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ABSTRACT
Motivation: Recurrent DNA copy number alterations (CNA)
measured with array comparative genomic hybridization (aCGH)
reveal important molecular features of human genetics and
disease. Studying aCGH profiles from a phenotypic group of
individuals can determine important recurrent CNA patterns that
suggest a strong correlation to the phenotype. Computational
approaches to detecting recurrent CNAs from a set of aCGH
experiments have typically relied on discretizing the noisy log
ratios and subsequently inferring patterns. We demonstrate that
this can have the effect of filtering out important signals present
in the raw data. In this paper we develop statistical models that
jointly infer CNA patterns and the discrete labels by borrowing
statistical strength across samples.
Results: We propose extending single sample aCGH HMMs
to the multiple sample case in order to infer shared CNAs.
We model recurrent CNAs as a profile encoded by a master
sequence of states that generates the samples. We show how
to improve on two basic models by performing joint inference
of the discrete labels and providing sparsity in the output. We
demonstrate on synthetic ground truth data and real data from
lung cancer cell lines how these two important features of our
model improve results over baseline models. We include stan-
dard quantitative metrics and a qualitative assessment on which
to base our conclusions.
Availability: http://www.cs.ubc.ca/˜sshah/acgh
Contact: sshah@cs.ubc.ca

1 INTRODUCTION
Genetic alterations are a hallmark of numerous human disea-
ses such as cancer and mental retardation. Recent advances
in the genome wide identification and localisation of gene-
tic alterations by high resolution array comparative genomic
hybridization (aCGH) technologies (Ishkanian et al., 2004;
Pinkel and Albertson, 2005) have furthered our understanding
of the effect of genetic alterations on disease. Array CGH mea-
sures genetic changes as DNA copy number alterations (CNAs)
of an individual’s DNA against a reference at a fixed set of loca-
tions in the genome (Pinkel and Albertson, 2005). A recurrent
CNA in a cohort of patients is a CNA found at the same location
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in multiple samples. Therefore, recurrent CNAs define a pat-
tern that provides a molecular characterization of the cohort’s
phenotype, potentially identifying disrupted molecular proces-
ses, molecular targets for diagnosis, and development of novel
therapeutics. A recent example is the identification of recurrent
CNAs across different sub-types of lung cancer, reported in Coe
et al. (2006). This led to the elucidation of molecular mecha-
nisms that contribute to the distinct phenotypes in small cell
lung cancer (SCLC) and non-small cell lung cancer (NSCLC),
which we show in this paper (see Section 5).

In this study we describe the development of statistical
models for the detection of recurrent CNAs across multiple
aCGH experiments from a cohort of individuals. Figure 1 (a)-
(c) shows an example of five aCGH non-small cell lung cancer
(NSCLC) samples over small regions containing three different
types of recurrent CNAs on chromosomes 8, 9 and 1. For each
of the ∼ 30,000 probes in an aCGH experiment, a log ratio
of the hybridization level of the sample, relative to the refe-
rence, is produced. The log ratios have a noisy correspondence
to CNAs: deletions (losses) result in negative log ratios, ampli-
fications (gains) result in positive log ratios, and no change
(neutral) regions in zero log ratios.

Figure 1(a) shows a recurrent CNA harbouring the MYC
oncogene. One common strategy to identify such a recurrent
CNA is to first pre-process individual samples to make calls
of losses and gains, and then to infer recurrent CNAs using a
threshold frequency of occurrence (de Leeuw et al., 2004; Gar-
nis et al., 2006; Pollack et al., 2002). We call this process AF
for alteration frequency (see Section 3 for details). While AF
may detect signals as shown in Figure 1(a), pre-processing or
discretizing the sequences separately may remove information
by smoothing over short or low-amplification CNAs. However,
by jointly considering all the data without pre-processing, we
can borrow statistical strength (Gelman et al., 2004) across the
samples and identify locations where the signal is shared in the
raw data. For example, in Figure 1(b), we show data at the locus
containing an important NSCLC gene, carbonic anhydrase IX
(CA9) (Kim et al., 2004; Swinson et al., 2003). Log ratios of
probes overlapping the gene are shown as blue stars and are
indicated with arrows. This shared CNA may be hard to detect
using AF because when processing individual samples, single
probe CNAs are often indistiguishable from experimental noise
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Fig. 1. aCGH profiles of three different types of recurrent CNAs for five NSCLC cell lines (labeled on the right). Horizontal red lines indicate the 0
log ratio level for each sample. Vertical black lines indicate the position of a known gene of interest in NSCLC. (a) a high level shared amplification
of a region spanning approx 3Mb containing the MYC oncogene on chromosome 8 (shown with vertical line). (b) a single clone shared aberration
at the CA9 locus on chromosome 9. (c) a low-level amplification on chromosome 1 including TNFRSF4 and TP73 - both implicated in NSCLC.
Both (b) and (c) illustrate examples of recurrent CNAs that may be undetectable if each sample is pre-processed separately.

