
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, TO APPEAR. 1

A Hybrid Conditional Random Field for
Estimating the Underlying Ground Surface

from Airborne LiDAR Data
Wei-Lwun Lu, Kevin P. Murphy, James J. Little, Alla Sheffer, and Hongbo Fu

Abstract—Recent advances in airborne light detection and
ranging (LiDAR) technology allow rapid and inexpensive gen-
eration of digital surface models (DSMs), 3D point clouds of
buildings, vegetations, cars, and natural terrain features over
large regions. However, in many applications, such as flood
modeling and landslide prediction, digital terrain models (DTMs),
the topography of the bare-earth surface, are needed. This article
introduces a novel machine learning approach to automatically
extract DTMs from their corresponding DSMs. We first classify
each point as being either ground or non-ground, using super-
vised learning techniques applied to a variety of features. For
the points which are classified as ground, we use the LiDAR
measurements as an estimate of the surface height, but for the
non-ground points, we have to interpolate between nearby values,
which we do using a Gaussian random field. Since our model
contains both discrete and continuous latent variables, and is a
discriminative (rather than generative) probabilistic model, we
call it a hybrid Conditional Random Field. We show that a MAP
estimate of the surface height can be efficiently estimated by
using a variant of the Expectation Maximization (EM) algorithm.
Experiments demonstrate that the accuracy of this learning-
based approach outperforms the previous best systems, based
on manually tuned heuristics.

Index Terms—Light detection and ranging (LIDAR) data
filtering, digital terrain model (DTM), conditional random fields.

I. INTRODUCTION

RECENT advances in airborne light detection and ranging
(LiDAR) technology allow rapid and inexpensive gen-

eration of digital surface models (DSMs), 3D point clouds
of buildings, vegetations, cars, and natural terrain features
over large regions. However, in many applications, such as
flood modeling and landslide prediction, digital terrain models
(DTMs) are needed. Here, the DTM refers to natural terrain
features of the bare-earth surface, excluding points from veg-
etations, buildings, cars, or any other man-made structures. In
order to generate DTMs, non-ground points of DSMs have to
be identified, and their underlying bare-earth elevations have
to be estimated (See Fig. 1 for an illustration). This article
introduces a novel machine learning approach to automatically
extract DTMs from DSMs.

The DTM extraction problem is of great commercial inter-
est, but it remains a challenging task. Many companies adopt
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a semi-automatic approach: they first use automatic bare-
earth extraction algorithms to obtain initial DTMs, and then
experienced operators come in to carefully identify and remove
mis-classified points. This human editing process takes about
60-80% of the processing time for the production of DTMs
[1]. Therefore, improving the accuracy of automatic bare-earth
extraction algorithms would significantly impact this process
and speed up the delivery time.

The DTM extraction problem is challenging for several
reasons. Firstly, the LiDAR point cloud is irregularly sam-
pled, and thus typical image processing techniques cannot
be directly applied. Secondly, the scenes are usually very
complex, consisting of buildings, cars, trees, slopes, rivers,
bridges, cliffs, etc. For example, Fig. 2 shows a profile of a
DSM with one building and some trees on a slope. We cannot
simply declare points with high elevation to be non-ground,
because hills have even higher elevation. Similarly, we cannot
simply declare points in flat regions to be ground, because
roof-tops are also flat regions. Hence, developing an algorithm
that is able to deal with different kinds of terrain (urban and
rural, flat and sloped, etc.) is a challenging task.

In this article, we introduce a novel machine learning
approach to automatically extract DTMs from DSMs. In
particular, we propose to model the problem as a hybrid
Conditional Random Field. Conditional Random Fields (CRF)
[2], [3] are a variant of Markov Random Fields, and are
widely used in segmentation and recognition problems in
computer vision and machine learning. Most CRFs assume all
the hidden random variables are discrete. Our model is novel
in that it contains both discrete and continuous hidden random
variables; this is why we call it a “hybrid” CRF. The discrete
random variables are binary, and represent whether a point
is ground or non-ground. The continuous random variables
represent the height of the underlying ground surface at that
point. In addition, we have the observed variables, which are
the LiDAR measurements. The correlations between all the
variables are learned from a training set. We explain the model
and training procedure in detail in Section 3.

