = 400

N = 2000

MAP

Search

BMA

0

0.2

0.4

0.6

0.8

1

20 100 400 2000
0

0.2

0.4

0.6

0.8

1

20 100 400 2000
0

0.2

0.4

0.6

0.8

1

20 100 400 2000
0

0.2

0.4

0.6

0.8

1

20 100 400 2000

Figure 3.11: Structural recovery performance of exact BMA vs point

estimation on Cars network. The leftmost two columns show performance

on the graph backbone (G) while the rightmost two columns show it for the

target edges (F). The results in each row were aggregated from 20 independent

datasets with a sample size of N (shown). N = 200 means 100 interventional

data and 100 observational data. The bottom row summarizes the plots above

as curves. Note that since we chose the equal error rate threshold for BMA,

we would expect the associated bar heights to be equal. This is not the case

because there is no threshold setting such that Specificity(θ) = Sensitivity(θ)

exactly. We note that the equal error rate threshold also corresponds to the

maximum value taken on by f(θ) = Specificity(θ) + Sensitivity(θ) therefore

we take the maximum of f(θ) as our operating point.

47

Chapter 3. Structure learning with uncertain interventions

Observed Biomolecule

D
at

a
P

o
in

t

raf mek12 plcy pip2 pip3 erk akt pka pkc p38 jnk

1

600

1200

1800

2400

3000

3600

4200

4800

5400

PMA

U0126

Psitech

G06976

AKT Inh

B2cAMP

E

I

I

E

I

I

I

E

Low Act.
Med Act.
High Act.

Inhibitory Int.

Excitory Int.

Training set

Figure 3.12: T-cell dataset. Discretized, 3-state data from [48]. Columns are

the 11 measured proteins, rows are the 9 experimental conditions, 3 of which

are “general stimulation” rather than specific interventions. The name of the

chemical that was added in each case is shown on the right. The intended

primary target is indicated by an E (for excitation) or I (for inhibition). This

figure is best viewed in colour.

48

Chapter 3. Structure learning with uncertain interventions

Figure 3.13(a).

While there is substantial agreement between the three models, there are

also many differences. For example, the ground truth shows no edge from jnk

to p38, or from mek12 to jnk, yet both inference methods detect such an edge.

This may be due to the presence of various hidden variables. Looking at the

data in Figure 3.12, mek12 and jnk seem quite highly correlated, although this

is obviously not enough evidence to suggest there should be an edge between

them (as shown in [48], nearly all of the variables are significantly pairwise

correlated).

There are also several edges in our model that seem to be absent in the

MCMC analysis of Sachs et al. This is possibly because Sachs et al. only perform

model averaging over a “compendia of high scoring networks”, as found by 500

restarts of simulated annealing, whereas our method averages over all graphs,

and hence may detect support for many more edges. (Note that averaging over

many sparse, but different, graphs can result in a dense set of marginal edge

probabilities.) Also, the two methods use different graph priors p(G), and hence

cannot be directly compared.

We also applied the algorithm of Silander and Myllmaki [50] to compute the

MAP DAG. On this dataset, it coincides exactly with Figure 3.13(c), suggest-

ing that the posterior is highly peaked around the MAP structure. Since the

algorithm does not sum over orderings, the bias discussed in Section 2.3 is not

incurred, and the output MAP estimate is with respect to a uniform prior over

DAGs.

In the second experiment, we added the intervention nodes to the graph and

learned their children, rather than pre-specifying them. The results are shown in

Figure 3.13(d). We successfully identified the known targets of all but one of the

6 interventions. (We missed the G06967 → pkc edge.) However, we also found

that the interventions have multiple children, even though they were designed

to target specific proteins. Upon further investigation, we found that each

intervention typically affected a node and some of its immediate neighbors. For

example, from the ground truth network in Figure 3.13(a), we see that Psitect

49

Chapter 3. Structure learning with uncertain interventions

raf

mek12

pip2

erk

akt

p38jnk

pkc

plcy

pip3

pka

(a) (b)

raf

plcy

pip2

pip3

erk

p38

pkc

akt

pka

mek12

jnk

(c) (d)

Figure 3.13: T-cell dataset results. Models of the biological data. (a) A

partial model of the T-cell pathway, as currently accepted by biologists. The

small round circles with numbers represent various interventions (green = ac-

tivators, red = inhibitors). From [48]. Reprinted with permission from AAAS.

