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Abstract

In this addendum, we characterize the solutions to the projection problems arising in the constrained formulations of the
`1.∞-regularized and `1,2-regularized optimization problems. Subsequently, these can be used to derive efficient algorithms
for computing these projections, suitable for use in spectral projected gradient methods that solve these problems.

1. `1,∞ Projection
In the main paper, to formulate the `1,∞-regularized optimization as a constrained problem, we introduce an additional

variable αg for each group g. We then replace each norm ||wg||∞ with the variable αg, and optimize subject to the constraint
that αg ≥ ||w||∞. This leads to a constrained optimization of the form

min
w

f(w) +
∑

g

αg s.t. ∀gαg ≥ ||wg||∞.

At a minimizer of this problem, the constraint αg ≥ ||w||∞ holds with equality (if it does not, then the objective could be
decreased by decreasing αg , contradicting that we are at a minimizer). Hence, this problem has the same minimum as our
original problem.

The non-differentiable constraint αg ≥ ||w||∞ can be re-written as a set of inequality constraints of the form ∀i∈g−αg ≤
wi ≤ αg. Further, since the projection separates across groups, we simply need to solve a (potentially small) projection
problem for each group in order to compute the projection across groups. In the main paper, we used this representation and
an interior-point method to solve the projection problem for each group. Here, we discuss directly solving the individual
projection problems that arise for each group. These take the form

min
w,α

∣∣∣∣
∣∣∣∣
[

w∗

α∗

]
−

[
w
α
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s.t. α ≥ ||w||∞. (1)

If w is simply a scalar, then the projection (1) can be computed by considering three cases:

π(w,α) =





(w, α), if α ≥ |w|
(α+|w|

2 sgn(w), α+|w|
2 ), if α < |w|, α+|w|

2 > 0
(0, 0), if α < |w|, α+|w|

2 ≤ 0

The first scenario simply returns the input variables since the constraint was already satisfied. The second scenario moves
both α and |w| to their average (assuming it is positive), the closest point satisfying the constraint. The final scenario is the
case where the average is negative, and in this case the origin is the closest point.

Proof. We use w∗ and α∗ to refer to the input values, and w and α to refer to the optimal values. If α∗ ≥ |w∗|, then
the constraints are already satisfied and the solution (w∗, α∗) has an objective value of 0, the minimum possible value of
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a norm. This proves the first case, and the remainder of the proof focuses on the case where α∗ < |w∗|. In this case,
|sgn(w∗)| ≥ |sgn(w)|, since if sgn(w∗) = −sgn(w) we could decrease the objective by setting w to 0. Using this, we have
that (w − w∗)2 = (|w| − |w∗|)2. Using this property and that the objective is non-negative (so squaring it does not change
the location of its solution), we can re-write the objective as (|w| − |w∗|)2 + (α − α∗)2. In the case where α∗ < |w∗|, we
can not have α < α∗ or |w| > |w∗|, since these will have greater objective values than the solutions (sgn(w∗)α∗, α∗) and
(w∗, |w∗|), respectively. Similarly, we can not have α > |w∗| or |w| < α∗ in the solution, since these will have greater
objective values than the solutions (w∗, |w∗|) and (sgn(w∗)α∗, α∗), respectively. With these constraints that α∗ ≤ α ≤ |w∗|
and α∗ ≤ |w| ≤ |w∗|, we have that α = |w| in the solution, since if α > |w| then we could decrease the objective by
decreasing α or increasing |w|. Using this, we can eliminate |w| and re-write the problem as minw,α(α−|w∗|)2 +(α−α∗)2

subject to α ≥ 0 (where the constraint is needed because we have made α equal to a norm). Differentiating the objective and
setting its derivative to zero, the unconstrained solution to this problem is α = (|w∗| + α∗)/2. Thus, if the constraint is not
active we have that α = (|w∗|+ α∗)/2 and w = sgn(w∗)(|w∗|+ α∗)/2 (from α = |w| and |sgn(w∗)| ≥ |sgn(w)|, giving
w = sgn(w∗)α). The constraint becomes active if (|w∗|+ α∗)/2 ≤ 0, and if the constraint is active then we have the trivial
solution (0, 0).