(Veltman and de Vries, 2006). With high-dimensional arrays
many investigators require CNAs to span at least 2 consecu-
tive probes (Baldwin et al., 2005; Garnis et al., 2006; Veltman
and de Vries, 2006). However, if a single probe CNA is sha-
red across many samples, it may correspond to an important
biological feature.

Figure 1(c) shows a third type of signal that is a low-level or
subtle shared CNA. The region includes two known lung can-
cer related genes, TNFRSF4 (Kawamata et al., 1998) and TP73.
When compared to the MYC region in Figure 1(a), the level of
amplification for TNFRSF4 is much lower and is more difficult
to distinguish from noise. However, cell lines H2122, HCC193
and HCC366 appear to share the low-level amplification. Fur-
thermore, the TP73 (a putative tumor supressor involved in cell
death (Alarcon-Vargas et al., 2000) ) loci exhibits low-level
negative in three of the samples. These signals may be lost
if each sample is pre-processed in isolation due to premature
thresholding.

Most of the genome will not exhibit shared CNA patterns.
Figure 1(a) (right end) shows a region from ∼135-140Mb
(bounded by blue vertical lines) that is heterogeneous across the
samples. One sample (HCC827) has an amplification while two
are neutral (HCC193, H2087) and two are deletions (HCC366,
H2122). This ambiguity in the signal across samples will be
important when we develop our model in Section 3.

In this paper, we present statistical models to infer recurrent
CNAs from aCGH data. We extend the single sample hidden
Markov model (HMM) (Fridlyand et al., 2004; Shah et al.,
2006) to the multiple sample case. We consider three different
ways to do this. The first simply modifies the observation model

of the HMM so that at each location, a vector of observations
is generated, one per sample. We call the state sequence of the
HMM the “master” sequence. It represents a classification of
each probe location into a loss, neutral or gain state and hence
it represents the canonical signal that encodes recurrent CNAs.

The second model augments this by allowing each obser-
vation in each sample to either be generated from the master
sequence, or from its own private sequence. This allows for
sample-specific random effects to be superimposed on the
canonical signal. We demonstrate that this improves perfor-
mance significantly. Finally, the third model augments the state
space of the master sequence to allow undefined states, which
represent locations which are highly ambiguous (such as the
135–140MB region in Figure 1(a)). This allows the master to
focus on the highly conserved regions, and to ignore heteroge-
neous locations. We will show that the resulting output we infer
is comparatively sparse, making it easier to create a short list of
candidate locations for experimental follow up.

The remainder of the paper is organised as follows. We dis-
cuss related work in Section 2. We describe our models in
Section 3. In Section 4 we demonstrate our results on simu-
lated data, where we know the ground truth, and in Section 5,
we demonstrate results on well-studied lung cancer cell line
data (Coe et al., 2006). In Section 6 we conclude the paper and
discuss future work.

2 RELATED WORK
There has been surprisingly little work on the automatic dis-
covery of shared patterns from aCGH data. Rouveirol et al.
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(2006) propose an algorithm that takes as input a set of discreti-
zed sequences, and which outputs a set of minimal recurrent
regions. This method works by converting the sequences to a
S×T binary matrix (focussing on losses and gains separately),
where S is the number of samples and T is the number of pro-
bes on the array. It then tries to find short blocks that are shared
by some specified fraction of the samples. The disadvantages
of their approach are that it requires discretized data, and that
its running time is O(T 2). (They also present an O(T ) version,
but this tended to not work as well.) Diskin et al. (2006) also
take a binary S×T matrix as input, and use a greedy search pro-
cedure to find regions (“stacks”) that are shared across samples
with statistically significant frequency. Lipson et al. (2006) is
the only previous work we are aware of that tries to find shared
patterns using the raw data (to avoid problems with premature
thresholding discussed above). They present an O(T 2) time
algorithm for finding intervals with maximal score, although
they present two other versions of the algorithm which they say
in practice are O(T 1.5) and O(T ) complexity. An important
difference between this approach and ours is that Lipson et al
assume the log ratios are identically and independently distri-
buted across the chromosome, when in fact they are spatially
correlated, suggesting that Markovian dynamics, encoded by
HMMs, should be used. In addition our approach is O(T ) and
model based.

3 METHODS
We consider analysing multiple aCGH samples from multiple
chromosomes, although to simplify notation, we will concen-
trate on modeling a single chromosome. The data is D =
(Y 1:S

1:T ), where Y s
t ∈ IR is the observed log-ratio at location t

in sample s, T is the number of probes and S is the number of
samples. The goal is to identify patterns in the data which cap-
ture the pertinent CNAs that recur across the samples. A pattern
consists (roughly speaking) of a list of locations which are
highly conserved (either Loss, Neutral or Gain). Thus the pat-
tern can be represented as a “master” sequence of states M1:T

where Mt ∈ {L, N, G} is a multinomial random variable and
t ∈ (1, 2, ..., T ). Since we will often be uncertain about what
the pattern should be at any given location, we will summa-
rize our uncertainty using the (marginal) posterior distributions
φt = p(Mt|D), which we call a profile. When we have data
from different groups (as in our lung cancer data), we learn a
different profile for each group, φg

t = p(Mg
t |Dg). As shown in

Section 5, we analyse four different phenotypic groups of lung
cancer (ie g = 1 : 4). However, we will drop the g superscript
for brevity.