(b) Edges with marginal probability above 0.5 as estimated by [48]. (c) Edges

with marginal probability above 0.5 as estimated by us, assuming known perfect

interventions. (d) Edges with marginal probability above 0.5 as estimated by

us, assuming uncertain, imperfect interventions, and a fan-in bound of k = 2

for the target edges. The intervention nodes are in red, and edges from the

intervention nodes are light gray. This figure is best viewed in colour.

50

Chapter 3. Structure learning with uncertain interventions

Perfect Soft Imperfect Uncertain
3.5

4.5

5.5

6.5
N

e
g

a
ti

v
e

 lo
g

 p
re

d
ic

ti
v

e
 li

k
e

li
h

o
o

d

Intervention model

MAP DAG

Perfect Soft Imperfect Uncertain
3.5

4.5

5.5

6.5

N
e

g
a

ti
v

e
 lo

g
 p

re
d

ic
ti

v
e

 li
k

e
li

h
o

o
d

Intervention model

Exact BMA

(a) (b)

Figure 3.14: Predictive likelihood scores of intervention models on T-

cell dataset. Negative log predictive likelihood. Lower is better. (a) MAP es-

timate (b) Exact BMA. Result obtained across 10-fold validation. Note: though

difficult to see on this scale, exact BMA outperforms the plug-in estimate for

uncertain interventions.

(designated 8 in that figure) is known to inhibit pip2; in our learned network

(Figure 3.13(d)), we see that Psitect connects to pip2, but also to plcy, which is a

neighbor of pip2. This is biologically plausible, since some of these interventions

actually work by altering hidden variables, which can therefore cause changes in

several neighboring visible variables. Also, although we missed the G06967 →
pkc edge, the other children of G06967 (plcy, pka, mek12, erk and p38) seem to

be strongly affected by G06967 when looking at the data in Figure 3.12. We also

computed the MAP DAG and again found it to be identical to the thresholded

edge marginals gotten by DP.

We also tried analysing the continuous data using linear-Gaussian Bayes

nets [23]. Following [19], we took a log transform of each variable and then

standardized them. Our results are similar to [19], but our graph is much

denser, suggesting that their MCMC scheme failed to visit sufficiently many

modes. (Although once again our results are not directly comparable due to

the different prior.) The graphs inferred using the Gaussian and multinomial

models have much in common, but they also differ in many of the details.

It is difficult to rigorously assess the quality of the obtained graphs when

51

Chapter 3. Structure learning with uncertain interventions

there is no ground truth. (The biological model in Figure 3.13(a) is unlikely to

be the “true” model that generated the data in Figure 3.12. Also, it contains

hidden variables, so is not directly comparable to what we are learning.) The

approach taken by Ellis et al. [19] was to compare the predictive log-likelihood

in a cross-validation framework. This can also be done using the DP algorithm,

by computing p(x|D) = p(x,D)/p(D); these normalization constants can be

obtained by running the “forwards” algorithm of [32] using the “dummy” feature

f = 1. Using 10-fold cross-validation we carried this procedure out for all of

the intervention models. We also computed the predictive log-likelihood for

the MAP structure under each model. Given the MAP DAG, this amounts to

determining its posterior mean parameters, then evaluating the likelihood of

each test point in the fold. Our results are shown in Figure 3.14. We see that

our uncertain intervention model is the clear victor in both cases, suggesting

that the assumption of perfect interventions may be poor for the T-cell data.

Running time on T-cell data

Experiments were performed on a laptop with a 2 GHz Intel Core Duo Processor

and 2GB RAM running under Windows XP. For the 3-state T-cell data, with

d = 11 nodes (using perfect interventions and a fan-in constraint of k = 5)

and N = 5400, our Matlab implementation took 3.6 seconds to compute the

marginal likelihood terms, while the DP algorithm took 0.4 seconds and the

MAP DAG algorithm needed 0.8 seconds. For the case where we learned the

effects of interventions (so d = 17), it took about 3.6 minutes (using a fan-

in bound of k = 5 for backbone edges and k = 2 for target edges) to obtain

the likelihood terms, 15 seconds for BMA and 80 seconds for the MAP. By

comparison, the multiple restart simulated annealing approach used by Sachs

et al. took several days.