Moving to the case where w is a 2-vector with |w1| ≥ |w2| (they can be permuted if this is not the case), we now must
consider four cases:

π(w1, w2, α) =





(w1, w2, α),
if α ≥ ||w||∞

(α+|w1|
2 sgn(w1), w2,

α+|w1|
2 ),

if α < ||w||∞, α+|w1|
2 ≥ |w2|

(α+|w1|+|w2|
3 sgn(w1),

α+|w1|+|w2|
3 sgn(w2),

α+|w1|+|w2|
3 ),

if α < ||w||∞, α+|w1|
2 < |w2|, α+|w1|+|w2|

3 > 0

(0, 0, 0),
if α < ||w||∞, α+|w1|+|w2|

3 ≤ 0

The only surprising aspect of moving from a scalar to a 2-vector is that we move to the average of α and |w1| if this average
is larger than |w2| (w2 moves nowhere in this case), and only if this is not satisfied do we consider moving to the average of
α, |w1|, and |w2|.
Proof. If α∗ ≥ ||w∗||∞, then the answer is (w∗1 , w∗2 , α∗), since this obtains the minimum objective value of 0. We now
focus on the case where α∗ < ||w∗||∞. By similar reasoning to the scalar case, we will have that |sgn(w∗1)| ≥ |sgn(w1)|,
|sgn(w∗2)| ≥ |sgn(w2)|, and α = |w1|. In the solution, we must have that either α ≥ |w∗2 | or α < |w∗2 |. If α ≥ |w∗2 |,
then the optimal w2 is w∗2 , while finding the optimal w1 and α reduces to solving the scalar problem with inputs w∗1 and
α∗. If α < |w∗2 |, by similar reasoning to the scalar case we will have that α = |w2| and can formulate the problem as a
minimization in terms of α with a non-negativity constraint. The optimal solution will be (0, 0, 0) if this constraint is active,
and otherwise it will be the unconstrained solution α = (|w∗1 | + |w∗2 | + α∗)/3, where the corresponding values of w1 and
w2 are w1 = sgn(w∗1)(|w∗1 | + |w∗2 | + α∗)/3 and w2 = sgn(w∗2)(|w∗1 | + |w∗2 | + α∗)/3. What remains to be shown is when
will α ≥ |w∗2 | be satisfied. This can occur only if α in the solution to the scalar problem with inputs w∗1 and α∗ satisfies
α ≥ |w∗2 |.

The generalization of this idea to a p-vector is straightforward, where for p dimensions we must check only p + 2 cases.
This can be shown recursively, where if we have a p-vector w we will either move to the average of its absolute values and α,
or we will set the smallest element of w to its input value and solve a (p − 1)-dimensional problem. Algorithm 1 outlines a
procedure for computing the projection with a general p-vector, at a cost of O(p log p), with the dominant cost coming from
sorting the absolute values of w.



Algorithm 1 `1,∞ Projection
1: if α ≥ ||w||∞ then
2: return {input value satisfies constraints}
3: end if
4: sorted := {sort(|w|), 0} {sort absolute values in descending order, append a zero}
5: s = 0
6: for k = 1:p do
7: s := s + sorted{k}
8: α := (s + α)/(k + 1) {trial value for α}
9: if α > 0 and α > sorted{k + 1} then

10: w(|w| ≥ sorted{k}) := sgn(w(|w| ≥ sorted{k})α {elements with magnitudes greater than α set to sgn(wi)α}
11: return
12: end if
13: end for
14: α = 0
15: w = 0 {return zero}

2. `1,2 Projection
We now turn to the task of writing the `1,2 penalty formulation as a constrained optimization, and deriving an efficient

means of computing the projection onto the corresponding constraint set. Fortunately, having gone through the exercise
above, this turns out to be a very simple task.

As before, we will replace each individual norm ||wg||2 with a new variable αg, and minimize subject to the constraint
that αg ≥ ||wg||2 in order to give a constrained problem with the same solution:

min
w

f(w) +
∑

g

αg s.t. ∀gαg ≥ ||wg||2. (2)

This type of constraint is known as a second-order cone constraint, and as before the projection will separate into solving a
problem for each group of the form

min
w,α
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s.t. α ≥ ||w||2.

Defining the signum of a vector as sgn(w) = w/||w||2, where by convention we will define sgn(0) = 0, the solution of
this problem is simply

π(w, α) =





(w, α), if α ≥ ||w||2
(sgn(w) ||w||2+α

2 , ||w||2+α
2 ), if α < ||w||2, ||w||2+α

2 > 0
(0, 0), if α < ||w||2, ||w||2+α

2 ≤ 0

This projection is thus easily computed in O(p).

Proof. In the case where α∗ ≥ ||w∗||2 the solution is simply (w∗, α∗), so we turn to the case where α∗ < ||w∗||2. In this
case, by similar reasoning to the `1,∞ case, we will have that α = ||w||2 in the solution. Further, we have that w = λw∗

for some non-zero scalar λ because for any w∗ the closest point to a hyper-sphere centered at the origin will have the same
direction as the vector w∗. By co-linearity of w and w∗, we have ||w −w∗||22 = (||w||2 − ||w∗||2)2. Using this property
and α = ||w||2, we can re-write our objective as minα(α − ||w∗||2)2 + (α − α∗)2 subject to α ≥ 0. This has the solution
α = (||w∗||2+α∗)/2 if the constraint is inactive, and zero if the constraint is active. When the constraint is active we set w to
0, while when it is inactive we set w to the projection of w∗ onto the hyper-sphere of radius α, giving w = sgn(w∗)α.


