Designing and Building a Graphical Model Library
in Standard ML

Clint Morgan
December 2004

Abstract

This paper discusses several design considerations foolzalpitistic
graphical model library. The library, dubbed GM, curremiyly contains
a small subset of desirable features for such a library. hiquéar, it im-
plements several technigues for performing inference serdie graphical
models.

Rather than introducing a complete library, this work dgsas the library
design and issues which arouse during implementationicBEat attention
is paid to the benefits and burdens of developing such a jilinastandard
ML using the SML module system to structure the design.

1 Introduction

Probabilistic graphical models (PGMs) are used to exprasepiendence relations
of random variables. There are many types of models thaintallthe broad cat-
egory of “graphical models”. Network topology may be diesttundirected, or a
mixture of the two. Random variables are discrete, contisyor mixtures. The
network may be temporally static or dynamic.

Computations with PGMs are generally fall under the headinigference or
learning. The inference problem is well studied, and theist enany algorithms
for exact and approximate inference with varying assumptabout the underlying
network. The learning problem uses data (instances of mndwiables) to infer
properties of the model. Interesting properties includebpbility distributions
(parameter learning) and network structure (structunmieg).

A PGM library has the (rather broad) goals of:

o ability to represent a wide variety of models

e easily add new algorithms

e useful to both researchers and practitioners

This works presents a rough design for such a library, uninagigely called
GM. The current implementation only provides a small subgtte desired function-
ality—inference in discrete, static graphical models. Rathan describing com-
plete library implementation (or even a complete desidn3,work serves as a case
study of language features useful for implementing a PGkafip

In particular, we focus on how features of ML serve to helpindbar construct-
ing such a library. The implementation language is the MlardrStandard ML
(SML) [8]. The SML module system is used extensively in thedry.

Section 2 discusses the relevant language features of Sdditios 3 describes
the GM library design, implementation, and issues reggrdML as the imple-
mentation language. Finally, Section 4 provides some colitoj remarks.

2 Standard ML Requisites

SML is a modern functional language with an advanced typenandule system.
While the language encourages a functional style, SML aedusupport for im-
pure features such as imperative assignments, exceptiods,ontinuations.

SML is a strongly typed language. Type checking in perforraedompile
time; type inference is used so that explicit type annotatire not required. Func-
tions can be written that operate on arbitrary types—thesetions are said to be
polymorphic. The strong typing mechanism allows the laggu® guarantee that
a compiled program will not crash due to runtime type errors.

Dynamic typing can be mimicked by explicitly constructinggaegate types
which are the union of the desired types. Functions whichiaipd on such type
unions then have explicit cases for each type. This conci#ldienillustrated in the
next section when describing the GM library.

2.1 The SML Module System

The SML module system provides a mechanism to divide a pnognto separate
units with clearly defined interfaces. This section prosidecondensed summary
of relevant features of the SML module system. Harper [4}iges a gentle yet
comprehensive coverage of SML in general and the modulersyist particular.

Signatures and structures are the two fundamental corstiuche module
system. Signatures are used to describe interfaces. @&aqgbrovide the imple-
mentation. In this sense, signatures can be called the™tffstructures.

SML signature’s provide an explicit definition of a struaisrcontents. These
include declarations of sub-structures, exceptions, styp@éd values. Roughly

speaking, a structure matches a signature if it containefalie elements (with
the correct identifiers and types) of the signature.

The signature/structure deceleration can be used to expbgsct oriented de-
sign patterns by declaring (in a signature) a single type d@thject) and functions
which operate on this type (member functions). Private mesmimnctions are not
included in the signature. Object inheritance is impleraérity means of signa-
ture inclusion. Child signatures are supersets of theemqtar—providing extended
functionality. This technique is used in the GM library.

Functors are parameterized structures, which take othectstes as argu-
ments. Functor definitions are abstract—they must be irv@kth the appropriate
structure arguments to produce a tangible structure. Tgr@sires of structures
produced from a single functor can vary (with the paramgteesween functor
invocations.

Development with functors works with both top-down and bottup design
approaches. In the bottom-up approach simple structuecfirsirconstructed. The
smaller units are then combined via functor applicationsraate more complex
structures.

A top-down approach begins by constructing functors to esghain goals.
These functors are parameterized by structures which sollvegoals. The code
can be type-checked, but the functors cannot be appliectdeca concrete imple-
mentation.

2.2 Development Environment

Several SML implementations are available—this library been developed under
the SML of New Jersey (SML/NJ) distribution. SML/NJ provida reasonable
efficient compiler which generates machine code. The GM tade conforms to
the SML 97 specification, and so should compiler under otfstrilbutions such as
MLton and Poly/ML.

A debugger for SML/NJ was developed in 1992 [2]. Unfortuhateecent
releases of SML/NJ lack debugging facilities.

