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Abstract

We show how many different variants of Switching Kalman Filter models can be represented in a
unified way, leading to a single, general-purpose inference algorithm. We then show how to find approx-
imate Maximum Likelihood Estimates of the parameters using the EM algorithm, extending previous
results on learning using EM in the non-switching case [DRO93, GH96a] and in the switching, but fully
observed, case [Ham90].

1 Introduction

Dynamical systems are often assumed to be linear and subject to Gaussian noise. This model, called the
Linear Dynamical System (LDS) model, can be defined as

xX; = AXeo1+ vy

Y. = Cixi+wy

where x; is the hidden state variable at time ¢, y, is the observation at time ¢, and v; ~ N(0,Q;) and

w; ~ N (0, R;) are independent Gaussian noise sources. Typically the parameters of the model @ = {( A, Ct, Q, Ry) }
are assumed to be time-invariant, so that they can be estimated from data using e.g., EM [GH96a]. One

of the main advantages of this model is that there is an efficient algorithm for performing inference (i.e.,
computing the belief state P(X:|y;.)), the well-known Kalman filter, and its generalization to the offline

case, the Rauch-Tung-Strieber smoother (for computing P(X¢|y,.7), where y,.p is all the observed data).

Unfortunately, most systems are not linear and are subject to non-Gaussian noise. One approach to this
problem is to discretize the (hidden) state variables, resulting in Dynamic Bayesian Networks [DW91, Gha97],
of which the Hidden Markov Model (HMM) [Rab89] is the simplest example. However, the resulting system
will in general have a belief state that is exponential in the number of hidden state variables, resulting in
intractable inference. In addition, it may also have a large number of parameters, resulting in inefficient
learning (i.e., a lot of data is needed).

Another approach, and the one we take in this paper, 1s to have a bank of M different linear models, and to
switch between them or take some linear combination of them.

Let us first consider the case where the dynamics are piecewise linear. We have a discrete switch variable S5;
which specifies which A/Q matrix to use at time ¢. We assume S; has Markovian dynamics (with transition
matrix Z and initial distribution 7 1). This model is shown in Figure 1(a).

' Thus 1/Z(%,7) is the expected time we spend in state/mode ¢ before switching. We can change the distribution on the
length of each linear segment by explicitely modeling how long we spend in each state [Rab89, KRHE96].
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Figure 1: Some switching Kalman filter models represented as Bayesian networks [Pea88]. Square nodes are
discrete, oval ones are Gaussian. Shaded nodes are observed, clear nodes are hidden.

If Sy were observed, we would know when to apply each submodel (i.e., the segmentation would be known),
but since S is hidden, we use a weighted combination of each sub-model, where the weights are given by
Pr(S; = ilyy.). This is called “soft switching”. Hence the resulting system can be thought of as a mixture
of Kalman filters. For example, we might be interested in tracking a maneuvering airplane. If the two
basic models cover horizontal and vertical motion, then we can represent turns using a convex combination.
SKF’s have been shown [BSL93] to give superior performance to online adapative methods (such as Input
Estimation) for problems such as these.

Let us now consider the case where S; specifies which observation matrices C'/ R to use at time ¢. This can be
used to model non-Gaussian observation noise, by approximating it as a mixture of Gaussians. For example,
we might take ()1 to be the covariance of the observation process, and ()2 to be a very broad covariance
(e.g., approximately uniform). The prior probability of S; reflects how often we expect outliers to occur.
This is a widely used technique for making linear regression more robust, see e.g., [PG88], and for modelling

sensor failure [Wil76].

Recently, Ghahrhamani et al. [GH96b] have proposed the model shown in Figure 1(c). This also has
switching observations, but the interpretation is different. The switch variable in this case can be thought of
as “selecting” one of the sub-processes to pass through to the output variable or as choosing a permutation

matrix C; to apply, to model the fact that we are uncertain about which process causes which observation
[SS91]; this is called data association ambiguity [BSF88].2

Of course, we can make both the dynamics and the observation model dependent on S; (or on two separate
Markov chains). This is the most general case that we will assume for the rest of this paper. We will also be
concerned with the special case in which C'= I, so we get to observe X directly (see Figure 1(d)). This is
called a Switching Auto Regression model. SAR models are computationally much simpler than SKFs (no
approximations are necessary to do inference, as we will see), since the only hidden node is discrete.

20f course, in practice, we need to deal with the fact that the number of objects we are tracking, and the number of
measurements we receive at each time step, is not constant.



2 Inference

The fundamental problem with SKFs is that the belief state grows exponentially with time. To see this,
suppose that the initial distribution p(X;) is a mixture of M Gaussians, one for each value of S;. Then
each of these must be propogated through M different equations (one for each value of S2), so that p(Xa)
will be a mixture of M? Gaussians. In general, at time ¢, the belief state p(X;|y,,) will be a mixture of M*
Gaussians, one for each possible model history S7,...,S;. There are several general approaches to dealing
with this exponential growth [SM80]:

o Collapsing: approximate the mixture of M* Gaussians with a mixture of r Gaussians. This is called
the Generalized Pseudo Bayesian algorithm of order » (GPB(r)) (see e.g., [BSL93, Kim94]). When
r = 1, we approximate a mixture of Gaussians with a single Gaussian using moment matching; this
can be shown (e.g., [Lau96]) to be the best (in the KL sense) single Gaussian approximation. When
r = 2, we “collapse” Gaussians which differ in their history two steps ago; in general, these will be
more similar than Gaussians that differ in their more recent history. The Interacting Multiple Models
(IMM) algorithm [BSL93] is a good approximation to GPB2 at the cost of only M (instead of M?)
filters (see Figure 2), although it cannot be used for smoothing. Not surprisingly, the more history we
keep, the better the approximation [SM80]. See Figure 2 for a comparison of GPB1, GPB2, and the
IMM filtering algorithms.

e Selection: only keep the high-probability paths in the tree of model histories. This technique is widely
used for filtering when there is data association ambiguity, when it is called Multiple Hypothesis
Tracking [BSF88].

o [terative: we can sample the missing values using MCMC methods and collect averaged statistics
[CK96, BMRI8]. More simply, we can alternate between picking good segmentations (i.e., the most
likely sequence of S;’s, c.f. the Viterbi algorithm for HMMs) and doing inference using a fixed segmen-
tation. Alternatively, we could use weighted combinations of the matrices instead of the “best” matrix
at each step [SM80].

e Variational: essentially we break all the vertical links in the model, but introduce new variational
parameters to couple them together in as tight a way as possible. Using EM with such a model will
maximize a lower bound on the likelihood: see [GHI6b] for details.

In this paper, we focus on the collapsing approximation. One worry is that the errors introduced at each
time step by approximating the posterior might accumulate over time, leading to very poor performance.
However, as shown in [BK98b, BK98a], the stochasticity of the process ensures that the true distribution
“spreads out” and (with high probability) “overlaps” the approximate distribution; hence they are able to
prove that the error remains bounded.

Before delving into the SKF case, we “warm up” by considering the simpler case of the SAR model, for
which we can perform exact inference.

2.1 Switching AR model

We define inference as computing the posterior probabilities Pr(S; = j|xi.7), where x3.7 = y;.p is the
sequence of observations. We do this in two passes. In the forwards pass we proceed as follows.

) 1 ) )
Pr(S: = jlxe, x14-1) = - Pr(x¢|S: = j,x1.4-1) Pr(S: = jlx14-1)



1 . . . .
= 2 Pr(x¢|S: = j,x¢—1) ZPI”(St = jSi—1 = i, x14-1) Pr(Si—1 = d|x1:4-1)

= %Lt(j) Z Z(i,5) Pr(Se—1 = ilx1:4-1)

where ¢ 1s the normalization constant

¢ = Pr(x¢|x1:-1) = Z Le(j) Z Z(i, §) My_1jp—1 (i)

and

Lt(j) = N(Xt;Ath—l, Q])
is the likelihood of the innovation (prediction error) at time ¢ given model j. On the backwards pass, we
have

Pr(S; = jlxip) = ZPF(St = j|Si41 = b, x1.7) Pr(Sey1 = klxi7)
&
= ZPI'(St = j|St41 = k,x1:¢) Pr(Se41 = k|x1.7) *
&

= Z Pr(St = j|xu) Pr(St-H - k|St = j) Pf(5t+1 = k|X1~T)

- Pr(Siy1 = k|x14)

where the line marked * follows since the effect of future evidence on S; is blocked by observing all its children
(St+1 and X;). On a practical note, we remark that, since we are computing the conditional probability
Pr(S¢|x1:¢), as opposed to the joint probability Pr(S:,x1.4) as in an HMM, we do not need to worry about
underflow and hence do not need scaling [Rab89].

2.2 Switching Kalman filter model

In what follows, we review the GPB2 algorithm; GPB1 and IMM cannot be used since we need to reason
about two consecutive time steps to calculate the cross-variance term needed for EM.

Let us start by defining some notation.

xif‘i) = E[Xiy,,, Si—1 =1,5 =j]
xi]yT)k = E[Xilyy.,, S =3,S41 =k]
X‘Z|7— = E [Xt|y1:7_, St = ]]

If 7 = ¢, these are called filtered statistics; if 7 > ¢, they are called smoothed statistics; and if 7 < ¢, they
are called predicted statistics. Notice how the superscript inside the brackets 1s the value of the switch node
at time ¢ (the subscript value); the superscript to the left is the value of S;_1, and to the right, Siy1. We
need these subtle distinctions to handle the cross-variance terms correctly. We also define the following.

V{{T = Cov[Xly;.,, S =]
‘/t{t—lh = Cov X, Xi-1]y1.r, St = J]
‘/tl;ij—)lh = Cov X, X¢o1lyy.,, Si—1 = 1,5 = j]
Mi_q147(4,5) = Pr(Si—1 =14,5 = jlyi..)
My-(j) = Pr(S:=Jjlyi,)
L‘Z = Pr(yelyia—1, 5t =J)
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Figure 2: The GPB1, GPB2 and IMM algorithms. Each of the filters takes an extra input, y,, and returns

an extra output, L¢, which is not shown for clarity.



(L‘Z is the likelihood of the innovation at time ¢, given that the current model is j.)

2.3 Filtering

We perform the following steps in sequence.

(Xifi)’th|(t])’vtl,§]—)1|t’[é(])) = Fﬂter(xi—ut—l’Vti—1|t—1’yﬁFj’Hj’Qj’Rj)
.o . . Lt(iaj)Z(iaj)Mt—Ht—l(i)
M, _ t,j) = Pr(Sic1 =45 =jlyi4) = — -
=) Sts =05 =) = S T N 26 ) M1 ()
Mt|t(j) = ZMt—l,ﬂt(iaj)
Wi = Pr(Si—1 =S = j,¥1.4) = M1 ,ee(i, )/ Mo (5)
(X‘th, thl ) = Collapse(xil(f), thlgj)’ WZ'J)

The definitions of the filter, smoother and collapse operators are given in Appendix A; for a derivation, see
e.g., [BSLI3]; for the derivation of the cross-variance term, see [DRO93]; the deriviation of the mode update
equation is as follows.

) . 1 ) .
PI'(St—l =1,5 = .7|YtaY1:t—1) = - PI’(St—1 =1,5 = ]aYt|Y1:t—1)
1 . . . .
= E Pr(yt|St—1 =1, St = ]aYLt—l) Pr(St—l =1, St = .7|Y1:t—1)

1 . . . . .
= E Pr(yt|St—1 =1, St = ]aYLt—l) Pr(St = .7|St—1 = ZaYl:t—l) Pr(St—l = Z’ylzt—l)

1 .. .. .
ELt(Za])Z(Za])Mt—Ht—l(l)
where ¢ 1s the normalization constant

c= Z Z Lt(iaj)Z(iaj)Mt—llt—l(i)

The initial conditions are as follows. We set the predicted mean and variance based on no evidence to be

x{lo = E[Xy]|5 = j] = ¢ and Vﬂo = Cov [X]S) = j] = X7, and we set Mg = 7.

2.4 Smoothing

We perform the following steps in sequence.

(k1 0k 1r0(k) _ k k oy ok (k) )
(Xt|T 5 Vt|T 5 Vt+1,t|T) = SmOOth(XHlIT’ Vv Xt Vt|t’ Vitietn Vt+1,t|t+1’ Fie, Qk)

My (7) 2 (5, k)

UR = Pr(S, = j[Sia1 =k, yi0) & mACARY
t ( t | t+1 1.T) Zj' Mt|t(]/)Z(]/ak)
M e, k) = UiylkMt+1|T(k)
Mt|T(j) = ZMt,H—HT(ja k)
%



Wtklj = Pr(Sep1 = kK|St = j,y1.0) = Me g2 (5, k) [ Myy2(5)

()i Vig) = Collapse(x(]), ViR wi)
(xuyr, Vyr) = Collapse(x] 7, Vi, Myz (4))
X‘Z-(fl)|T = Elxlyir, Sy =k, S =1~ xfyp
Viigr = CollapseCross(x/ ) xiy, VY UF)
XEE = EXiy g, Sip1 =k = in{%kUglk
j
Vivrgr = CollapseCross(xf_l_llT, XE?;’ thfl—l,ﬂT’ Myyqyr (k)

The line marked * is a standard approximation [Kim94], derived as follows.
Pr(Se = jlSt41 = k,yrr) = Pr(Se = j|Sit1 = k,y1)
Pr(S; = jlyy.) Pr(Sir = K|S = j)
Pr(Sit1 = klyi,)

where the approximation arised because S; is not conditionally independent of the future evidencey, 1,...,yr
given S;y1.3 This approximation will not be too bad provided future evidence does not contain much infor-
mation about S; beyond than that contained in Siqq.

3 Learning

Once again, we start by considering the simpler SAR case before extending it to the SKF case.

3.1 Switching AR model

We are interested in finding the Maximum Likelihood estimate of the parameters. If we knew the segmen-
tation (i.e., which model to apply at each time step), we could solve this using linear regression. Since the
St values are unobserved, we shall use EM (c.f., [Ham90]).

The complete data log likelihood is

T T
L=log P(x10,Sir) = Y _log P(xi[xi—1,5) + Y _log Pr(S;[S;_1) +log P(x1]S1) + log Pr(S))

t=2 t=2
where
P(St = j|St_1 = Z) = Z(Z,j)
1

P(xelxi-1, 50 = j) = exp (=[x — Ajxe 1]/ Q5 Hxe — Ajxi_1)) (2m)7"21Q;72
P(S1=j)=m;

3The best way to see this is in terms of the directed graphical model. Recall that a node is conditionally independent of
its non-descendants given its parents [Pea88]. Hence S; is independent of past evidence given only its parent S;_;. However,
all of S¢’s children need to be observed to block the effect of future evidence (observing S;41 is not enough because the arrow
points the “wrong” way). In the AR model, all of S;’s children (namely Y: and St41) are observed, but this is not the case in
the general model (since X is not observed).



P(x1]S1 = j) = N, %)

In EM, we iteratively maximize (w.r.t. the parameters §) the expected value (w.r.t. the parameters §°¢) of
the complete data log likelihood:

L = Epes,rximlL]
= Z . .ZP(XLT,S1:T;QOId)IOgP(XliT’SLT;g)
S1 St

T
P(XLT)ZZ Z P(Sir|xir) | log P(xe[xe—1,5) + -+
t=2 5, {5, ,7#t}
T .
= P(XLT)ZZ ngOgP(Xt|Xt_1’St:j)+...

t=2 Sy=j

where the weights Wt] = Pr(S; = j|x1.7) were computed during the inference step, and we have used the fact
that X; L S;|X;_1,S; for all 7 # ¢ (since a node is independent of its non-descendants given its parents).

To maximize this equation, we take derivatives and set to 0; intuitively, the derivative will kill all terms but
one 1n the summation over S;, resulting in a weighted version of the standard formulas: see Appendix B
for details. Assuming we have N iid sequences, indexed by £, we find (where x; = x;, P, = xx; and
Pt,t—l = thll_l)

T T -1
A = (ZZW;’Pt,t_l) (ZZW;’Pt_l)
L t=2 L t=2
1 T . T
R DAL
Z 2o Wi
v = Wit =) (% =) 3 Wixaxy — (3, Wix) — (0, Wixn)ui + 2, Wi pant
Z e Wi > Wi
2j) = DelazaPrlSio1=i5 =)
202 Wi
1 .
T = N;Wf

The formulas for 7 and 7 are the same as for an HMM [Rab89]; the formulas for y; and X; are the same
as for a mixture of Gaussians (see e.g., [Bis95, XJ96])*; and the formulas for 4; and @; are in fact special
cases of linear regression.

These equations are the MLEs for the case in which there are no restrictions on the form of the matrices.
Typically, however, we know that some entries must be 0 or 1 (or some other known value). It can be shown
that the constrained MLE is obtained by first computing the unconstrained MLE as above, and then setting
the constrained entries to their correct values (i.e., projecting onto the allowable subspace). For example, to
estimate a covariance matrix which is constrained to be diagonal, we can compute Q) as above, and then set
the off-diagonal entries to 0.

4We have written the formula for ¥; in the usual form, and also in a form which is easier to compute in an incremental
fashion [NH98] from the sufficient statistics. Remember that X; and W} are functions of £.



To achieve parameter tieing, we pool the expected sufficient statistics for each parameter in the equivalence
class. For example, if we have @); = @) for all ©+ € §, we replace W} with ZiES W} when estimating Q).

A well-known problem with mixtures-of-Gaussians models, even in the non-dynamic case, is that the covari-
ance matrix can easily become singular. Hamilton [Ham90, Ham91] suggests using a Wishart prior [DeG70]
to regularize the problem. In particular, suppose the prior is Ql_l ~ W (ay, Ay), where a; is our equivalent
sample size for the precision matrix A;. Then the MAP estimate of ); is given by

1

L t=2

We have found that setting o; = 0.1NT' (i.e., we imagine we have seen 10% of the data before) and using
A; = a;1 works quite well in practice.

3.2 Switching Kalman filter model

In this case, the complete data log likelihood is given by

T
L = log P(xi7,5171,y1.0) = —% — Crxy]’ t_l[Yt_CtXt])_%Zlog|Rt|
t:l t=1
T T
—% ([Xt - Atxt—l]/Qt_l[Xt - Atxt—l]) - Z og |Qt|
t=2 t=2
_ T(n+m
a1 57 e~ ] - log ] - T ™ jogor
T
+logmy + Zlog Z(St—1,5)
t=2
The quantity we maximise is
L = Epsirxiey, L]
= EP (S1:7,¥ 1.7) |: X1T|51T7y1T)[L]i|
~ Ep (Sv.7,¥1.p) [ P( x1T|y1T
= P(yyr) Z P(Surlyy.r) E[logP(xt|xt_1,St)] +

t=2 5 {ST,T;ét}

= Ply.r) Z > Wi Ellog P(x:|x: -1, 5)] +

t=2 Sy=j

where E[] = E[ly,.z]. The approximation arises because we use E[x;]y, 7] instead of E[x¢|y,p,S1.7],
since the latter is an exponential number of vectors (one for each segmentation). The advantage is that the
formula is now of the same form as Equation 1 for the SAR case (modulo the leading constant factor), with
the following redefinitions:

Wiy Pr(S: = jlyi.r]
)A(t = E[Xt]



P = Elxexi]=Vyr+ xt|Tx;|T
Piior = Elxexi_q]=Vieyr + XtITX;—1|T
Of course, since we have already computed terms like X‘ZlT, th, and VZEJ_)D we could use these instead. In

practice, this doesn’t seem to make much difference, although it does have the advantage that we don’t need
to collapse the cross variance terms (twice) to compute V; ;1 (the last four equations in Section 2.4).

Of course, the new equation for L also has terms involving C; and R;. Maximizing with respect to these
gives (see Appendix B for the derivation):

¢ t=1

T

1 .

R = Y Z Wiy yi— Cz'fity/)

T ; t \Yi¥i ¢
(Zz Zt:l Wy ) ¢ t=1

C

3.3 Deterministic annealing

EM 1s notorious for getting stuck in local minima. This is especially common in models of the kind we
are considering, which have M7 possible segmentations. One solution is to use deterministic annealing EM
[UN98], as suggested in [GHI6b]. In DAEM, we replace the posterior

(where H are the hidden variables and o the observed values) with

Pr(H,o0)?
f(H]o) = S Pi(i, o)

where 3 is an inverse temperature parameter. When 5 = 0 (infinite temperature), the posterior becomes
uniform. When g = 1 (low temperature), the posterior becomes the regular EM posterior. Applying this
principle to the present case, we suggest using

A Appendix: Details of the inference algorithm

A.1 Filter

The Filter operator
(Xepes Vije, Vie—ape, Le) = Filter(x 11, Vic1je—1, Y45 Fr, He, Qt, Ry)
is defined as follows. First, we compute the predicted mean and variance.

Xtlt—1 = Fxt—1|t—1

Vi1 = FVioip F'+Q

10



Then we compute the error in our prediction (the innovation), the variance of the error, the Kalman gain
matrix, and the likelihood of this observation.

€ = Y- th|t—1
Sy o= Hvt|t—1H/ +R
Ky = Vi H'SS!
Ly = N(et0,5)

Finally, we update our estimates of the mean, variance, and cross variance.

Xit = Xepp—1 + Krey
Vip = (I—KH)Vyeor = Vippor — K Si K]
Vt,t—1|t = (I—KtH)FVt—ut—l

A.2 Smoother

The Smooth operator

(Xt|T, Vt|T, Vt+1,t|T) = SmOOth(Xt+1|Ta Vt+1|Ta Xt|t) Vt|ta Vt+1|t+1a Vt+1,t|t+1; Fiya, Qt+1)

is defined as follows. First we compute the following predicted quantities (or we could pass them in from
the filtering stage):

X1t = Ft+1xt|t
/
Fep Vi Fipy + Qe

Vigi]e
Then we compute the smoother gain matrix.

_ / -1
Jo = VtItFt+1Vt+1|t

Finally, we update our estimates of the mean, variance, and cross variance.

X = Xgje + Jt (Xt+1|T - Xt+1|t)
!
Vir = Vit Jt <Vt+1|T - Vt+1|t) Jy
-1
Visror = Vigreerr + (Vigyr = Vigager) Vt+1|t+1vt+1,t|t+1

We now present an alternative way to compute the smoothed estimates of the cross-variance terms, V; ;_1|7,
which does not require the corresponding filtered terms [SS91, GH96a].

The Smooth’ operator
(Xt|Ta Vt|T, Vt,t—1|T) = SmOOth/(Xt+1|T, Vt+1|Ta Vt+1,t|Ta Xt|t) Vt|ta Vt—1|t—1; Fiq1,Quy, Iy, Qt)
is defined as above, except
Vit = Vapdioy + T (Vigrgr — Fep Vi) Ji1
where the boundary condition 1s

Veroyr = (I —KpHp)PrVe_qr_a

11



A.3 Collapse
Consider two random variables X, Y with conditional means pg( = E[X|S =j], u{, = E[Y|S = j], cross

variance V)‘?Y = Cov[X,Y]|S = j], and mixing coefficients P/ = Pr(S = j). Then we can compute the
unconditional moments as follows. (This procedure is called moment matching.)

px = ijﬂg(
J

py = ZPju{/
J

Vxy > PICov[X,Y|S = ]

= ZPjE[(X—ﬂX)(Y —ny)'|S =l
ZPjE[(X — e + i — px)(Y = i+ i — py)'|S = ]
S PIEIX = ) (Y = iy VIS = 14+ 32 PO = mx) (e = )

;
SOPIVE L+ P — ux) (@ — ny)
; ;

Let us introduce the following shorthand for the above operation.
(ux,pv,Vxy) = CollapseCross(ug(, u{,, V)‘gy, P7)

and define ' o o ' '
Collapse(p, V3, P7) = CollapseCross(py, iy, V)](’X, P7)

It can be shown [Lau96] that a Gaussian with these moments is the closest possible Gaussian (in KL distance)
to the original mixture distribution.

B Derivation of the M step

We follow [GH96a], but generalize to the switching case. For simplicity of notation, we consider only a single
sequence.

We use following standard identities

d((Xa+b)yC(Xa+b)) , ,
TX = (C+C)(Xa+Db)a (1)
d@’Xb) ,
—ox - b @)
0In[X| n—1
nX - ) )

12



B.1 System matrix

Using identity 1,

T
J . .
L = 3> WIE[2Q7 (x¢ — Aixi_1) xi1-1]
? t=2
T
= ZWZQ Ptt 1+ZWZ 1AiPt—1:0
t=2 t=2
Hence
T T -1
= (Z WiP, 1) (Z W;Pt_l) (4)
t=2
B.2 System noise covariance
Using identities 2 and 3,
9 T T
i LN TWIE [(xe — Aixe1) (xe — Aixe) +§ZWZQZ
? t=2
T T
= 5> Wi[Pi— APyt = Py Al + AP A+ 5 ) WiQi =0
t=2 t=2

Using the new value of A; and the fact

T
A, (Z WfPt_l) A
t=2

Hence
Qi =
(s

B.3 Observation matrix

Using identity 1,

~>

@
Q

Hence

that P; is symmetric, we find

T

T T -1
(Z W;’Pt,t_l) (Z W;’Pt_l) (Z Wi Prei
t=2 t=2 t=2

T T
AiZWtiPtyt_ll == (Z WtiPt,t—l) A;
t=2

)

T

WZ) (ZW;Pt Ay ZW Py
2

-1 Z WiE 2R (-Cix¢ +y,)x)] =0
¢
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B.4 Observation noise covariance

Using identities 2 and 3, we find

T
Z % (y.y: — 2Cixy;, + C’ixtxicl{)] + %RZ’ Z Wi =0

t=1 t

8R_

Using the new estimate of C;, we have

(Z Wtipt) C/ Z Wi XtYi dﬁf
t

SO

T
J ' |
oL >3 (ZWZytyi - 2CZ»Z+CZ»2) + IR W
(3 t -

t=1

and hence

R;

(é) ZWZ yey: — Cixeyy) (7)

Zt IWt

B.5 Initial mean and covariance

This is the standard derivation for a mixture of Gaussians model; see e.g., [Ham90, Bis95, XJ96].

B.6 Initial state probability and transition matrix

This is a constrained maximization problem (since the probabilities must sum to 1), which can be solved
using Lagrange multipliers; see e.g., [Rab89, Ham90] for a derivation.
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