52

Chapter 3. Structure learning with uncertain interventions

3.4.3 ALL data

In this section we explore a promising application of the uncertain intervention

model: drug/disease target discovery in gene networks. The complex interac-

tions in most gene networks are poorly understood, but there is hope that they

can be estimated from measurements such as gene expression microarray data.

Learning a protein signalling network under normal cellular conditions was the

goal in Section 3.4.2, but a more interesting, if more difficult, application is to

determine the effect of external agents like drugs or disease on gene interactions.

A biologist may or may not want to learn the backbone network as well.

Since our intervention model directly enables this type of analysis, we apply

it to the gene expression data obtained by Yeoh et al. [58], which was previously

analyzed in [12, 58]. The data is comprised of measurements of 12,000 genes,

from 327 humans suffering from different forms of acute lymphoblastic leukemia

(ALL). ALL is a heterogeneous cancer, meaning that it is manifested by several

subtypes that vary by their genetic influence and consequently in their response

to treatment. The dataset of [58] contains 7 classes, 6 of which represent the

common ALL subtypes HYPERDIP > 50, E2A-PBX1, BCR-ABL, TEL-AML1,

MLL and T-ALL, and the final class aggregating several less common subtypes.

We followed [12] and omitted all but 271 genes from our analysis, using the

Chi-square-based filtering method of [58] which selects the top 40 discriminative

genes for each subtype (9 genes were chosen multiply chosen across subtypes,

yielding 271 unique genes). We also discretized the data to 3 levels “under-

expressed” (+1), “unchanged” (0) and “overexpressed” (−1) using the same

procedure as [12]. Specifically, if (µi, σi) were the mean and standard deviation

of gene i, values less than µi − σi were mapped to −1, greater than µi + σi to

+1 and the remainder to 0. The resulting dataset is shown in Figure 3.15.(a).

Dejori et al. assume that each ALL subtype acts on a single gene, which

then causes other genes downstream in the network to change. They learned

a Bayesian network using simulated annealing search on the 327-case dataset,

ignoring the fact that the data samples come from different conditions. Let

53

Chapter 3. Structure learning with uncertain interventions

Training Data

Data cases

G
e

n
e

 in
d

e
x

50 100 150 200 250 300

50

100

150

200

250

Data cases

G
e

n
e

 in
d

e
x

Sampled data

50 100 150 200 250 300

50

100

150

200

250

(a) (b)

Figure 3.15: ALL dataset. (a) Training dataset (b) data sampled from model

under same conditions as training set (cancer subtype orders and frequencies).

This figure is best viewed in colour.

Dk denote all data cases representing ALL subtype index k ranging over the 7

subtypes. Using exact inference they generated a sample D′
i = {x ∼ p(X−i|Xi =

+1)} and another D′
i = {x ∼ p(X−i|Xi = −1)} for each gene i, and compared

the Euclidean distance between D′
i and Dk for each k. They declared the cause

of type k cancer to be the gene that, when overexpressed, generated data D′
i

that most closely resembled Dk. Note that they use a Bayesian network simply

as a density estimator for discrete data; they make no attempt to interpret the

structure of the graph. When they set Xi = +1 or Xi = −1, they treat this

as an observation, rather than a Pearl-style do-action, so they could have in

principle used any other kind of density estimator.

There are two obvious shortcomings to the approach of [12]. First, if we

believe that the presence of cancer gives rise to changes in the gene interactions,

then it is not sensible to learn a single Bayesian network across multiple cancer

conditions. The analysis of Dejori et al. avoids this issue by not discussing the

graph structure they learn. However, they do so implicitly when they use their

Bayesian network to simulate data from “no cancer” condition. Secondly, from

a computational standpoint, their method is very expensive due to the need for

54

Chapter 3. Structure learning with uncertain interventions

Highest scoring DAG

1 67 134 201 271

1

67

134

201

271

Target edges

1 67 134 201 271

bcr

e2a

hyperdip >50

mll

others

t−all

tel

(a) (b)

Figure 3.16: Highest scoring DAG found on ALL dataset. Highest

scoring found across 20 parallel, 24 hour-long runs of restarting local search.