Debugging without a symbolic debugger can be managed withmbmation
of techniques. Firstly, the lack of a debugger encouragesisie of concise func-
tions that can be verified by inspection. The use of sidezeffee functions helps
with this reasoning process. SML/NJ (in fact, most distiilms) provides an in-
teractive environment which allows interaction via a redtprint loop. This is
useful in the development/debugging process as the userxzanine values and
invoke functions.

3 Library Design

This section describes the design and (partial) implentientaf the GM library.
Emphasis is placed on the design with respect to the the SMluta®ystem. The
majority of the code in GM is purely functional, however a femperative features
are used.

A major drawback of SML is lack of external librarys. Thisués in a diver-
sion of time into developing support structures for the GMdry. In particular,
there was a need to develop routines for graph manipulatidmaulti-dimensional
arrays. Both the graph and multi-dimensional array implata@ns are purely
functional.

3.1 Modules

GM uses the SML module system to divide the library into iretegent units.
Each module includes all of the modules on which it dependsulisstructures.
This allows each module to be independent of the rest of thrarl (given its
contents). The sub-structures of a module provide an ekplafinition of the
module’s dependencies, and allow each module to be selioeat

The major modules of the GM library are:

e RVar: for representing random variables

e Potential: for specifying potentials

e CPD: for specification of CPDs

e LocalFactor: a local factor, the union of Potential and CPD
e |Potential: internal representation of potentials

e GModel: representation of a graphical model

e Inference: engines for performing inference

These modules are implemented as functors which take regsigstructures
as parameters. The GM library provides a structure (ca@liBbwhich collects all
of the functor applications into a single structure.

More information about the interfaces can be found in thaatigre files (.sig)
contained in the GM distribution [9]

3.2 Sharing Considerations

The use of sub-structures in signatures creates a problethefdIL type system.
Structures which are include included in multiple locasi@me treated as disparate,
and so their types are not interoperable. This is probleweddby annotating sig-
natures with a structure sharing declaration which makesetk interoperability
explicit.

The sharing declaration is best explained by example. Thanimg snippet
exposes a part of t @MODEBNdLOCALFACTORsignatures:

signature GMODEL =

sig
structure LocalFactor : LOCAL_FACTOR
structure RVar : R_VAR

end
signature LOCAL_FACTOR =
sig

structure RVar : R_VAR

end

A graphical model needs to include sub-structures for Ié@etiors and ran-
dom variables. A local factor will also need a substructuerandom variables.
However, this declaration provides no guarantee to the Side system about the
interoperability of these two RVar structures. Namely tHdddel.RVar structure
cannot operate on the values produced from the LocalFRear.structure and
vice versa. Any code which tries to do so will cause a comiiife type error.

This problem is solved by introducing sharing deceleratiomhe SML key-
wordsharing follows a group of structure definitions to denote which ctinues
(ascribing a common signature) are actually the same. ThOBEL signature
would be declared as follows:

signature GMODEL =

sig
structure LocalFactor : LOCAL _FACTOR
structure RVar : R_VAR
sharing LocalFactor.RVar = RVar

end

The GM signature (which provides the top-level interfacdhi library) contains
sharing specifications to assure that all of the structurigishwit provides can be
used together (e.g they all use the same RVar structure).

3.3 An Example

Figure 1: A simple example: Clouds exert causal influencepoimider and rain,
which in turn influence wet grass. This figure was produced v@Model’s
toDotString function.

This section presents a simple example of inference in thghjral model of
Figure 1. First, the random variables are created, and gigemes:

val [FALSE, TRUE] = List.map RVar.intToValue [0,1]
val [C,S,R,W] = Listmap RVar.newVar [2,2,2,2]
val _ = RVar.giveName C "Cloudy"

val _ = RVar.giveName S "Sprinkler"
val _ = RVar.giveName R "Raining"
val _ = RVar.giveName W "Wet Grass"

Variable naming RVar.giveName) uses imperative assignment to update a ta-
ble of identifier/name pairs. This list is used by the RVanatinre when printing
names.

Next, the local factors are created as conditional prolgldiistributions:

val factors = List.map (LocalFactor.CPD o CPD.make)
[({0.5, 0.5], C, D),
([0.8, 0.2, 0.2, 0.8], R, [C)),
([0.5, 0.5, 0.9, 0.1], S, [C]),

([1.0, 0.0, 0.1, 0.9,
0.1, 0.9, 0.01, 0.99], W, [S,R])]

Local factors can be either conditional probability distitions or potentials, so the
LocalFactor type is a union of the two constituent types (GIRD Potential).

Finally, we construct the graphical model from a list of Idfe&tors, enter some
evidence, and perform inference:

val gmodel = GModel.make local_factors

val _ = Util.showDot (GModel.toDotString gmodel)

val engine = Eng.makeEngine (gmodel, [],[])

val engine = Eng.enterEvidence engine (Eng.Hard (W, TRUE))
val P_S = Eng.query engine [S]

val P_SR = Eng.query engine [R, S]

GM displays graphs using the dot language [6]. StructurselatoDotString
method (where appropriate) which can be displayed withUtieshowDot
method.