Once the model has been trained, we can use it to estimate
the ground surface (the hidden continuous variables) from the
LiDAR data (the observed continuous variables). We show
how to do this efficiently using a variant of the Expectation
Maximization (EM) algorithm [4]. See Section 4 for the
details.

Our experimental results in Section 5 show that, given
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Fig. 1. Illustration of the DTM extraction problem. (a) The original DSM
of a rural site with vegetation on a slope, and some small buildings. (b)
The classification of 3D points to ground/non-ground (red/green). (c) The
extracted DTM of the bare-earth surface. The small white patch near the top
right corresponds to missing data.

sufficient training data, the trained model can deal with differ-
ent terrains including dense vegetation, mountain, and urban
regions. Furthermore, quantitative results using the standard
dataset [1] demonstrate that the proposed algorithm outper-
forms the previous best systems (based on manually tuned
heuristics) at both point classification and DTM extraction.
We conclude in Section 6.1

II. RELATED WORK

The bare-earth extraction problem has been studied exten-
sively in the remote sensing community, and many algorithms
have been proposed. Sithole and Vosselman [1] provides a
review of the techniques and a detailed comparison of their
performance.

Sithole and Vosselman classified the algorithms into four
groups: slope-based [6]–[8], block-minimum [9], surface-
based [10]–[13], and clustering [14]. The surface-based al-
gorithms [10]–[13] assume that the surface is smooth, and
that deviations from smoothness represent non-ground points,
leading to the de-spike algorithm which iteratively removes
deviations from a locally smooth surface. The slope-based
approaches [6]–[8] use the slope of a point to its nearby points
within a range as a criterion for classifying ground points.
These methods are closely related to morphological operators,
but the window size has to be carefully chosen in order to
deal with different kinds of terrain. In order to deal with
this problem, Dell’Acqua et al. [15] proposed to optimize the
window size using some training data. Recently, Zhang et al.

1This article extends our previous work in [5] in the following main ways:
we switch from triangle-based features to point-based features, we use a new
hybrid model, we use a new inference algorithm, and we perform much more
extensive experimentation.

Fig. 2. An 1D profile of a DSM with one building and some trees on a
slope. The goal is to estimate the true bare-earth surface (red points) from the
measurements (green points). At the bottom of the figure, we have classified
each point as G for ground or N for non-ground. This is part of the training
data, but is not available at test time.

[16] introduced a progressive morphological filter where the
window size can be changed adaptively. This technology has
been also used to automatically construct building footprints
from airborne LIDAR data [17]. Similar to morphological
operators, curvature analysis can be used to identify non-
ground point [18], but it only works for forested regions. The
clustering approach is based on the idea that points belonging
to non-ground clusters are higher than their neighbors [14],
or the statistics of points over local regions is different [19].
In our framework, many of these ideas are used to create
appropriate features for each 3D point. We then apply a
powerful machine learning approach to figure out a mapping
from the feature vector to a point classification.

The problem of segmenting or classifying 3D point clouds
has also been studied in the computer vision community.
For example, [20] considered the problem of segmenting 3D
point clouds using a generative model, where each region
consists of a parametric model of the surface, such as planes,
cylinders, cones, etc. Although we use segmentation in our
approach (in order to derive segment-based features), we are
not interested in segmentation per se. Baillard and Maitre [21]
used a Markov Random Field and an iterative algorithm to
classify 3D points, but their input were pairs of stereo images
instead of LiDAR images. The problem of classifying 3D
point clouds was also studied in [22] using a max-margin
Markov network. This is similar to our work, but does not
address the issue of estimating the underlying surface (the
model only contains discrete label variables, not continuous
height variables). Secord et al. [23] introduced a technique to
detect trees using a support vector machine [24]. However,
they used both airborne LiDAR and aerial images, and did
not enforce spatial correlations between nearby points.