(a) DAG backbone, G, (b) corresponding target edges, F. Next-best structure

had a score approximately e64 times lower.

inference on a large network to sample from p(X−i|Xi = ±1). This problem

would be greatly compounded if they considered the cause of ALL to be the

mutation of b ≤ B genes, since this would require inference to be performed

O(
(
d
b

)
) times per subtype.

In our approach, we augment the 271 backbone variables with 7 binary

intervention nodes encoding the presence or absence of the ALL subtypes and

attempt to learn H. Following [12], we assume that each gene has at most

one cancer subtype parent. The problem size is well beyond the limitations

of the exact DP or MAP algorithms, therefore we use local search, modified

to support uncertain interventions. We tried the MMPC neighbour pruning

algorithm introduced in [56] as a way improve search, but found that even

though unrestricted DAG search is slower by a factor of 4, it finds better-scoring

graphs. MMPC likely gave poor results because it identifies sets of potential

neighbours (parents and children) using conditional independency tests that

are undoubtably unreliable with a sample size of 371 for d = 271 variables. We

55

Chapter 3. Structure learning with uncertain interventions

No Cancer

Data cases

G
e

n
e

 i
n

d
e

x

50 100 150 200 250 300

50

100

150

200

250

Figure 3.17: Predicted gene-expression profile for a patient without

ALL. The procedure of [12] is arguably incapable of estimating these profiles.

Their Figure 3.(b) appears to support this claim.

ran 20 searches seeded at random initializations for 24 hours each, and allowed

them to restart at a new random DAG whenever they became caught in a local

maximum. In the results that follow, we adopt the highest scoring DAG ĤLS

as our plugin estimate of the structure, H. Figure 3.16 shows the graph. We

note that ĤLS shared substantial similarity with other high scoring graphs.

Since our model is generative we can sample data from it and then com-

pare this data to the training data to determine if the model is sensible. Fig-

ure 3.15.(b) displays data sampled from ĤLS under the same conditions as

the training set, meaning that in the cases where, for example, HYPERDIP

> 50 was present in the training data, we clamped the subtype’s correspond-

ing intervention node to “on” for the same cases in the synthetic dataset. It

is apparent that our model has captured much of the detail from the original

data. In Figure 3.17 we sample 327 cases from the non-interventional condition.

This condition was not contained in the training data, but our model is capable

of learning it through the assumed locality of interventions. Figure 3.18.(a)-(b)

shows the expression profile for 327 simulated patients with subtype E2A-PBX1

or MLL. Our model can also estimate expression profiles for hypothetical pa-

tients who have unluckily contracted more than one subtype of ALL. One such

56

Chapter 3. Structure learning with uncertain interventions

E2A−PBX1

Data cases

G
e

n
e

 i
n

d
e

x

50 100 150 200 250 300

50

100

150

200

250

MLL

Data cases

G
e

n
e

 i
n

d
e

x

50 100 150 200 250 300

50

100

150

200

250

(a) (b)
E2A−PBX1 and MLL

Data cases

G
e

n
e

 i
n

d
e

x

50 100 150 200 250 300

50

100

150

200

250

(c)

Figure 3.18: Sampled gene-expression profile for a patient with ALL

subtype (a) E2A-PBX1 or (b) MLL or (c) both.

57

Chapter 3. Structure learning with uncertain interventions

combination, E2A-PBX1 and MLL, is shown in Figure 3.18.(c), which appears

to be reasonable after referring to (a) and (b).

The main objective of this analysis is to determine the genetic targets of ALL.

These are easy enough to read off of F̂LS and can be seen in Figure 3.16.(b). As

can be seen, the model has picked up many targets for each subtype, especially

for TEL-AML1. We require a method to rank these edges in order to compare

our results with [12], who report the top 5 scoring gene targets per ALL subtype.

One method would be to analyze the top M scoring DAGs found by local

search, and assign a score to all of the target edges in their union according

to the number of times each edge appeared. If the DAGs were samples from

the posterior, this would be valid; however, greedy local search is certainly not

sampling from the posterior. Instead, we adopt a more principled approach by

computing, for each target edge in F̂LS , the cost of removing that edge with all

other structure being fixed. The expression for this weight, denoted Wi,x with

i ∈ I an intervention node and x ∈ X a backbone gene node, is given by:

Wi,x = log p(D|Gx, i→x)− log p(D|Gx), (3.2)

where Gx ∈ X are the backbone parents of x and p(D|·) are local marginal

likelihood terms. Wi,x is the plugin estimate to a Bayes factor that answers the

same question, but integrates over the remaining structure rather than holding

it fixed. We can also compute Wi,x on the edges not chosen by F̂LS , with the

quantity now representing the gain in adding these edges. By the fact that local

search find a local maximum, Wi,x is certain to be positive for edges turned

“on” in F̂LS and negative otherwise.