Our task is related to learning profile HMMs for multi-
ple sequence alignment (Durbin et al., 1998), but it is harder
because the raw data is noisy and continuous-valued. Below
we describe four different approaches to the problem. The first
is the method most widely used in current practice, and the
remaining three are novel methods that we propose.

3.1 Alteration frequency (AF) model
In the simplest approach, AF, we first process each sample Y s

1:T

into a discrete sequence Zs
1:T , where Zs

t ∈ {L, G, N}, using
a standard method for discretizing single-sample aCGH data.
In this paper, we use the robust HMM approach described in
Shah et al. (2006). We chose the HMM-based single-sample
method for this implementation of AF to allow a more direct
algorithmic comparison to the multiple sample HMMs we des-
cribe below. Note that other algorithms could be used for this
step. For example, Coe et al. (2006) used aCGH-smooth (Jong
et al., 2004) to preprocess the lung cancer data presented in
Section 5. After preprocessing, we compute the empirical dis-
tribution over each state in each location to yield the profile
φt = p(Mt|D), which can be represented as a K × T sto-
chastic matrix, where K = 3 is the number of states, T is the
length of the sequence, and each column sums to one. This can
be further simplified to just compute the empirical probability
of a recurrent CNA at each location, to yield a 1 × T vector.
The disadvantage of this method is that the mapping from Y s

to Zs is done on each sample separately, so information cannot
be shared across samples. Thus the method may smooth over
important signals, as we will see.

3.2 Factored likelihood HMM (FL-HMM)
The second model, which we call “factored likelihood HMM”
(FL-HMM), is a standard HMM model for M1:T (modeling the
fact that CNAs tend to occur in runs), but where we modify the
likelihood function to generate multiple samples instead of a
single sample. Specifically, we assume the samples are condi-
tionally independent given Mt and use a Gaussian observation
model, yielding

p(Y 1:S
t |Mt = j) =

SY
s=1

N (Y s
t |µs

j , σ
s
j )

The observation model is a product over the emission densi-
ties of the samples, hence the term “factored likelihood”. We
have one mean and variance parameter for each of the 3 states
of the HMM. The mean and variance are sample specific, to
model the fact that different samples often have quite different
noise characteristics, due to quality of hybridization, different
ploidy, tumour/ normal admixture coefficients, etc... Note that
in a given chromosome some samples may not contain any
CNAs, in which case the estimates of µs

j and σs
j may be poor

if j is an aberrated state (L,G). Hence we share (pool) these
parameters across chromosomes for statistical strength, as des-
cribed in Shah et al. (2006). The variable Mt has Markovian
dynamics with transition matrix AM , representing the probabi-
lity of switching between the L/N/G states. The starting state
distribution is denoted πM . The model is shown as a direc-
ted graphical model in Figure 2(a). Please see Bishop (2006)
for details on directed graphical models and how they relate to
state transition diagrams for HMMs.

We add standard conjugate priors to all the parameters (Gel-
man et al., 2004). Specifically, for the multinomial distribu-
tions we use Dirichlet priors, AM ∼ Dir(δM ) and πM ∼
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Fig. 2. The three models (a) FL-HMM, (b) BFL-HMM and (c) H-HMM shown as directed graphical models (Bayesian networks).
Circles represent random variables and rounded squares represent parameters. We only show the models for 3 probes, but in
reality, the number of random variables is proportional to the number of probes on the chromosome, Tc. Unknown quantities are
unshaded and observed quantities are shaded. Y s

c,t represents the observed log ratio of sample s in chromosome c at location t,
Mc,t is the hidden master state and Zs

c,t is the hidden “slave” state. The shaded square nodes represent fixed hyper-parameters.
Arrows between nodes indicate probabilistic dependencies. Boxes around variables are called “plates” and represent repetition of
the contents inside. Thus we see that the observation parameters µs and σs are shared (tied) across chromosomes (since they are
outside the c plate) but are specific to each sample (since they are inside the s plate), while the HMM parameters AM , πM are
shared across chromosomes and samples. The differences between BFL-HMM and H-HMM are that Mct ∈ {L, G, N, U} in H-
HMM whereas Mct ∈ {L, G, N} in BFL-HMM and FL-HMM. Also, H-HMM has Markovian dynamics on the Zs

ct process (see
the horizontal links and the new AZ , πZ parameters).