More examples are available with the GM distribution [9].

3.4 Testing

SML/NJ provides the CM structure [3] which provides a congahmechanism for
managing the compilation process of SML projects. This exia GM to control
both building and unit testing. Tests are written as stmestwhich, through the
compilation process, instantiate, run, and verify parttheflibrary.

Integrating testing into the build system allows for incesmtal testing ap-
proach. After a modification of the code base, the command

- CM.make "tests.cm";

is issued. This causes the appropriate modules to be relanpiny of the test-
ing modules which depend on changed library models will dlsaecompiled.
The process of recompiling the test modules runs the testirigts, and outputs
the results to the command line. This provides an immediagan® of checking
the correctness of changes made. Of course, this requaiegpropriate testing
modules are written. Currently GM has modules to test thaidimensional tables
and inference engines.

3.5 Efficiency

A preliminary experiment was done to compare the speed of G BNT [10]
(written in MATLAB). The model tested was a the ALARM netwofk] which

7

consists of 37 discrete random variables ranging in dinoenom 2 to 4. Join
tree build time was measured (as the mean of 100 runs) fordastés libraries.
BNT does not support queries which contain variables fronttiple cliques, so
querying was tested on a single variable (again as the medfM®mfuns). GM
implements HUGIN style message passing [5].

Library | Build time (sec)| Query time (sec)
GM 0.2816 0.0001
BNT 0.7637 0.0019

Table 1: Runtime comparison of GM and BNT for building and ryirey a join
tree.

These results confirm that SML can offer a speedup over MATLAHS is
hardly surprising as SML/NJ is compiled to native code wMIATLAB is inter-
preted.

4 Conclusion

A library design for probabilistic graphical models wasgaeted. A partial imple-
mentation in SML of this design was described. There are abeurof properties
of SML which are useful for implementing a graphical moddisdry. Benefits of
using SML include: strong typing and type inference, higlkelgprogramming and
an interactive development environment.

Strong typing combined with type inference allows the cdergio immedi-
ately detect nonsensical pieces of code. This allows magg bw be caught at
compile time. It is estimated that static typing alone cdwgfi%o of the bugs in
GM at compile time.

Coding with high-level constructs encourages the conoimition of many
of the methods implemented in GM. A particularly useful tdgie was to de-
fine algorithms in terms of folds over data structures. Aeriattive environment
facilitates the development in this style.

Several drawbacks of using SML were identified. The most inamb limita-
tion of SML from the viewpoint of developing a graphical mélébrary is the
lack of library support for numerical, and particularly titcal, computations.
Extending GM to support continuous variables would requitplementation of
additional structures to provide basic statistical fummaaility. In this regard, the
ML dialect OCAML is more favorable as it is often used for nuioal computa-
tions.

Another major drawback encountered in SML/NJ is the lack afyabolic
debugger. Other SML implementations (i.e. PolyML) provitidugging facilities,
but GM uses features (i.e. the CM structure) which are ordyjlalvle in SML/NJ.

It may have been worthwhile to develop this library in a maoatyle. Mon-
ads are a construct which allow purely functional languagesandle state [11].
In addition to handling imperative features such as inglaoray updating in a
functionally-pure manner, monads could be used to obtaimyro&the benefits of
Aspect Oriented Programming (e.g. a general tracing fador debugging) [7].

References

[1] I. Beinlich, H. Suermondt, R. Chaves, and G Cooper. TheARM moni-
toring system: A case study with two probabilistic inferertechinques for
belif networks. InSecond European Conference on Atrtificial Intelligence in
Medicine 1989.

[2] Att Bell. Debugging in Standard ML of New Jersey, 1992.

[3] Matthias Blume.CM: The SML/NJ Compilation and Library Managéviay
21 2002.

[4] Robert Harper. Programming in Standard ML. Available: atttp://
www-2.cs.cmu.edu/“rwh/smibook/online.pdf , 2004,

[5] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesjatating in causal
probabilistic networks by local computations. @Gomputational Statistics
Quaterly, 1990.

[6] Eleftherios Koutsofios and Stephen C. Notffirawing graphs with dotMur-
ray Hill, NJ, 1996.

[7] Wolfgang De Meuter. Monads as a theoretical foundatmmAOP. Ininter-
national Workshop on Aspect-Oriented Programming at ECOT907.

[8] Robin Milner, Mads Tofte, Robert Harper, and David Ma&@uo. The defi-
nition of Standard ML (revised). 1997.

[9] Clint Morgan. Gm : source and documentation. Availabie \&ww.cs.
ubc.ca/~clint/gm-smi , 2004,

[10] Kevin P. Murphy. The Bayes Net Toolbox for MATLAB, 2001.

[11] P. L. Wadler. Comprehending monads. Rroceedings of the 1990 ACM
Conference on LISP and Functional Programming, Njg&ges 61-78, New
York, NY, 1990. ACM.

10