With Wi,x we can plot a spectrum of target edge scores across the 271

genes, for each subtype. These are shown in Figures 3.19-3.21.(a). Note that

these represent “monogenic activations” only. We could also compute Wi,x for

vector arguments of i, but we follow [12] and only report results on single gene

perturbations. Also, many of the negative Wi,x are not shown as their score

is negative infinity. These infinite values arise from the initial assumption that

genes can only be affected by one cancer. Therefore, sparsity/density on the plot

58

Chapter 3. Structure learning with uncertain interventions

shows which genes do not have any parent in the intervention (cancer subtype)

layer. These figures also show where our results overlap with [12]; genes which

Dejori et al. chose as their top 5 are shown in red with a black square instead

of a circle. Next to the squares is a number between 1 and 5 that indicates how

highly [12] ranked the gene to be a cause of ALL. Referring to Figure 3.19, we

see that our top-scored gene for subtypes E2A-PBX1 and BCR-ABL agree with

Dejori et al.’s. This is a positive result, because these genes are proto-oncogenes

suspected to cause those ALL subtypes. Our respective spectra for subtype

E2A-PBX1 also closely agree, though it is difficult to take the comparison any

further, since we do not have access to their detailed results.

Another interesting capability of our model is in determining the type of

interaction between the cancer and the genes it targets. Given F̂LS we compute

its posterior mean parameters and then examine the conditional probability

table for a particular gene target Xi that has a cancer parent Ii. We marginalize

the backbone parents, and look at the parameters corresponding to the “on”

state of the cancer:

p(Xi|Ii = 1) =

∑
XGi

p(Xi|XGi , Ii = 1)
∑

Xi,XGi
p(Xi|XGi , Ii = 1)

.

If most of the mass resides in the “overexpressed” state, p(Xi = +1|Ii = 1),

we say the cancer is excitory for that gene, while if the “underexpressed” state,

p(Xi = −1|Ii = 1), dominated we would say it is inhibitory. We plot the ex-

pression of target genes in Figures 3.19-3.21.(b). Red upwards arrows indicate

excitation, while blue downwards arrows show inhibition. The remaining prob-

ability mass corresponding to the “no change” state is not shown, but can be

easily derived from the fact that the three probabilities sum to unity.

3.5 Summary and future work

We have shown how to apply the dynamic programming algorithm of Koivisto

and Sood [31, 32] to learn causal structure from interventional data. We then

introduced the model of uncertain interventions, which enables the discovery of

59

Chapter 3. Structure learning with uncertain interventions

1 45 90 135 180 225 271
−20

0

20

40

60

80

100

Gene index

E
d

g
e

 s
tr

e
n

g
th

5

3

2

1

4

Cancer type: E2A

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

E2A’s e"ect on directly connected genes

(a) (b)

1 45 90 135 180 225 271
−30

−20

−10

0

10

20

30

Gene index

E
d

g
e

 s
tr

e
n

g
th

4

3

5
1

2

Cancer type: BCR

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

BCR’s e"ect on directly connected genes

(c) (d)

Figure 3.19: ALL subtypes E2A-PBX1 and BCR-ABL results. E2A-

PBX1: (a)-(b), BCR-ABL: (c)-(d). Left: Target edge strength Wi,x for chosen

edges (positive) and absent edges (negative). Points in red marked by a square

indicate overlap with the results of [12]. Gaps correspond to target edges which

are impossible. The result for E2A-PBX1 agrees strongly with the corresponding

spectrum of [12]. Right: Cancer’s effect on gene’s expression level. This analysis

is sensible only for target edges that were chosen (i.e. present in F̂LS).