Dir(δπM ), where the matrix of pseudocounts δM encoura-
ges self-transitions, and δπM encourages the neutral state. For
the observation variance, we use λs

j ∼ Ga(αs
j , β

s
j ), where

λs
j = 1/σs

j is the precision, and Ga is a gamma density. We set
the hyper-parameters in a data driven way as follows. We set
αs

j = 1 + σs to encode the expected variance, where σs is the
empirical variance of sample s, and βs

j = 1 to reflect that this
is a weak prior.

For the observation mean, we use a Gaussian prior, µs
j ∼

N (ms
j , ν

s
j ). We set the hyper-parameters in a data-driven way

as follows: ms
1 = −σs, ms

2 = 0, and ms
3 = σs. We set the

mean of state 2 to zero based on the assumption the data has
been normalised so that the neutral state usually corresponds to
a log ratio of 0. We set the mean of the aberrated states to reflect
the typical deviations expected in this sample. This allows the
model to adapt to automatically different noise levels coming
from different samples or even different platforms. We set the
prior variance on the mean to νs

j = 10−3. This was chosen to
reflect that our method for choosing µs

j was appropriate in the
majority of the data we have observed.

To ensure identifiability of the hidden states (i.e., to ensure
state 1 means loss, 2 means neutral and 3 means gain), we
use a truncated Gaussian on µs

j , to ensure µs
1 < µs

2 <
µs

3. The truncation bounds are set in a similar way to the
hyper-parameters.

Let θ = (µ1:S
1:K , σ1:S

1:K , AM , πM ) be all the parameters of the
model. We can estimate the parameters of this model, p(θ|D),
using a Markov chain Monte Carlo (MCMC) algorithm called
blocked Gibbs sampling (Scott, 2002). This entails alternating
between sampling M1:T as a block using the forwards-filtering

backwards-sampling (FFBS) algorithm, and sampling the para-
meters individually conditioned on M1:T and the data: see
Algorithm 1 for details. Alternatively, we can compute a point
estimate, θMAP = arg maxθ p(D|θ)p(θ), using the EM
algorithm.

Parameter initialisation is done by setting µs
j , σ

s
j using a heu-

ristic method analogous to one iteration of K-means clustering.
Using the prior means ms

1:K as initial values for the centro-
ids, the data in each sample are assigned to the nearest centroid
based on the Gaussian probability density function. Based on
these label assignments, µs

k, σs
k are inferred using maximum

likelihood estimation. We initialize AM with 0.9 on the dia-
gonals and 0.1 spread over the remaining entries. We initialize
πM to favor neutral states. We can then run EM/ MCMC.

3.3 Buffered factored likelihood HMM
(BFL-HMM)

The problem with the FL-HMM model is that Mt is summari-
zing the raw data Y 1:S

t . If any single sample at a given position
has a large deviation from neutral, the master is likely to think
that location is aberrated (because the neutral state cannot gene-
rate large aberrations). Thus large but rare deviations will be
added to the profile. (This problem was also noticed by Lip-
son et al. (2006).) A simple fix to this is to add a “buffer” to
each observation, Zs

t ∈ {L, N, G}, which is responsible for
generating the observation Y s

t . Now the master will summa-
rize these discrete states rather than the raw data. A key point
is that in contrast to the AF model, we estimate Z and M
simultaneously. See Figure 2(b).

In more detail the BFL-HMM can be defined as follows.
The “slave” Zs

t processes are modeled as noisy versions of the

4



Algorithm 1 Blocked Gibbs sampling algorithm for H-HMM.
We omit the πM and πZ terms for brevity. FFBS stands for
forwards-filtering backwards-sampling.

1: for iter = 1, 2, . . . do
2: /* Sample states (E step) */
3: for t = 1 : T do
4: B(j, t) =

 Q
s Aε(j, Z

s
t ) if j ∈ {L, G, N}Q

s AZ(Zs
t−1, Z

s
t ) if j = U

5: end for
6: M1:T ∼ FFBS(AM , B1:T )
7: for s = 1 : S do
8: for t = 1 : T do
9: B(j, t) = N (ys

t |µs
j , σ

s
j )

10: At
Z(i, j) =


Aε(Mt, j) if Mt ∈ {L, G, N}
AZ(i, j) if Mt = U

11: end for
12: Zs

1:T ∼ FFBS(A1:T
Z , B1:T )

13: end for
14: /* Sample parameters (M step) */
15: AM ∼ Dir(δM +

P
c,t I(Mct = i, Mc,t+1 = j))

16: CZ =
P

c,s,t I(Zs
ct = i, Zs

c,t+1 = j)I(Mt = U))
17: AZ ∼ Dir(δZ + CZ)
18: for s = 1 : S do
19: for j = 1 : K do
20: ns

j =
P

c,t I(Zs
ct = j)

21: ȳs
j = 1

ns
j

P
c,t I(Zs

ct = j)ys
ct

22: λ̄s
j = 1

ns
j
(νs

j
)2+(σs

j
)2

23: 1
(σ̄s

j
)2

= 1
(νs

j
)2

+
ns

j

(σs
j
)2

24: µs
j ∼ N

“
λ̄s

j((σ
s
j )