III. MODEL

A. Overview

A typical LiDAR measurement consists of the 3D location
of the reflecting surface, the intensities of the return pulse, and
the type of returns (i.e., first, middle, or last returns). In this
article, we only use the 3D locations of the last returns received
from the LiDAR sensor, and we omit other information such
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as intensity of the return pulses.2

Let us now define our notation. Let Oi ∈ R3 be the
(x, y, z) coordinates of point i, and let O = (O1, . . . ,On)
be all points in the observed DSM, where n is the number of
points. For every sampled point i, we have a random variable
ci ∈ {0, 1} indicating the point classification, i.e., whether the
point belongs to the ground (ci = 0) or non-ground (ci = 1).
We also have a random variable gi ∈ R+ representing the
estimated elevation of the bare-earth surface in the DTM at
point i. Let c = (c1, . . . , cn) and g = (g1, . . . , gn) be all the
unknown variables in a dataset. Note that c and g are unknown
variables, and our goal is to estimate g (the DTM) given the
observed O (the DSM), where the point classifications c serve
as intermediate states to help us estimate g from O.

Below we define the conditional probability over g (the
DTM) and c (the point classification) of all points in the
dataset given O (the observed DSM):

p(g, c|O,θ) = p(g|c,O,λ) p(c|O,w) (1)

where θ = (λ,w) are all the parameters in the model. Fig. 3 il-
lustrates the proposed probabilistic model. The term p(c|O,w)
models the conditional probability over point classification
given the observed DSM, and can be interpreted as “determine
whether a point is ground or non-ground based on the observed
DSM”. The term p(g|c,O,λ) models the conditional proba-
bility over the estimated DTM given the point classification
and observed DSM, and can be interpreted as “estimate the
bare-earth surface given the observed DSM, assuming the
point classification is known”. Notice that p(g|c,O,λ) also
enforces spatial correlations amongst nearby points, similar
to Markov Random Fields (MRFs). However, since we only
model the conditional probability, the proposed model is a
Conditional Random Field (CRF) [2], [3]. Moreover, since the
model consists of discrete random variables (point classifica-
tion) and continuous random variables (the estimated DTM),
we call it a hybrid CRF.

Below we explain the two conditional probabilities,
p(g|c,O,λ) (height field) and p(c|O,w) (label field), in more
detail.

B. Height field
We define the conditional probability over the estimated

DTM based on the following intuition: If we know point
i is a ground point, then we want its estimated bare-earth
elevation in the DTM to be close to the observed elevation
in the DSM. On the other hand, if we know point i is a
non-ground point, we want its estimated bare-earth elevation
in the DTM to be similar to the heights of its neighbors
(a locally smooth assumption). This idea is inspired by the
feature-preserving mesh smoothing techniques in the computer
graphics community [25], [26].

More formally, we define the following model:

p(g|c,O,λ) = N (g|0, 1
λ1

Σ(c))
n∏
i=1

N (gi|zi, 1
λ0

)1−ci (2)

2We chose last returns instead of first, since last returns are more likely to
be from the ground surface. Extending the model to handle multiple returns
is an interesting direction for future work.

Fig. 3. Sketch of the hybrid conditional random field. In the probabilistic
model, oi is the observed 3D point in the DSM, ci is its point classification,
and gi is the estimated bare-earth elevation in the DTM. Links correspond to
the variable on which the distribution is conditioned.

where N represents a multivariate Gaussian, λ1 is the preci-
sion of the Gaussian smoothing prior, and λ0 is the precision of
the observations. Σ(c) is a covariance matrix that depends on
the labels. defined below. Note that, if ci = 0 (ground point),
the second term forces the corresponding gi to be close to the
observed height zi, whereas if ci = 1, gi is only constrained
by the other g’s, not by the data. (Recall that zi is the height
component of the oi measurement vector.)

We now define Σ(c), which controls the smoothness of the
DTM. Our method is similar to an intrinsic Gaussian random
field [27]. First we construct a 2D Delaunay triangulation of
the points, based on their (x, y) values. Let L be the n × n
Laplacian matrix defined as

Li,j =


−1 if i = j
1
ni

if j ∈ Ni
0 otherwise

(3)

where Ni are the neighbors of point i, and ni = |Ni| is the
number of such neighbors. Let C = diag(c). Then we define

Σ(c)−1 = LTCL (4)

This enforces smoothness between neighboring points in re-
gions where we have no data on the true bare-earth height,
but allows for discontinuities when the bare-earth is “visible”.

Eq. (2) can be better understood if we look instead at the
negative log probability, which is given by the following
expression (dropping irrelevant constants):

− log p(g|c,O,λ)

∝ λ1(Lg)TC(Lg) + λ0(g − z)T (I−C)(g − z)

=
n∑
i=1

λ1ci

[
gi −

1
ni

∑
j∈Ni

gj

]2
+ λ0(1− ci)[gi − zi]2 (5)

This can be interpreted as follows: if ci = 1, meaning point i
is not a ground point, then we force the bare-earth elevation
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to be similar to the average of its neighbors, and thus produce
a locally smooth surface (from the first term in Eq. (5));
otherwise, we force the bare-earth elevation to be similar to
the observed elevation from DSMs (from the second term in
Eq. (5)). Notice that λ = λ0/λ1 determines how much we
trust our data relative to the strength of our prior. Without
loss of generality, we fix λ1 = 1 and λ0 = 100, 000 for
all experiments in this article. This gave good results over
a variety of terrain types.

C. Label field

We now define p(c|O,w), the conditional probability over
point classification given the observed DSM. We use the
following simple model:

p(c|O,w) =
n∏
i=1

p(ci|O,w) (6)

where w are the parameters of the distribution. This assumes
that the classification labels are conditionally independent
given the data. However, correlations between the labels are
indirectly introduced via the Gaussian Markov random field
part of the model. In particular, as is apparent from Figure 3,
in the full model, the labels are no longer conditionally
independent given O because G is not observed. In an earlier
version of the model, we imposed direct correlation between
the ci’s as well as the gi’s, but this requires the use of slow
methods such as graphcuts at inference time (see [5] for an
example of this approach), and did not yield better results than
the simpler model we present here.

Each p(ci|O,w) term is a probabilistic binary classifier
with parameters w. The input of each classifier is a feature
vector φi derived from the neighborhood around point i.
Section III-D will describe the feature vector used in this
article in more detail. The binary classifier used in this article
is an ensemble of decision trees, i.e.,

f(φi,w) =
M∑
j=1

$jfj(φi,%j) (7)

where w = ($,%), $j is the weight associated with decision
tree j, and %j are its parameters. Given labeled training data,
the parameters of this ensemble classifier can be learned using
the GentleBoost algorithm [28]. We could of course use other
classifiers, such as a support vector machine (SVM) [24],
although the training and classification time might increase.
Boosted decision trees are widely used in the machine learning
and computer vision communities in view of their simplicity,
speed, and accuracy.

Since we need to combine the output of the classifiers with
other sources of information, we convert the output of the
binary classifier to a probability using the technique of [29].
Specifically, we set

p(ci = 1|O,w) = σ(af(φi,w) + b) (8)

where f(φi,w) is the output of the boosted classifier, and
σ(η) = 1

1+e−η is the logistic or sigmoid function. We set the
parameters a and b by maximum likelihood on a validation
set, in order to get reasonably well calibrated probabilities.

(a) vertex-based (b) segment-based (c) disc-based

Fig. 4. Features with different neighborhoods: (a) vertex-based features. (b)
segment-based features. (c) disc-based features. In all figures, the red point
represents the current vertex vi and the blue points represent its supporting
neighborhood.

TABLE I
SUMMARY OF THE FEATURES WE USED TO BUILD OUR CLASSIFIER.

No. Type Name Description

1 Vertex ATavg average arc tangent to neighbors
2 Vertex ATmin minimum arc tangent to neighbors
3 Vertex ATmax maximum arc tangent to neighbors
4 Vertex V ZD z difference to global z mean
5 Vertex OUTL outlier confidence
6 Segment SZV segment z variance
7 Segment RH segment relative height
8 Segment RHhigh segment average z difference to higher

region neighbors
9 Segment RHlow segment average z difference to lower

region neighbors
10 Segment NRHhigh percentage of higher neighbors
11 Segment NRHlow percentage of lower neighbors
12 Segment SNV number of vertices
13 Disc DZD z difference to lowest neighbors

D. Features

We use a variety of features, illustrated in Figure 4 and
summarized in Table I. We give a more detailed description
below. Note that it is very common in applications of CRFs to
use a large number of manually specified features — see e.g.,
[2]. The boosted decision tree automatically performs feature
selection and feature construction (conjunctions, etc.), and sets
the weights appropriately.

1) Point-based features: Some points can be classified by
looking at very local information (see Fig. 4(a)). For example,
if a point is much higher than its neighbors, it is probably a
tree-top (and hence not a ground point). To formalize this, let
s(i, j) = zi−zj√

(xi−xj)2+(yi−yj)2
be the slope between vertices i

and j, and let a(i, j) = arctan(s(i, j)) be the angle of this
slope. We define the following 3 features:

ATavg(i) =
∑
j∈Ni

a(i, j) (9)

ATmin(i) = min
j∈Ni

a(i, j) (10)

ATmax(i) = max
j∈Ni

a(i, j) (11)

2) Segmentation-based features: Clearly we cannot distin-
guish roof-tops from the ground by using point-based features,
since locally, roofs look flat just like the ground. So we need
a more global feature. We therefore segment the point cloud
into regions of similar height and derive a feature vector per
segment.

Recently, researchers have introduced several graph-based
segmentation algorithms. We choose to use the method of [30]
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(a) (b) (c)

Fig. 5. Example outputs from the segmentation algorithm. (a) complex buildings; (b) a large building; (c) buildings and a bridge.

because it is very fast, and it does not require the number of
segments to be known a priori. This algorithm takes a graph
as input (derived from the Delaunay triangulation), and a set
of edge weights, which we set to s(i, j). Some examples of
the output of the segmentation algorithm are shown in Fig. 5;
we see it does a very reasonable job.

After obtaining the segmentation, features of each segment
are computed. An obvious feature is height of a segment S
relative to its neighboring segments. This can be defined as:

RH(S) =
∑

i∈B(S)

h(i, S) (12)

where B(S) are the boundary points of segment S, and

h(i, S) = zi − min
j∈Ni∩j 6∈S

zj (13)

We also divide B(S) into two sets: one set contains points
lower than their neighboring segments, and another one con-
tains points that are higher. We then compute the height of a
segment relative to the lower and higher neighbors, and the
relative sizes. Such features turn out to be useful for structures
such as buildings with terraces (see Fig. 5(c)).

3) Disc-based features: We also use features computed by
a disc-shaped neighborhood with a specified radius (Fig. 4 (c)).
Currently, the only disc-based feature we use is the elevation
difference between the current vertex vi and the lowest vertex
within a range. This is inspired by the morphological operator
[16], but the window size is fixed. This feature is useful for
handling trees, buildings, bridges, etc.

4) Discussion: Not suprisingly, no single feature can handle
all cases. For example, in Fig. 5(c), the segmentation algorithm
mistakenly puts the bridge and ground into the same segment
(a very reasonable error!), and thus segment-based features
may fail. However, by combining segment-based features
with disc-based features, this problem can be solved. On the
other hand, using disc-based features along is not sufficient,
especially in the middle of a large roof-top segment where
points are locally similar to ground. This is the reason why
we propose to learn a classifier that combines all three feature
sets together.

IV. INFERENCE

Once we have learned the parameters from labeled training
data, we can use the model to extract DTMs from new DSMs.

This problem can be formulated as finding the Maximum a
Posterior (MAP) solution of g, i.e.,

ĝ = arg max
g

p(g|O,θ) = arg max
g

∑
c
p(g, c|O,θ) (14)

where ĝ is the MAP solution of g. Unfortunately, computing
the exact posterior mode is NP-hard [31], since we have to sum
over all possible c, and there are 2n possible combinations.
However, we can compute an approximate locally optimal
solution using a variant of the Expectation-Maximization (EM)
algorithm [4]. The EM algorithm is an iterative procedure of
two steps: the E-step estimates the probability distribution over
point class labels based on the old surface (DTM) estimate,
while the M-step uses the “soft labels” to estimate a new DTM
(surface). This use of EM is somewhat unusual, because we
are treating the estimated DTM like “parameters”, and point
classification like “hidden variables”, but the method is still
valid (see e.g., [32]). We give some of the details below.
(Interested readers can refer to [33] for a detailed description
of the EM algorithm.)

A. M-step: extract bare-earth surface

Define the expected negative log posterior at iteration t,
where expectations are taken with respect to gt−1, as follows:

Q(g,gt−1) ∝ −Ec [log p(g|c,O,θ)]

= Ec
[
λ0(g − z)T (I−C)(g − z) + λ1(Lg)TC(Lg)

]
+K

= λ0(g − z)T (I−W)(g − z) + λ1(Lg)TW(Lg) +K
(15)

where W = diag(wi), wi = p(ci = 1|gt−1,O,θ), and z are
the vertical components of the observations O, and K is a
constant. Taking derivatives of Eq. (15) with respect to g, and
setting to zero gives(

λ0(I−W) + λ1LTWL
)

g = λ0(I−W)z (16)

(where we used the fact that ∇x (xTAx) = (A + AT )x.)
Although we can easily solve this for g by inverting the matrix
on the left hand side, this takes O(n3) time, where n is the
number of points in the dataset. We now show how to exploit
the sparsity in the W and L matrices to compute exactly the
same solution in O(n2) time.
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(a) 1st E-step (b) 1st M-step (c) 2nd E-step (d) 2nd M-step

(e) 4th E-step (f) 4th M-step (g) 8th E-step (h) 8th M-step

Fig. 6. Illustration of the EM algorithm. The E-step determines the point classification (red = ground, green = non-ground), while the M-step estimates the
bare-earth surface of the DTM using the point classification.

First we rewrite the above equation in the following equiv-
alent form: [

λ
1
2
0 (I−W)

1
2

λ
1
2
1 W

1
2 L

]T [
λ

1
2
0 (I−W)

1
2

λ
1
2
1 W

1
2 L

]
g

=

[
λ

1
2
0 (I−W)

1
2

λ
1
2
1 W

1
2 L

]T [
λ

1
2
0 (I−W)

1
2 z

0

]
(17)

This has the form ATAg = ATb. Solving this for g
corresponds to finding a least squares solution to the linear
system Ag = b, given by[

λ
1
2
0 (I−W)

1
2

λ
1
2
1 W

1
2 L

]
g =

[
λ

1
2
0 (I−W)

1
2 z

0

]
(18)

Since the matrix on the left-hand side is very sparse, we
can solve this system very efficiently. (This technique is
known in the computer graphics community as Laplacian
Mesh Optimization [25], [26].)

B. E-step: re-classify points

The E-step computes the probability of point classification
needed in the M-step. By looking at the graphical model in
Figure 3, we see that the ci are conditionally independent given
g and O, so we can estimate each of them separately. Hence
we need wi = E[ci|gt−1,O,θ]. Using Bayes rule, we have:

p(ci = 1|g,O,θ) =
p(ci=1|O,θ) p(g|ci=1,O,θ)

p(ci=1|O,θ) p(g|ci=1,O,θ) + p(ci=0|O,θ) p(g|ci=0,O,θ) (19)

Now

p(g|ci,O,θ) = p(gi|ci,g−i,O,θ) p(g−i|O,θ) (20)

where g−i refers to all the g variables except gi. Note that
the second term in the above expression is independent of ci
and hence will cancel in Equation 19. Also,

p(gi|ci = 1,g−i,O,θ) ∝ exp
(
−λ1

2 (gi − 1
ni

∑
j∈Ni

gj)2
)

p(gi|ci = 0,g−i,O,θ) ∝ exp
(
−λ0

2 (gi − zi)2
)

(21)

since if ci = 1, gi depends on its neighbors, whereas if ci =
0, gi depends on its observed elevation, zi. Hence we can
easily classify point ci, by using the discriminative classifier
to provide the prior p(ci|O,θ), and using the estimated heights
of neighboring points, and the observed measurement of the
current point zi, in the likelihood term:

p(ci = 1|g,O,θ) =

P1 exp

(
−λ1

2 (gi−
1
ni

∑
j∈Ni

gj)
2

)
P1 exp

(
−λ1

2 (gi−
1
ni

∑
j∈Ni

gj)2

)
+P0 exp

(
−λ0

2 (gi−zi)2
) (22)

where P0 = p(ci = 0|O,θ) and P1 = p(ci = 1|O,θ).

C. First E-step: initial classification of points

To get the algorithm started, we need an initial estimate of
the labels. This is very important so we don’t get stuck in a
poor local optimum. We can get a good initial guess by using
our trained binary classifiers to compute p(c|O,w), ignoring
the g field.

D. Example

Fig. 6 illustrates an example of the EM algorithm in action.
We can observe that, in the first iteration, the initial classifi-
cation was inaccurate, since the roof-top was considered part
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(a) (b) (c)

Fig. 7. Classification errors in estimating labels c on the Sithole dataset, compared with other methods evaluated in [1]. (a) Overall errors (Err), (b) Type-I
errors (Err1), (c) Type-II errors (Err2).

of the ground surface. However, after optimizing the ground
surface and re-classifying points, more and more points on the
roof-top were correctly classified as non-ground. After eight
iterations, the entire roof-top was classified as non-ground and
then its underlying ground surface was correctly estimated. (In
our experiments, the EM algorithm typically converges in 10-
20 iterations.)

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-
rithm, we test our system on two datasets: the Sithole et al.
[1] dataset and the Terrapoint dataset [34]. We evaluate both
the quantitative and qualitative performance of the proposed
algorithm.

A. Datasets

The Sithole dataset [1] consists of 15 sites with various
terrain characteristics (buildings, steep slopes, bridges, terrain
discontinuities, ramps, vegetation on slopes and many others),
and contains 384,325 points in total. Sithole et al. manually
classified each data point and thus the ground-truth labellings
are very accurate.

The Terrapoint data [34] consists of three huge sites with 3
million data points. The first and third sites contain vegetation
and roads, while the second site is composed of forests,
buildings, and cars. Unlike the Sithole dataset that carefully
classified every point into ground and non-ground, the Terra-
point dataset chose only a small set of points and labeled them
as ground. Other points, including many that would be visually
classified as ground under the standards of the Sithole dataset,
are considered as non-ground, a point which we discuss further
below.

B. Quantitative Evaluation

We evaluate the quantitative performance of our system
in terms of classification performance, and in terms of
the distance between the estimated and ground-truth bare-
earth surface. The classification of points is determined by
p(c|ĝ,O,θ), where ĝ is the optimal one computed in the last
iteration of the EM algorithm. In particular, we say point i

is non-ground if p(ci = 1|ĝ,O,θ) ≥ 0.5; otherwise, we say
point i belongs to the ground surface.

Let E1 be the number of ground points that our algorithm
mistakenly classifies as non-ground, and E2 be the number of
non-ground points that our algorithm mistakenly classifies as
ground. We define the type I, type II, and overall error rates
as follows:

Err1 =
E1

N1
Err2 =

E2

N2
Err =

E1 + E2

N1 +N2
(23)

To measure the distance between the estimated and true
bare-earth surface, let dist(p, S) be the distance between a
point p and a surface S, i.e.,

dist(p, S) = min
p′∈S
‖p− p′‖ (24)

The average distance between surfaces S1 and S2 can be
defined as

distavg(S1, S2) =
1
|S1|

∫
p∈S1

dist(p, S2)dp (25)

where 1/|S1| is the area of S1. We use a standard package
named Metro [35] to compute the average distance between
two 3D meshes.

Since we do not have an independent test set, we run 10-
fold cross-validation on the Sithole dataset. More specifically,
we partitioned the Sithole dataset into ten disjoint parts;
we train the model using nine of them, and evaluate the
performance using the remaining one, and then repeat this
10 times, recording the average test performance.

In Fig. 7, we compare the classification accuracy with the
state-of-the-art filtering algorithms evaluated by Sithole et al.
[1]. Our overall error rate, 3.46%, is slightly better than the
best state-of-the-art hand-tuned algorithms (4%). Our type I
error rate (2.51%)is also better than all the other algorithms
(best rival is 3%), although our type II error rate is slightly
higher (ours is 5.26%, best rival is 1%).

By changing the classification threshold, or equivalently the
b offset parameter in the logistic function (see Equation 8),
we can tradeoff type I and type II errors as shown in Table II.
When b is larger, we are more likely to classify points as
ground, yielding low Type-I error but high Type-II error.
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TABLE II
QUANTITATIVE EVALUATION OF THE SITHOLE DATASET, BY CHANGING

THE CLASSIFICATION THRESHOLD (MODEL PARAMETER b).

b Overall Err. Type-I Err. Type-II Err. Err. Distance

0.03 8.00% 0.15% 22.91% 28.60cm
0.02 5.60% 0.43% 15.40% 20.08cm
0.01 3.78% 1.09% 8.89% 11.70cm
0.00 3.46% 2.51% 5.26% 9.79cm

−0.01 4.70% 5.83% 2.56% 15.79cm
−0.02 7.76% 11.14% 1.33% 25.60cm
−0.03 12.48% 18.73% 0.62% 38.84cm

When b is smaller, we are more likely to classify points as
non-ground, and thus increase the Type-I error but decrease
the Type-II error. Many filtering algorithms in [1] focus on
minimizing the Type-II error. As we can see from Table II,
we can achieve a type-II error which is as low as 0.62%,
beating all the other methods reported in [1]. However, we
also notice that minimizing the Type-II error does not yield
a smaller error distance. In our experiments, the smaller error
distance is achieved when the overall classification error is
minimized, which corresponds to setting b = 0.

Unfortunately, Sithole et al. did not provide the error dis-
tance between the estimated and true ground surface, and
therefore we cannot compare our proposed algorithm with
other methods using this measure. In order to get some
kind of quantitative measure of the relative accuracy of our
estimated surfaces, we decided to compare our method to our
previous system described in [5]. Our old system was tuned by
hand on the Terrapoint data. By contrast, our current system
was trained automatically on the Sithole data.3 Despite this
handicap, Figure Fig. 8 shows that our new method gives lower
classification and distance errors compared to our old method.
Thus we can get better performance with less effort by using
our new method.

C. Qualitative Evaluation

We can gain a better appreciation of the performance of
our method by looking at examples of it in action. Fig. 9 (a)
shows a forested region on a slope, along with some houses.
Notice that there are high trees as well as some bushes. The
proposed algorithm is able to successfully identify most of
the non-ground points and estimate their underlying bare-earth
surface.

Fig. 9 (b) is an example of terrain discontinuity, with some
vegetation and houses on one side. We can observe that the
cliff has similar characteristic to the walls of buildings. How-
ever, by using the segmentation-based features, the proposed
algorithm is able to classify the cliff as ground.

Fig. 9 (c) shows some houses with flat, gable, and irregular
roofs along with some big trees (the cone-shaped objects). The
proposed algorithm is able to extract accurate DTMs because
our classifier combines different kinds of features.

3Since the Terrapoint data contained many points that were classified as
non-ground, even though visually it was obvious that they were ground, we
modified the b parameter in order to match the conservative labeling standards
of Terrapoint. However, all the other parameters of the model (which were
trained on the Sithole dataset) were left unchanged.

(a) (b)

Fig. 8. Quantitative evaluation on the Terrapoint dataset [34]. In both figures,
the green bars (top) represent the results of [5] (denoted Lu), and the yellow
bars (bottom) represent the results of the proposed algorithm. (a) Average
error distance. (b) Overall classification error rate.

Fig. 9 (d) is an example of complex buildings with flat and
gable roofs. We can also observe some bushes in the middle
of road. The proposed algorithm still works quite effectively.

In Fig. 9 (e), we can see a large building with a flat roof.
If we only use vertex-based and disc-based features, then
many points on the roof will be mis-classified as ground
points because they are similar to ground on a local scale.
However, by combining the segmentation-based features with
vertex-based and disc-based features, points on the roof are
successfully classified as ground, and their bare-earth elevation
are accurately estimated.

Fig. 9 (f) shows a bridge. This example emphasizes the
importance of disc-based features because the bridge cannot be
successfully removed by using only segmentation-based and
vertex-based features.

Fig. 10 shows two examples, one forested region and one
urban region, from a bird’s eye view. In Fig. 10 (a), we can see
dense vegetation with some small houses. In Fig. 10 (b), we
can see buildings with flat and gable roofs. In both cases, the
proposed algorithm is able to remove most of the non-ground
points and extract DTMs quite effectively.

VI. CONCLUSION

We presented a hybrid Conditional Random Field method
for extracting bare-earth surfaces from airborne LiDAR data.
Extensive testing against hand-classified data and commercial
data shows that our results improve upon manually tuned
classifiers, and produce surfaces that are better than previous
bare-earth extraction systems.

Currently our system does not include models of sensing
errors due to scattering, and cannot handle multiple returns.
In addition, we do not use any knowledge about regularities
of man-made or other structures. We leave these extensions
for future work.
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(a) Trees on a slope (b) Hill, trees, and house

(c) Houses with gable and irregular roofs (d) Houses and brush on road

(e) Large building with flat roof (f) Bridge

Fig. 9. Extracted DTMs of different kinds of terrain from a 45◦ view. For each pair of images, the left one is the original DSM, and the right one is the
extracted DTM. (b), (c), (e) are from Terrapoint, (a), (d), (f) are from Sithole.
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