60

Chapter 3. Structure learning with uncertain interventions

1 45 90 135 180 225 271
−20

−10

0

10

20

30

40

50

60

Gene index

E
d

g
e

 s
tr

e
n

g
th 1

3

2

4

5

Cancer type: HYPERDIP >50

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

HYPERDIP >50’s e"ect on directly connected genes

(a) (b)

1 45 90 135 180 225 271
−40

−20

0

20

40

60

80

100

Gene index

E
d

g
e

 s
tr

e
n

g
th

1

5

3

2

4

Cancer type: TEL

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

TEL’s e"ect on directly connected genes

(c) (d)

1 45 90 135 180 225 271
−20

−10

0

10

20

30

40

50

Gene index

E
d

g
e

 s
tr

e
n

g
th 1

4

5

2

Cancer type: MLL

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

MLL’s e"ect on directly connected genes

(e) (f)

1 45 90 135 180 225 271
−20

0

20

40

60

80

100

120

Gene index

E
d

g
e

 s
tr

e
n

g
th

1

3

5 2 4

Cancer type: T-ALL

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

T−all’s e"ect on directly connected genes

(g) (h)

Figure 3.20: ALL subtypes Hyperdip > 50, TEL-AML1, MLL and

T-ALL results. Hyperdip > 50: (a)-(b), TEL-AML1: (c)-(d), MLL: (e)-

(f), T-ALL: (g)-(h). Left: Target edge strength Wi,x Right: cancer’s effect on

expression level.

61

Chapter 3. Structure learning with uncertain interventions

1 45 90 135 180 225 271
−40

−30

−20

−10

0

10

20

Gene index

E
d

g
e

 s
tr

e
n

g
th

Cancer type: OTHERS

1 45 90 135 180 225 271
−1

−0.5

0

0.5

1

Gene index

C
a

n
ce

r
e

"
e

ct

OTHERS’s e"ect on directly connected genes

(a) (b)

Figure 3.21: Other ALL subtypes’ results. (a) Target edge strength Wi,x

(b) cancer’s effect on expression level. No corresponding result to (a) is presented

in [12], presumably because this class does not represent a homogeneous ALL

subtype.

the target of an intervention. Leveraging the dynamic programming algorithm,

we established that little data is needed to learn intervention targets, while only

modestly more is required to simultaneously determine the graph backbone. We

applied this model to two gene expression datasets that are of great relevance

to modern systems biology, and demonstrated novel results in both cases.

In the near future, we will apply the uncertain intervention model to the data

of Ideker et al. [30], which consists of gene expression data from the galactose

pathway of the yeast Saccharomyces cerevisiae. Using another methodology,

Hallen et al. [25] report learning the gene targets of the compound Galactose;

we expect to reproduce this result using our approach.

Another interesting extension would be to apply the uncertain intervention

idea to the active learning case [44, 54], where one has to decide which inter-

ventions to perform.

62

Bibliography

[1] A.-L. Barabsi and Z. N. Oltvai. Network biology: Understanding the cell’s

functional organization. Nature Reviews Genetics, 5:101–113, 2004.

[2] G. Brightwell and P. Winkler. Computing linear extensions is #P-complete.

In STOC, 1991.

[3] W. Buntine. Theory refinemement on Bayesian networks. In UAI, 1991.

[4] D. Chickering. A transformational characterization of equivalent Bayesian

network structures. In UAI, 1995.

[5] D. Chickering, D. Heckerman, and C. Meek. A Bayesian Approach to

Learning Bayesian Networks with Local Structure. In UAI, 1997.

[6] D. Chickering and C. Meek. Finding Optimal Bayesian Networks. In UAI,

2002.

[7] C. K. Chow and C. N. Liu. Approximating discrete probability distributions

with dependence trees. IEEE Trans. on Info. Theory, 14:462–67, 1968.

[8] G. Cooper and C. Yoo. Causal discovery from a mixture of experimental

and observational data. In UAI, 1999.

[9] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Prob-

abilistic Networks and Expert Systems. Springer, 1999.

[10] D. Dash and G. Cooper. Model Averaging for Prediction with Discrete

Bayesian Networks. J. of Machine Learning Research, 5:1177–1203, 2004.

63

Bibliography

[11] N. de Freitas, P. Hjen-Srensen, M. I. Jordan, and S. Russell. Variational

MCMC. In UAI, 2001.

[12] Mathäus Dejori and Martin Stetter. Identifying interventional and

pathogenic mechanisms by generative inverse modeling of gene expression

profiles. Journal of Computational Biology, 11(6):1135–1148, 2004.