2ms
j + ns

j(ν
s
j )2ȳs

j ),
¯(σs
j)

2
”

25: β̄s
j = 1

2

Pns
j

n=1(I(Zs
ct = j)(ys

ct − ȳs
j ))

2

26: λs
j ∼ Ga(αs

j + ns
j/2, βs

j + β̄s
j )

27: end for
28: end for
29: end for

master process: p(Zs
t = j|Mt = k) = Aε(j, k), where

Aε =

0@ ε 1−ε
2

1−ε
2

1−ε
2

ε 1−ε
2

1−ε
2

1−ε
2

ε

1A
Here ε is the probability that the slave copies the master state. If
we set ε = 0, the slaves never copy the master, so the posterior
profile will equal the prior profile, i.e., we will not have lear-
ned anything, since Mt will be disconnected from the data Y s

t .
As we increase ε, each slave is influenced by the master with
increased strength. Thus more of the samples will get reflected
in the profile. If we set ε = 1, we are requiring that the slaves
perfectly copy the master. This reduces to the FL-HMM model.
In practice, we find it best to set ε ∼ 0.8. See Section 5 for
further discussion on the effect of ε. We can estimate the para-
meters in this model using MCMC or EM. We simply modify
the algorithm to handle the fact that the observation model is

now (a product of) a mixture of Gaussians, with mixing weights
p(Zs

t = j|Mt = k). We omit details due to lack of space.

3.4 Hierarchical HMM (H-HMM)
The problem with the BFL-HMM is that the slaves have to
copy the master with probability ε at every location, even if this
location is highly variable. We extend the model by adding an
undefined (don’t-care) state U to the master. Now if Mt = U ,
the slaves follow their own private Markovian dynamics, mode-
ling local runs which are not shared, as shown in Figure 2(c).
If Mt 6= U , they copy the master with probability ε as before:

p(Zs
t |Zs

t−1, Mt, AZ , Aε) =
AZ(Zs

t−1, Z
s
t ) if Mt = U

Aε(Mt, Z
s
t ) if Mt ∈ {L, N, G}

The effect of this is that only highly conserved regions are sto-
red in the profile; in the highly variable regions, the profile says
“undefined”. This makes the profile sparser, and easier to inter-
pret. This is shown below in Section 5. The degree of sparsity is
controlled by ε: as we increase ε, the sparsity decreases, since
more of the slaves influence the master.

Estimating the parameters in this model is harder, since all
the Zs chains become coupled due to explaining away (c.f.,
factorial HMMs (Ghahramani and Jordan, 1997)). However,
conditioned on M1:T , the Zs

1:T are independent and can be
sampled in parallel using FFBS, so blocked Gibbs sampling
is still easy. See Algorithm 1 for details. An interesting feature
of this model is that there are competing processes to explain
the slaves. If the slave copies the master, its conditional pro-
bability distribution (CPD) is determined by Aε, otherwise the
CPD is determined by AZ . Since AZ is potentially estimated
from a large subset of the data, it tends to converge to have dia-
gonal values near 1. In contrast Aε is fixed and therefore can
be overwhelmed by the slave process. To avoid this, we use a
strong prior on AZ to discourage it from reaching near 1 on the
diagonals, but still allowing it to be estimated from the data.
This results in a ’fairer’ competition between the AZ process
and the Aε process.

We initialize the parameters as in the FL-HMM model. To
initialize the states, we first sample each Zs

1:T using FFBS,
with the master process turned off. We then initialize Mt to be
the consensus (majority) state across Z1:S

t . The EM algorithm
for the H-HMM is similar to the MCMC algorithm except we
maximize the parameters instead of sampling them. Prelimi-
nary comparisons indicate that EM tends to converge faster but
gives poorer results, perhaps because it is more prone to getting
stuck in local optima.

3.5 Running time
Parameter estimation in all 4 models takes O(T ) time. This
makes the technique scalable for use in high density oligo-
nucleotide arrays or SNP arrays, frequently used for DNA
copy number analysis, that may contain 500,000 or more pro-
bes per experiment. In practice the running time depends on
the number of EM/MCMC iterations. For EM on the H-HMM
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model, we find the system converges within about 10 steps and
takes about 90 minutes to learn a model from 20 samples with
32,000 probes each. (All experiments were performed in Mat-
lab 7.2.0.294 (R2006a) on a Intel Xeon CPU @2.4GHz.) EM
for the BFL-HMM and FL-HMM is much faster, since the E
step can be performed exactly using the forwards-backwards
algorithm, avoiding a Monte Carlo approximation.

4 QUANTITATIVE RESULTS ON SYNTHETIC
DATA

Real data sets rarely have fully verified ground truth locations
of recurrent CNAs. Thus, applying standard metrics to assess
accuracy on real data is difficult. To overcome this, we created a
synthetic data set derived from real data. We used eight mantle
cell lymphoma samples originally published in de Leeuw et al.
(2004) and used for a qualitative assessment in Rouveirol et al.
(2006) and modified it to give us ground truth CNAs. We used
the data for chromsomome 20 (672 probes) which was reported
to be relatively free of CNAs. We permuted the order of the data
for each sample so as to remove any undetected shared signals
that may be present across samples. We then inserted a recur-
rent CNA gain and a recurrent CNA loss at fixed positions of
width w, in a fraction f of the samples. The clones within the
region were shifted up/down (for gain/loss) by σsτ where s is
one of the chosen samples, σs is the empirical variance of that
sample, and τ is the signal to noise ratio (SNR). Thus σsτs pre-
serves the sample-specific heterogeneity of the noise. In order
to “soften” the borders of the aberrations, we extended the bor-
ders by γ probes, where γ ∼ Gam(α, 1) (α proportional to
w - see text below). Here γ was sampled independently for
each sample to ensure the exact borders of the aberrations were
not shared. Finally, for each sample, we randomly sampled a
location outside of the ground truth recurrent CNA and inser-
ted a gain or loss (randomly chosen) of width w′. Figure 3 (a)
shows an example of the synthetic data for w = 50, f = 0.75,
τ = 0.9, w′ = 100 (∼ 15% of the chromosome). The recurrent
loss is at position 100-149 and the recurrent gain is at position
450-499. Comparing this figure to the real data in Figure 1, we
see that the synthetic data is quite realistic and challenging.

We evaluated AF, FL-HMM, BFL-HMM and H-HMM on
synthetic data for w = (1, 10, 50), f = (1/2, 3/4, 1), α =
(1, 5, 10) and τ = (0.3, 0.6, 0.9, 1.2). For the BFL-HMM
and the H-HMM, we set ε = (0.8). Note for this large scale
experiment we used (Monte Carlo) EM instead of MCMC for
inference, to save time. However, preliminary results suggest
that MCMC does work better, despite its increased cost.

We computed receiver operator characteristic (ROC) curves
based on p(Mt = A) = p(Mt = L) + p(Mt = G) where
p(Mt = A) is the probability that a recurrent CNA is predicted
at position t. Using the ground truth labeling of the data, the
false positive rate (FPR) is defined as FP

N
the number of pro-

bes incorrectly predicted as a CNA (FP) over the total number
of non-CNA probes. The true positive rate is defined as TP

P
,

the number of correctly predicted CNA probes (TP) over the
true number of CNA probes. We plotted TPR vs FPR curves

and calculated area under this curve (AUC) as a measure of
accuracy to test the effect over w,f ,τ and ε across the various
models.

Figure 3(b) shows a single summary ROC plot combining
results for all values of w,f ,τ and depicts the overall accuracy
performance of the models. H-HMM had the highest accu-
racy (AUC=0.87) followed by BFL-HMM (AUC=0.82), AF
(AUC=0.77) and FL (0.55). Figure 3(c) shows the mean AUC
over for every setting of w,f ,τ (repeated three times). The
mean and standard error AUC for the models was 0.84±0.01
for H-HMM, 0.82±0.01 for BFL-HMM, 0.76±0.01 for AF
and 0.59± 0.01 for FL-HMM. H-HMM and BFL-HMM were
significantly more accurate than AF and FL-HMM (one way
ANOVA, p� 0.01). Although H-HMM had slightly higher
mean of AUC than BFL-HMM, the result was not statistically
significant. However, we show in the next section on lung can-
cer data that in practice, the H-HMM is considerably more
useful to the investigator as it returns sparser, yet accurate
predictions.

5 QUALITATIVE RESULTS ON LUNG CANCER
DATA

Ultimately we are interested in applying a model to aCGH data
from clinically relevant samples. To compare the output charac-
teristics of the various models, we ran the algorithms on aCGH
samples from 39 well-studied lung cancer cell lines, originally
published in (Coe et al., 2006; Garnis et al., 2006). This data is
particularly relevant since phenotype-specific patterns of recur-
rent CNAs have been experimentally validated. The samples
can be subdivided into four groups: NSCLC Adenocarcinoma
(NA), NSCLC Squamous cell carcinoma (NS), SCLC classical
(SC) and SCLC variant (SV). Eighteen samples are NA, seven
are NS, nine are SC and five are SV. This data has been rigou-
rously studied and discordant shared patterns validated using
PCR and gene expression have been identified across the major
and minor groups (Coe et al., 2006; Garnis et al., 2006). We
fit separate profiles φg

1:T , one per group, using each of the four
models and we qualitatively assess the characteristics and bio-
logical relevance of the output, using results reported in Coe
et al. (2006) as a guide.

The experiments on synthetic data showed H-HMM and
BFL-HMM are the best models. In this section we show how
the explicit modeling of the ambiguity in the data by H-HMM
displays a clear advantage over the other models. Recall that
in Figure 1 we showed parts of chromomomes 8, 9, and 1 to
illustrate different types of recurrent CNAs at important locati-
ons. Figures 4 and 5 show the output of H-HMM (ε = 0.8),
BFL-HMM, FL-HMM and AF on the full chromosome 8 and
the p-arm of chromosome 9. p(Mt = gain) is plotted in green
and p(Mt = loss) is plotted in red. The clear trend is that H-
HMM has sparser output and clearly predicts important regions
in isolation. Note arrows at MYC and CA9 for comparison to
Figure 1. A similar result was seen for chromosome 1 at the
TPFRSF4 and TP73 loci (see Figure 6 for results of H-HMM).
Notice that BFL-HMM and FL-HMM also predict CNAs at
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(a) (b) (c)

Fig. 3. (a) Example of the simulated data for w = 50, τ = 0.9 and f = 0.75. Green lines (on the right) bound an inserted CNA gain, and red lines
(on the left) bound an inserted CNA deletion. (b) ROC plot for the synthetic data for H-HMM (green stars), BFL-HMM (blue crosses), FL (red
triangles) and AF (purple circles). TPR and FPR were calculated using results for all data, and therefore represent a summary of how the models
compare over w, τ , f and ε. AUC for each model is indicated in brackets in the legend. H-HMM had the best performance overall (AUC=0.87),
followed by BFL-HMM (AUC=0.82), AF (AUC=0.77) and FL (0.55). (c) Distributions of AUC for H-HMM, BFL-HMM, FL-HMM and AF over
all values of w, τ , f and ε. H-HMM and BFL-HMM had statistically significantly better performance than AF and FL-HMM (one way ANOVA
(p� 0.01). Whiskers indicate standard error bars. The mean and standard error AUC for the models was 0.84±0.01 for H-HMM, 0.82±0.01 for
BFL-HMM, 0.76±0.01 for AF and 0.59± 0.01 for FL-HMM.

Fig. 4. Output from top to bottom of H-HMM, BFL-HMM, FL-HMM
and AF for the NA group, chromosome 8. The x-axis is the chromoso-
mal position and the y-axis is predicted probability. Red plots indicate
p(Mt = L) and green plots indicate p(Mt = G). Note the sparse, yet
accurate predictions for the H-HMM at the MYC locus (recall Figure 1
(c)) and the p-arm loss prediction which recapitulates known results
(Garnis et al., 2006). The other models either overpredict (BFL-HMM,
FL-HMM) or underpredict (AF) the shared aberrations.

these important genes. However it is quite evident that they
both overpredict, making it hard for an investigator to discern
biologically relevant CNAs from spurious predictions. From
Figure 4, we also see that AF has a peak at the MYC locus,
but is unable to detect the recurrent CNA at CA9 (Figure 5)
with high frequency. In all 3 generative models, the signal is
clearly predicted.

Considering Figure 4 in more detail, the p-arm (left) has a
relatively high frequency of deletion and this is cleanly pre-
dicted by all models. In constrast, the centromeric half of the

Fig. 5. Output from top to bottom of H-HMM, BFL-HMM, FL-HMM
and AF for the NA group for the p-arm of chromosome 9. (see Figure 4
for axes description). Similar to Figure 4, notice the sparse, yet accurate
predictions for the H-HMM especially at the single probe CA9 locus
(recall Figure 1(b)). The AF method does not predict CA9. BFL-HMM
and FL-HMM both predict CA9, however they are over-predicting
many other regions not likely to be shared CNAs.

q-arm shows ambiguity in the AF plot. Both BFL-HMM and
FL-HMM are unable to resolve the ambiguity as they are for-
ced into a {L, N, G} state, while the H-HMM can ’opt-out’
of making a consensus prediction at these locations, choo-
sing only to predict a CNA when the data cleanly support one
(eg MYC locus). This illustrates the sparsity of the H-HMM
compared to the other models.

The combination of sparsity due to modeling ambiguity and
the ability to tune ε allows the user to effectively set the false
positive rate of the H-HMM. An example of the value of this
is shown in Figure 6, displaying the results for group SC for
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Fig. 6. Output from H-HMM on chromosome 1 for different values of
ε for SC group. For ε ≥ 0.8, gain probability ’peaks’ correspond to
locations of several genes (annotated with arrow) implicated in lung or
other cancers.

various values of ε. The sparse output for ε = 0.8 reveals isola-
ted peaks of high probability at locations of genes (TNFRSF4,
TP73, TNFRSF9, ZNF151, E2F2, FGR, EIF3S2, DMAP1,
FUBP1, RAB13, HDGF, PPCC, NTRK1, TRAF5), whose
expression is known to be altered in lung or other cancers. For
example, ZNF151 and E2F2 were found to have copy number
induced gene expression changes in Coe et al. (2006). Intere-
stingly, the H-HMM predicts the TP73 region as a narrow loss
embedded within the gain region harbouring TNFRSF4 shown
in Figure 1(c). TP73 was detected at only 22% frequency in AF
and was not detected at all in BFL-HMM. Additional relatively
narrow but high probability peaks correspond to the EIF3S2
locus, which mediates the TGF-β pathway, FUBP1 a transcrip-
tional activator of MYC and the co-amplification of TNFRSF4
and TRAF5, which are known interactors and activators in
the NF-κB pathway (Kawamata et al., 1998). These results
are computational predictions, yet many provide compelling
evidence that they merit experimental follow up.

To investigate whether H-HMM recapitulates the results in
(Coe et al., 2006), we examined a subset of genes reported to
be differentially disrupted in the two major groups, NSCLC
and SCLC. These 22 genes are involved in key lung can-
cer pathways and therefore represent a highly relevant set of
markers as a reference to assess our output. The H-HMM pre-
dicted shared aberrations in regions harbouring 14 of the 22
genes in at least 1 of the subgroups of NSCLC and SCLC.
We counted a prediction if p(Mt = L) > 0.5, or p(Mt =
G) > 0.5 for losses and gains respectively. The predicted genes
included STMN1, E2F2, SC, ZNF151, ID2, MAPK9, EGFR,
CDK2NA, KNTC1, HMGB1, HSPH1, JJAZ1, NLK, JUNB,
TIAM1, DSCAM. Five of the regions were detected at ε ≤ 0.7,
eleven at ε ≤ 0.9 and the remaining regions at ε = 0.95. This
gives us a reasonable estimate for how to calibrate ε in order
to predict relevant CNAs. The H-HMM did not predict recur-
rent CNAs harbouring the remaining genes PRDM2, SOX11,
MAP3K4, ING1, SMAD4, CCDC5, TCF4.

Fig. 7. H-HMM output for chromosome 9 showing discordant patterns
among the lung cancer groups (NA, NS, SC, SV).

We assessed if the H-HMM could determine differences in
the profiles of the phenotypic groups (NA, NS, SC, SV), as this
was part of the focus of the study of Coe et al. (2006) and Gar-
nis et al. (2006). Figure 7 shows that the H-HMM produces
very different profiles for chromosomes 9 across the different
subgroups. This example chromosome were chosen as is was
previously shown to have different patterns of CNA (Coe et al.,
2006; Garnis et al., 2006). Although anecdotal, our qualitative
results give us confidence that the H-HMM is predicting biolo-
gically relevant recurrent CNAs. Combined with the result that
the H-HMM is sparser in its output, we believe the H-HMM has
the right characteristics of presenting biologically meaningful
results to the investigator while maintaining a low false positive
rate.

6 DISCUSSION AND FUTURE WORK
We developed three novel methods that extend the single sam-
ple HMM for aCGH to the multiple sample case in order to
infer recurrent CNAs. Our results indicate that the H-HMM,
which simultaneously infers discrete labels for the samples
and promotes sparsity by modeling ambiguity in the data is
quantitatively and qualitatively better than simpler models and
standard methods. In informal qualitative assessment we sho-
wed that the H-HMM produces meaningful biological output
when compared to a list of experimentally validated genes. The
H-HMM was able to detect previously reported discordant pat-
terns among the lung cancer groups - a key requirement to
determine phenotype specific CNA patterns.

Subgroup discovery A natural extension to the H-HMM
model is to consider the case where the samples in the data
come from two or more groups. This suggests unsupervised
clustering of the data, a problem recently examined by Liu
et al. (2006), who compared distance metrics in a hierarchi-
cal clustering framework. We will investigate this problem by
considering a mixture of master sequences that determine sub-
groups and simultaneously infer recurrent CNAs specific to
each subgroup. This would be a natural extension to our current
H-HMM framework.
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Copy number variations A fraction of the recurring CNAs
identified by our algorithm can be attributed to segmental copy
number variations (CNV) in the human population (Redon
et al., 2006). These variations are not the consequence of soma-
tic alteration in tumor DNA but are naturally occurring copy
number states. This suggests they should be filtered out of the
output, but it is important to consider the potential contribution
of CNVs to disease susceptibility, as such segmental variati-
ons overlap with genes associated with phenotypes in humans
(Wong et al., 2007). The frequent occurrence of a given CNV
in a cohort of cancer patients relative to healthy individuals
would raise the possibility of an association between the copy
number state and cancer susceptibility. The H-HMM will facili-
tate the detection of such occurrences, and the identification of
susceptibility genes through CNV status will become feasible
as databases of aCGH profiles of tumors expand.

Epigenomic arrays In addition to gene dosage alterati-
ons in CNAs, epigenetic alterations such as changes in DNA
methylation status of gene may result in aberrant silencing or
inappropriate activation of genes in cancer. Recent develop-
ment of microarray based methods for whole genome analysis
of methylation status (or methylome profiling) has enabled a
new approach to cancer gene discovery (Weber et al., 2005).
Future adaptation of the statistical strategy described in this
paper will expedite the detection of recurring epigenetic alte-
rations, and facilitate the integration of genetic and epigenetic
data.
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