[13] D. Eaton and K. Murphy. Bayesian structure learning using dynamic pro-

gramming and MCMC. In UAI, 2007.

[14] D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain

interventions. In AI/Statistics, 2007.

[15] F. Eberhardt. Sufficient condition for pooling data from different distri-

butions. In First Symposium on Philosophy, History, and Methodology of

Error, 2006.

[16] F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments

sufficient and in the worst case necessary to identify all causal relations

among N variables. In UAI, 2005.

[17] F. Eberhardt, C. Glymour, and R. Scheines. Interventions and causal in-

ference. In 20th Mtg. Philos. of Sci. Assoc., 2006.

[18] D. Edwards. Introduction to graphical modelling. Springer, 2000. 2nd

edition.

[19] B. Ellis and W. Wong. Sampling Bayesian Networks quickly. In Interface,

2006.

[20] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a

statistical view of boosting. Annals of statistics, 28(2):337–374, 2000.

[21] N. Friedman and D. Koller. Being Bayesian about Network Structure: A

Bayesian Approach to Structure Discovery in Bayesian Networks. Machine

Learning, 50:95–126, 2003.

64

Bibliography

[22] N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic

probabilistic networks. In UAI, 1998.

[23] D. Geiger and D. Heckerman. Parameter priors for directed acyclic graph-

ical models and the characterization of several probability distributions.

The Annals of Statistics, 30(5):1412–1440, 2002.

[24] P. Giudici and R. Castelo. Improving Markov chain Monte Carlo model

search for data mining. Machine Learning, 50(1–2):127–158, January 2003.

[25] K. Hallen, J. Bjorkegren, and J. Tegner. Detection of compound mode of

action by computational integration of whole genome measurements and

genetic perturbations. BMC Bioinformatics, 7(51), 2006.

[26] D. Heckerman, J. Breese, and K. Rommelse. Troubleshooting under uncer-

tainty. Technical Report MSR-TR-94-07, Microsoft Research, 1994.

[27] D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian net-

works: the combination of knowledge and statistical data. Machine Learn-

ing, 20(3):197–243, 1995.

[28] D. Husmeier. Sensitivity and specificity of inferring genetic regulatory in-

teractions from microarray experiments with dynamic Bayesian networks.

Bioinformatics, 19:2271–2282, 2003.

[29] K.-B. Hwang and B.-T. Zhang. Bayesian model averaging of Bayesian net-

work classifiers over multiple node-orders: application to sparse datasets.

IEEE Trans. on Systems, Man and Cybernetics, 35(6):1302–1310, 2005.

[30] T. Ideker, V. Thorsson, J. Ranish, R. Christmas, J. Buhler, R. Bumgarner,

R. Aebersold, and L. Hood. Integrated genomic and proteomic analysis of

a systematically perturned metabolic network. Science, 2001. Submitted.

[31] M. Koivisto. Advances in exact Bayesian structure discovery in Bayesian

networks. In UAI, 2006.

65

Bibliography

[32] M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian

networks. J. of Machine Learning Research, 5:549–573, 2004.

[33] K. Korb, L. Hope, A. Nicholson, and K. Axnick. Varieties of causal inter-

vention. In Pacific Rim Conference on AI, 2004.

[34] D. Madigan, J. Gavrin, and A. Raftery. Enhancing the predictive per-

formance of Bayesian graphical models. Communications in Statistics -

Theory and Methods, 24:2271–2292, 1995.

[35] D. Madigan and A. Raftery. Model selection and accounting for model

uncertainty in graphical models using Occam’s window. J. of the Am.

Stat. Assoc., 89:1535–1546, 1994.

[36] D. Madigan and J. York. Bayesian graphical models for discrete data. Intl.

Statistical Review, 63:215–232, 1995.

[37] V. Mansinghka, C. Kemp, J. Tenenbaum, and T. Griffiths. Structured

priors for structure learning. In UAI, 2006.

[38] F. Markowetz, S. Grossmann, and R.Spang. Probabilistic soft interventions

in Conditional Gaussian networks. In 10th AI/Stats, 2005.

[39] F. Markowetz and R. Spang. Evaluating the effect of perturbations in

reconstructing network topologies. In Proc. 3rd Intl. Wk. on Distrib. Stat.

Computing, 2003.

[40] M. Meila and T. Jaakkola. Tractable Bayesian learning of tree belief net-

works. Statistics and Computing, 16:77–92, 2006.

[41] M. Meila and M. I. Jordan. Learning with mixtures of trees. J. of Machine

Learning Research, 1:1–48, 2000.

[42] Andrew Moore and Weng-Keen Wong. Optimal reinsertion: A new search

operator for accelerated and more accurate Bayesian network structure

learning. In Intl. Conf. on Machine Learning, pages 552–559, 2003.

66

Bibliography

[43] Andrew W. Moore and Mary S. Lee. Cached sufficient statistics for efficient

machine learning with large datasets. J. of AI Research, 8:67–91, 1998.

[44] K. Murphy. Active learning of causal Bayes net structure. Technical report,

Comp. Sci. Div., UC Berkeley, 2001.

[45] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge Univ.

Press, 2000.

[46] C. Robert and G. Casella. Monte Carlo Statisical Methods. Springer, 2004.

2nd edition.

[47] R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor,

New Directions in the Theory of Graphs, pages 239–273. Academic Press,

1973.

[48] K. Sachs, O. Perez, D. Pe’er, D. Lauffenburger, and G. Nolan. Causal

protein-signaling networks derived from multiparameter single-cell data.

Science, 308, 2005.

[49] M. Schmidt, G. Fung, and R. Rosales. Generalized smooth L1 regulariza-

tion. In Intl. Conf. on Machine Learning, 2007. Submitted.

[50] T. Silander and P. Myllmaki. A simple approach for finding the globally

optimal Bayesian network structure. In UAI, 2006.

[51] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and

Search. MIT Press, 2000. 2nd edition.

[52] J. Tian and J. Pearl. Causal discovery from changes. In UAI, 2001.

[53] J. Tian and J. Pearl. Causal discovery from changes: a Bayesian approach.

Technical report, UCLA, 2001.

[54] S. Tong and D. Koller. Active learning for structure in Bayesian networks.

In Intl. Joint Conf. on AI, 2001.

67

Bibliography

[55] I. Tsamardinos, L. Brown, and C. Aliferis. The max-min hill-climbing

Bayesian network structure learning algorithm. Machine learning, 2006.

[56] I Tsamardinos, L Brown, and C Aliferis. The max-min hill-climbing

Bayesian network structure learning algorithm. Machine Learning,

65(1):31–78, 2006.

[57] A. Werhli, M. Grzegorczyk, and D. Husmeier. Comparative evalua-

tion of reverse engineering gene regulatory networks with relevance net-

works, graphical Gaussian models and Bayesian networks. Bioinformatics,

22(20):2523–2531, 2006.

[58] EJ Yeoh, ME Rossa, SA Shurtleff, and WK Williams et al. Classifica-

tion, subtype discovery, and prediction of outcome in pediatric acute lym-

phoblastic leukemia by gene expression profiling. Cancer Cell, 1:133–143,

2002.

68

Part II

Appendices

69

Appendix A

Software

The code developed and used for this thesis is freely available at www.cs.ubc.

ca/~murphyk/StructureLearning, and is accompanied by documentation for

the major features. The package is named Bayesian Network Structure Learning

(BNSL); it was written in Matlab, and consequently can be run on any platform

supported by that software. BNSL has no other external dependencies.

BNSL is capable of all the exact and approximate Bayesian structure learn-

ing methods reported in this thesis. Both static and dynamic networks can be

learned, using multinomial or linear-Gaussian CPDs. All four models of inter-

vention can be used, along with purely observational data. Table A.1 enumerates

the major functionality.

Name Type Limitation

Dynamic programming [31] Exact d u 20− 22

Exhaustive enumeration Exact d = 6

Gibbs sampling [37] Approx. d u 20

Order space sampling [37] Approx. d u 20

Structure space MCMC [13, 24, 35] Approx. Depends (∗)
Optimal DAG [50] Exact d u 20− 22

Local search [27] Approx. d = 500

Table A.1: Major features of BNSL software

(∗) If the global proposal is used, the limitations are the same as dynamic

programming; however, if pure local moves are made, the technical limitation

becomes d u 50 (in practice, local moves will not mix well for d ≥ 10).

70

www.cs.ubc.ca/~murphyk/StructureLearning�
www.cs.ubc.ca/~murphyk/StructureLearning�

