
Shared features for multiclass object detection

Antonio Torralba1, Kevin P. Murphy2, and William T. Freeman1

1 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institite of Technology, USA

2 Departments of computer science and statistics
University of British Columbia, Canada

Abstract. We consider the problem of detecting a large number of dif-
ferent classes of objects in cluttered scenes. We present a learning proce-
dure, based on boosted decision stumps, that reduces the computational
and sample complexity, by finding common features that can be shared
across the classes (and/or views). Shared features, emerge in a model of
object recognition trained to detect many object classes efficiently and
robustly, and are preferred over class-specific features. Although that
class-specific features achieve a more compact representation for a single
category, the whole set of shared features is able to provide more efficient
and robust representations when the system is trained to detect many
object classes than the set of class-specific features. Classifiers based on
shared features need less training data, since many classes share similar
features (e.g., computer screens and posters can both be distinguished
from the background by looking for the feature “edges in a rectangular
arrangement”).

1 Introduction

A long-standing goal of machine vision has been to build a system which is able
to recognize many different kinds of objects in a cluttered world. Although the
general problem remains unsolved, progress has been made on restricted ver-
sions of this goal. One succesful special case considers the problem of detecting
individual instances of highly textured objects, such as magazine covers or toys,
despite clutter, occlusion and affine transformations. The method exploits fea-
tures which are invariant to various transformations, yet which are very specific
to a particular object [14, 20]. This can be used to solve tasks such as “find an
object that looks just like this one”, where the user presents a specific instance;
but it cannot be used to solve tasks such as “find an object that looks like a
car”, which requires learning an appearance model of a generic car.

The problem of detecting a generic category of object in clutter is often posed
as a binary classification task, namely distinguishing between object class and
background class. Such a classifier can be turned into a detector by sliding it
across the image (or image pyramid), and classifying each such local window
[1, 6, 16]. Alternatively, one can extract local windows at locations and scales
returned by an interest point detector and classify these, either as an object or



2 Antonio Torralba et al.

as part of an object (see e.g., [4]). In either case, the classifier will be applied to
a large number of image locations, and hence needs to be fast and to have a low
false positive rate.

Various classifiers have been used, such as SVMs [16], naive Bayes [19], mix-
tures of Gaussians [4], boosted decision stumps [25], etc. In addition, various
types of image features have been considered, ranging from generic wavelets
[19, 25] to class-specific fragments [6, 24]. Since it is expensive to compute these
features at run-time, many classifiers will try to select a small subset of useful
features.

The category-level object detection work mentioned above is typically only
concerned with finding a single class of objects (most work has concentrated on
frontal and profile faces and cars). To handle multiple classes, or multiple views of
a class, separate classifiers are trained and applied independently. There has been
work on training a single multi-class classifier, to distinguish between different
classes of object, but this typically assumes that the object has been separated
from the background (see e.g., [11, 15]).

We consider the combined problem of distinguishing classes from the back-
ground and from each other. This is harder than standard multi-class isolated
object classification problems, because the background class is very heteroge-
neous in appearance (it represents “all other classes”), and is much more likely
to appear than the various object classes (since most of the image is background).

The first key insight of our work [23] is that training multiple binary classi-
fiers at the same time needs less training data, since many classes share similar
features (e.g., computer screens and posters can both be distinguished from the
background by looking for the feature “edges in a rectangular arrangement”).
This observation has previously been made in the multi-task learning literature
(see e.g., [3, 22]). However, nearly all of this work focuses on feedforward neural
networks, whereas we use a quite different kind of classifier, based on boosted
decision stumps[18]. Transfering knowledge between objects to improve general-
ization has also been studied in several recent papers [2, 12, 21].

The second key insight of our work is that training multiple binary classi-
fiers at the same time results in a much faster classifier at run time, since the
computation of many of the features can be shared for the different classes.
This observation has previously been made in the neural network literature [9,
10]. However, in these systems, the architecture of the network (and hence its
computational complexity) is fixed in advance, whereas we effectively learn the
structure.

2 Sharing features

As objects tend to share many properties, an efficient visual dictionary of objects
should capture those commonalities. Since objects are typically embedded in
cluttered backgrounds, the representations have to be robust enough to allow
for reliable discrimination between members of an object class and background
distractors (non-objects). Here we show that shared features emerge in a model of



Shared features for multiclass object detection 3

object recognition trained to detect many object classes efficiently and robustly,
and are preferred over class-specific features. Note that edge features emerge here
from a visual recognition task, rather than from a statistical criterion such as
sparse coding or maximizing statistical independence. We show that, although
that class-specific features achieve a more compact representation for a single
category, the whole set of shared features is able to provide more efficient and
robust representations when the system is trained to detect many object classes
than the set of class-specific features.

Fig. 1 illustrates the difference between two representations for objects. The
first representation (Fig. 1a-left), obtained when training a set of classifiers to
detect each object independently, is based on class-specific features of interme-
diate complexity, which have been shown to maximize the information delivered
about the presence of an object class [24]. One drawback of class-specific features
is that they might be too finely tuned, preventing them from being useful for
other objects classes. The second representation is obtained when training the
system to detect 29 object classes by allowing the classifiers to share features.
The resulting representation is based on a vocabulary of shared visual features
where each feature is used by a subset of the 29 object classes. Each object
is represented as configurations of simple features that resemble edge and line
detectors instead of relying on configurations of class-specific features.

Our learning algorithm, based on multiclass Boosting [18], is an iterative
procedure that adds one feature at each step in order to build a dictionary
of visual features. Each feature is found by selecting, from all possible class
groupings and features, the combination that provides the largest reduction of
the multiclass error rate. The feature added in the first iteration will have to
be as informative as possible for as many objects as possible, since only the
object classes for which the feature is used will have their error rate reduced.
In the second iteration the same selection process is repeated but with a larger
weight given to the training examples that were incorrectly classified by the
previous feature. Once the second feature is selected, new weights are given to
each training example to penalize more the examples incorrectly classified using
both features. This process is iterated until a desired level of performance is
reached. The algorithm has the flexibility to select class-specific features if it
finds that the different object classes do not share any visual property.

2.1 Boosting for binary classification

Boosting [18, 17, 5] provides a simple way to sequentially fit additive models of
the form

H(v) =
M∑

m=1

hm(v),

where v is the input feature vector, M is the number of boosting rounds, and
H(v) = log P (c = 1|v)/P (c = 0|v) is the log-odds of being in class c. (Hence
P (c = 1|v) = σ(H(v)), where σ(x) = 1/(1 + e−x) is the sigmoid or logistic



4 Antonio Torralba et al.

Face

One way sign

Fig. 1. Example of specific (left) and generic (right) features, and their class-conditional
response distributions. Two possible representations of objects (e.g., face and one-way
sign). The number of features used for each representation is selected so that both
representations achieve the same detection performance (area under ROC is 0.95).
The first representation (left) uses class-specific features (optimized for detecting each
object class in cluttered scenes). Each feature is shown in object-centered coordinates.
In contrast, the second representation is built upon the best features that can be shared
across 29 object categories.

function.) In the boosting literature, the hm(v) are often called weak learners,
and H(v) is called a strong learner.

Boosting optimizes the following cost function one term of the additive model
at a time:

J = E
[
e−zH(v)

]
(1)

where z is the class membership label (±1). The term zH(v) is called the “mar-
gin”, and is related to the generalization error (out-of-sample error rate). The
cost function can be thought of as a differentiable upper bound on the misclas-
sification rate [17] or as an approximation to the likelihood of the training data
under a logistic noise model [5].

There are many ways to optimize this function. We chose to base our algo-
rithm on the version of boosting called “gentleboost” [5], because it is simple
to implement, numerically robust, and has been shown experimentally [13] to
outperform other boosting variants for the face detection task. In gentleboost,
the optimization of J is done using adaptive Newton steps, which corresponds
to minimizing a weighted squared error at each step. Specifically, at each step
m, the function H is updated as H(v) := H(v) + hm(v), where hm is chosen so
as to minimize a second order Taylor approximation of the cost function:

arg min
hm

J(H + hm) ' arg min
hm

E
[
e−zH(v)(z − hm)2

]
(2)

Replacing the expectation with an empirical average over the training data, and
defining weights wi = e−ziH(vi) for training example i, this reduces to minimizing



Shared features for multiclass object detection 5

the weighted squared error:

Jwse =
N∑

i=1

wi(zi − hm(vi))2, (3)

where N is the number of training examples. How we minimize this cost depends
on the specific form of the weak learners hm.

It is common to define the weak learners to be simple functions of the form
hm(v) = aδ(vf > θ) + b, where vf denotes the f ’th component (dimension) of
the feature vector v, θ is a threshold, δ is the indicator function, and a and b
are regression parameters. (Note that we can replace

∑
m bm by a single global

offset in the final strong classifier.) In this way, the weak learners perform feature
selection, since each one picks a single component f .

These weak learners are called decision or regression “stumps”, since they
can be viewed as degenerate decision trees with a single node. We can find the
best stump just as we would learn a node in a decision tree: we search over
all possible features f to split on, and for each one, we search over all possible
thresholds θ induced by sorting the observed values of f ; given f and θ, we can
estimate the optimal a and b by weighted least squares. Specifically, we have

b =
∑

i wiziδ(v
f
i ≤ θ)∑

i wiδ(v
f
i ≤ θ)

, (4)

a + b =
∑

i wiziδ(v
f
i > θ)∑

i wiδ(v
f
i > θ)

, (5)

We pick the f and θ, and corresponding a and b, with the lowest cost (using
Equation 3), and add this weak learner to the previous ones for each training
example: H(vi) := H(vi) + hm(vi). Finally, boosting makes the following multi-
plicative update to the weights on each training sample:

wi := wie
−zihm(vi)

This update increases the weight of examples which are missclassified (i.e., for
which ziH(vi) < 0), and decreases the weight of examples which are correctly
classified. The overall algorithm is summarized in Figure 2.

2.2 Multiclass boosting and shared stumps

In the multiclass case, we modify the cost function as in Adaboost.MH [18]:

J =
C∑

c=1

E
[
e−zcH(v,c)

]
(6)

where zc is the membership label (±1) for class c and

H(v, c) =
M∑

m=1

hm(v, c).



6 Antonio Torralba et al.

1. Initialize the weights wi = 1 and set H(vi) = 0, i = 1..N .
2. Repeat for m = 1, 2, . . . , M

(a) Fit stump:
hm(vi) = aδ(vf

i > θ) + b

(b) Update class estimates for examples i = 1, . . . , N :

H(vi) := H(vi) + hm(vi)

(c) Update weights for examples i = 1, . . . , N :

wi := wie
−zihm(vi)

Fig. 2. Boosting for binary classification with regression stumps. vf
i is the f ’th feature

of the i’th training example, zi ∈ {−1, +1} are the labels, and wi are the unnormalized
example weights. N is the number of training examples, and M is the number of rounds
of boosting.

where H(v, c) = log P (c = 1|v)/P (c = 0|v), so P (c|v) = eH(v,c)/
∑

c′ e
H(c′,v) (the

softmax function).
Proceeding as in the regular gentleBoost algorithm, we must solve the fol-

lowing weighted least squares problem at each iteration:

Jwse =
C∑

c=1

N∑

i=1

wc
i (z

c
i − hm(vi, c))2 (7)

where wc
i = e−zc

i H(vi,c) are the weights3 for example i and for the classifier for
class c. Here, we use the same procedure as in Adaboost.MH, but we change the
structure of the multiclass weak classifiers. The key idea is that at each round m,
the algorithm will choose a subset of classes S(m) to be considered “positive”;
examples from the remaining classes can be considered “negative” (i.e., part of
the background) or ignored. This gives us a binary classification problem, which
can be solved by fitting a binary decision stump as outlined above. (Some small
modifications are required when we share classes, which are explained below.)
The goal is to pick a subset and a weak learner that reduces the cost for all
the classes. At the next round, a different subset of classes may be chosen. For
classes in the chosen subset, c ∈ S(n), we can fit a regression stump as before.
For classes not in the chosen subset, c 6∈ S(n), we define the weak learner to be
a class-specific constant kc. The form of a shared stump is:

hm(v, c) =
{

aδ(vf
i > θ) + b if c ∈ S(n)

kc if c /∈ S(n)
(8)

3 Note that each training example has C weights, one for each binary problem. It is
important to note that the weights cannot be normalized for each binary problem
independently, but a global normalization does not affect the results.



Shared features for multiclass object detection 7

The purpose of the class-specific constant kc is to prevent a class being chosen
for sharing just due to the imbalance between negative and positive training
examples. (The constant gives a way to encode a prior bias for each class, without
having to use features from other classes that happen to approximate that bias.)
Note that this constant does not contribute to the final strong classifier, but it
changes the way features are shared, especially in the first iterations of boosting.

1. Initialize the weights wc
i = 1 and set H(vi, c) = 0, i = 1..N , c = 1..C.

2. Repeat for m = 1, 2, . . . , M
(a) Repeat for n = 1, 2, . . . , 2C − 1

i. Fit shared stump:

hn
m(vi, c) =

{
aδ(vf

i > θ) + b if c ∈ S(n)
kc if c /∈ S(n)

ii. Evaluate error

Jwse(n) =

C∑
c=1

N∑
i=1

wc
i (z

c
i − hm(vi, c))

2

(b) Find best subset: n∗ = arg minn Jwse(n).
(c) Update the class estimates

H(vi, c) := H(vi, c) + hn∗
m (vi, c)

(d) Update the weights

wc
i := wc

i e
−zc

i hn∗
m (vi,c)

Fig. 3. Boosting with shared regression stumps. vf
i is the f ’th feature of the i’th

training example, zc
i ∈ {−1, +1} are the labels for class c, and wc

i are the unnormalized
example weights. N is the number of training examples, and M is the number of rounds
of boosting.

Minimizing Equation 7 gives

b =

∑
c∈S(n)

∑
i wc

i z
c
i δ(v

f
i ≤ θ)

∑
c∈S(n)

∑
i wc

i δ(v
f
i ≤ θ)

, (9)

a + b =

∑
c∈S(n)

∑
i wc

i z
c
i δ(v

f
i > θ)

∑
c∈S(n)

∑
i wc

i δ(v
f
i > θ)

, (10)

kc =
∑

i wc
i z

c
i∑

i wc
i

c /∈ S(n) (11)



8 Antonio Torralba et al.

Thus each weak learner contains 4 parameters (a, b, f, θ) for the positive class,
C − |S(n)| parameters for the negative class, and 1 parameter to specify which
subset S(n) was chosen.

Fig. 3 presents the simplest version of the algorithm, which involves a search
over all 2C −1 possible sharing patterns at each iteration. Obviously this is very
slow. Instead of searching among all possible 2C − 1 combinations, we use best-
first search and a forward selection procedure. This is similar to techniques used
for feature selection but here we group classes instead of features (see [7] for a
review of feature selection techniques). We start by computing the best feature
for each leaf (single class), and pick the class that maximally reduces the overall
error. Then we select the second class that has the best error reduction jointly
with the previously selected class. We iterate until we have added all the classes.
Finally we select from all the sets we have examined the one that provides the
largest error reduction.

The complexity is quadratic in the number of classes, requiring us to explore
C(C + 1)/2 possible sharing patterns instead of 2C − 1. We can improve the
approximation by using beam search considering at each step the best Nc < C
classes. However, we have found empirically that the maximally greedy strategy
(using Nc = 1) gives results which are as good as exhaustive search.

Fig. 4 compares two features, one optimized for one class only (faces) and
another selected for optimal sharing.

0

1 Chair
0

Pedestrian

0

1 Traffic light

0

1 One way Sign

0

1 Face

Class-specific feature Shared feature

Strength of feature responseStrength of feature response

Chair

0

1

Pedestrian
0

1

0
Traffic light1

One way sign

0

1

Face
0

1

1

Fig. 4. These graphs compare the behavior of the two types of features for five object
classes. Each graph shows the response distribution of a feature for non-objects (gray)
and objects (black) of several classes. On the left side, the feature is class-specific
and is optimized for detecting faces. The distributions show that the feature responds
strongly when a face is present in its receptive field and weakly for non-objects or other
object classes. When other object classes are present, the feature has no selectivity and
is unable to discriminate between other object classes and non-objects, as expected.
The plots on the right show the behavior of a feature selected for optimal sharing.
This feature has elevated activation for a variety of objects (chairs, one-way signs, and
faces).



Shared features for multiclass object detection 9

3 Multiclass object detection

We are interested in the problem of object detection in cluttered scenes. In the
rest of sections, we provide some experimental results and discuss some of the
benefits of sharing features between a large number of object detectors.

3.1 Database for multiclass object detection

Fig. 5. Some examples of images from the LabelMe database.

One important problem when developing algorithms for multiclass object
detection is the lack of databases with labeled data. Most of existing databases
for object recognition are inadequate for the task of learning to detect many
object categories in cluttered real-world images. For this reason we have build
a large database of hand-labeled images. Fig. 5 shows some examples of anno-
tated images from the LabelMe database. The LabelMe database and the online
annotation tool for labeling new objects, can be found at:

http://www.csail.mit.edu/∼brussell/research/LabelMe/intro.html
For the experiments presented here we used 21 object categories: 13 indoor

objects (screen, keyboard, mouse, mouse pad, speaker, computer, trash, poster,
bottle, chair, can, mug, light); 7 outdoor objects (frontal view car, side view car,
traffic light, stop sign, one way sign, do not enter sign, pedestrians); and heads
(which can occur indoors and outdoors).

3.2 Local features

For each 32x32 window in the image, we compute a feature vector. The features
we use are inspired by the fragments proposed by [24]. Specifically, we extract
a random set of 2000 patches or fragments from a subset of the 32x32 training
images from all the classes (Fig. 6). The fragments have sizes ranging from 4x4
to 14x14 pixels. When we extract a fragment gf , we also record the location from



10 Antonio Torralba et al.

which it was taken (within the 32x32 window); this is represented by a binary
spatial mask wf . To compute the feature vector for a 32x32 window, we perform
the following steps for each of the 2000 fragments f :

1. Apply normalized cross correlation between the window and the fragment
to find where the fragment occurs;

2. Perform elementwise exponentiation of the result, using exponent p. With a
large exponent, this has the effect of performing template matching. With
p = 1, the feature vector encodes the average of the filter responses, which
are good for describing textures.

3. Weight the response with the spatial mask (to test if the fragment occurs in
the expected location).

4. Sum the result across all 32x32 pixels.
5. Perform element wise exponentiation using exponent 1/p.

Fig. 6. Each feature is composed of a template (image patch on the left) and a binary
spatial mask (on the right) indicating the region in which the response will be averaged.
The patches vary in size from 4x4 pixels to 14x14.

This procedure converts each 32x32 window into a single positive scalar for
each fragment f . This operation, for all image locations and scales, can be sum-
marized as:

vf (x, y, σ) = (wf ∗ |Iσ ⊗ gf |p)1/p (12)

where Iσ is the image at scale σ, gf is the fragment, wf is the spatial mask, ⊗
represents the normalized correlation, and ∗ represents the convolution operator.

In this paper, we use p = 10; this is good for template matching as it approx-
imates a local maximum operator (although we feel that other values of p will
be useful for objects defined as textures like buildings, grass, etc.). Using 2000
fragments give us a 2000 dimensional feature vector for each window. However,
by only using M rounds of boosting, we will select at most M of these features,
so the run time complexity of the classifier is bounded by M .

3.3 Dictionary of visual shared features

One important consequence of training object detectors jointly is in the nature
of the features selected for multiclass object detection. When training objects



Shared features for multiclass object detection 11

jointly, the system will look for features that generalize across multiple classes.
These features tend to be edges and generic features typical of many natural
structures

Fig. 7 shows the final set of features selected (the parameters of the regression
stump are not shown) and the sharing matrix that specifies how the different
features are shared across the 21 object classes. Each column corresponds to one
feature and each row shows the features used for each object. A white entry in
cell (i, j) means that object i uses feature j. The features are sorted according
to the number of objects that use each feature. From left to right the features
are sorted from generic features (shared across many classes) to class-specific
features (shared among very few objects).

screen
poster

car frontal
chair

keyboard
bottle

car side
mouse

mouse pad
can

trash can
head

person
mug

speaker
traffic light

one way Sign
do not enter 

stop Sign
light
cpu

Fig. 7. Matrix that relates features to classifiers, which shows which features are shared
among the different object classes. The features are sorted from left to right from more
generic (shared across many objects) to more specific. Each feature is defined by one
filter, one spatial mask and the parameters of the regression stump (not shown). These
features were chosen from a pool of 2000 features in the first 40 rounds of boosting.

Fig. 1 illustrates the difference between class-specific and generic features.
In this figure we show the features selected for detecting a traffic sign. This is
a well-defined object with a very regular shape. Therefore, a detector based on
template matching will be able to perform perfectly. Indeed, when training a
single detector using boosting, most of the features are class-specific and behave
like a template matching detector. But when we need to detect thousands of
other objects, we cannot afford to develop such specific features for each object.
This is what we observe when training the same detector jointly with 20 other



12 Antonio Torralba et al.

objects. The new features are more generic (configuration of edges) which can
be reused by other objects.

Fig. 8 shows some typical results for the detection of office objects. Note that
not all the objects achieve the same performance after training. The figure shows
some results for the detection of computer monitors, keyboards and mouse pads.
The three classifiers have been trained jointly with 18 other objects.

0

1

0 0.10.05

screen

keyboard

mouse pad

d
et

ec
ti

o
n
 r

at
e

false alarm screen keyboard mouse pad

Fig. 8. ROC for detection of screens, keyboards and mouse pads when trained jointly
with other 18 objects. On the right, we show some typical results of the detector output
on images with size 256x256 pixels. The multiclass classifier, trained using boosting,
uses 500 features (stumps) shared across 21 object classes.

3.4 Generalization and effective training set

When building a vision system able to detect thousands of objects, using a set of
independent classifiers will require a large amount of computations that will grow
linearly with respect to the number of object classes. Most of those computations
are likely to be redundant.

One important consequence of feature sharing is that the number of features
needed grows sub-linearly with respect to the number of classes. Fig. 9.a shows
the number of features necessary to obtain a fixed performance as a function of
the number of object classes to be detected. When using C independent classi-
fiers, the complexity grows linearly as expected. However, when sharing features
among classifiers, the complexity grows sublinearly. (A similar result has been
reported by Krempp, et. al ([8]) using character detection as a test bed.) In fact,
as more and more objects are added, we can achieve good performance in all the
object classes even using fewer features than objects.



Shared features for multiclass object detection 13

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

Class-specific features

Shared features

Number of object classesN
u
m

b
er

 o
f 

fe
at

u
re

s 
(f

o
r 

ar
ea

 u
n
d
er

 R
O

C
 =

 0
.9

5
)

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 20 50

A
v
er

ag
e 

ar
ea

 u
n
d
er

 R
O

C

Number of training examples per class (12 classes)

Shared features

Class-specific features

a) b)

Fig. 9. Efficiency and generalization improve when objects are trained jointly allowing
them to share features. a) Number of features needed in order to reach a fix level
of performance (area under the ROC equal to 0.95). The results are averaged across
20 training sets. The error bars show the variability between the different runs (80%
interval). b) Detection performance as a function of number of training examples per
class when training 12 detectors of different object categories.

Another important consequence of joint training is that the amount of train-
ing data required is reduced. If different classes share common features, the
learning of such features should benefit from the multiple classes reducing the
amount of data required for each class. In the case where we are training C
object class detectors and we have N positive training examples for each class,
by jointly training the detectors we expect that the performance will be equiva-
lent to training each detector independently with Ne positive examples for each
class, with N ≤ Ne ≤ NC. The number of equivalent training samples Ne will
depend on the degree of sharing between objects.

Fig. 9.b shows the detection performance as a function of number of train-
ing examples per class when training 12 detectors of different object categories
(we used 600 features in the dictionary, and 1000 negative examples). Sharing
features improves the generalization when few training samples are available,
especially when the classes have many features in common. The boosting pro-
cedure (both with class-specific and shared features) is run for as many rounds
as necessary to achieve maximal performance on the test set. From Fig. 9.b, we
get that Ne ≈ 2.1N (i.e., we need to double the size of the training set to get
the same performance out of class-specific features)

3.5 Multiview object detection

In the case of multiple views, some objects have poses that look very similar. For
instance, in the case of a car, both frontal and back views have many common
features, and both detectors should share a lot of computations. However, in the



14 Antonio Torralba et al.

case of a computer monitor, the front and back views are very different, and we
will not be able to share many features. Our algorithm will share features as
much as possible, but only if it does not hurt performance.

By sharing features we can find a good trade-off between specificity of the
classifier (training on very specific views) and computational complexity (by
sharing features between views). By sharing features we could have a set of
features shared across all views, not very specific and trying to solve the view
invariant detection problem, and then a set of features with less sharing and more
specific to few views of the object. Our goal is to implement an object detector
that works for many views of the object and that can provide an estimation of
the pose of the object.

Fig. 10 shows a dictionary of features (here localized image patches) build, us-
ing multiclass Boosting, for the task of multiview car detection. Here we trained
12 detectors each one tuned to one orientation.

0
30
60
90
120
150
180
210
240
270
300
330

0 30 60 90 120 150 180 210 240 270 300 330

a)

b)

Fig. 10. Matrix that relates features to classifiers, which shows which features are
shared among the different car views (orientation is discretized in 12 groups). The
features are sorted from left to right from more generic (shared across many objects)
to more specific.

Fig. 11 shows the results of multiview car detectors and compares the clas-
sifiers obtained with specific and shared features. In both cases, we limit the
number of stumps to 70 and training is performed with 20 samples per view (12
views). Both classifiers have the same computational cost. The top row shows
typical detection results obtained by combining 12 independent binary classifiers,
each one trained to detect one specific view. When the detection threshold is set



Shared features for multiclass object detection 15

to get 80% detection rate, independent classifiers produce over 8 false alarms per
image on average, whereas the joint classifier results in about 1 false alarm per
image (averages obtained on 200 images not used for training). Test images were
128x128 pixels, which produced more than 17000 patches to be classified. The
detector is trained on square regions of size 24x24 pixels. Fig. 12 summarizes the
result showing the ROC for detectors using specific and shared features.

Intuitively, we expect that more features will be shared in the multiview
case than in the multiclass case. The experiment confirms this intuition. In
order to be comparable with the results of fig. 9.b, we used 600 features in
the dictionary (created from patches extracted from cars), and 1000 negative
examples. Specifically, we find that in the multiclass case (fig. 9.b), each feature
was shared amongst 5.4 classes on average, whereas in the multiview case, each
feature was shared amongst 7 classes on average. In Fig. 12, we obtain that the
equivalent training set size is Ne ≈ 4.8N (i.e., joint training effectively increases
the training set for every class by almost a factor of 5).

a) No sharing between views.

b) Sharing between views.

Fig. 11. View invariant car detection (dashed boxes are false alarms, and solid boxes
are correct detections). a) No feature sharing, b) feature sharing. The joint training
provides more robust classifiers with the same complexity.



16 Antonio Torralba et al.

4 Conclusion

We have introduced an algorithm for multi-class object detection that shares
features across objects. The result is a classifier that runs faster (since it com-
putes fewer features) and requires less data to train (since it can share data
across classes) than independently trained classifiers. In particular, the number
of features required to reach a fixed level of performance grows sub-linearly with
the number of classes, as opposed to the linear growth observed with indepen-
dently trained classifiers. We believe the computation of shared features will be
an essential component of object recognition algorithms as we scale up to large
numbers of object classes.

1 5 10 20 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of training examples per class

A
v
er

ag
e 

ar
ea

 u
n
d
er

 R
O

C

Shared features

Class-specific features

a) b)

0 0.05
0

0.5

1

Sharing features

Class-specific

features

False alarms

D
et

ec
ti

o
n
 r

at
e

Fig. 12. a) ROC for view invariant car detection. b) Detection performance as a func-
tion of number of training examples per class (each class correspond to one out of the 12
car orientations) when using view-specific and shared features. Detection performance
is measured as the average area under the ROC for all the classes.

5 Acknowledgments

This work was sponsored in part by the Nippon Telegraph and Telephone Corpo-
ration as part of the NTT/MIT Collaboration Agreement, by DARPA contract
DABT63-99-1-0012. We acknowledge support from NSF contract IIS-0413232.

References

1. S. Agarwal, A. Awan and D. Roth. Learning to detect objects in images via a
sparse, part-based representation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 26(11):1475–1490, 2004.



Shared features for multiclass object detection 17

2. E. Bart and S. Ullman. Cross-generalization: learning novel classes from a sin-
gle example by feature replacement. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2005.

3. R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
4. R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsuper-

vised scale-invariant learning. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2003.

5. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Annals of statistics, 28(2):337–374, 2000.

6. B. Heisele, T. Serre, S. Mukherjee, and T. Poggio. Feature reduction and hierar-
chy of classifiers for fast object detection in video images. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2001.

7. R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intel-
ligence, 1.

8. S. Krempp, D. Geman, and Y. Amit. Sequential learning of reusable parts for
object detection. Technical report, CS Johns Hopkins, 2002. http://cis.jhu.edu/cis-
cgi/cv/cisdb/pubs/query?id=geman.

9. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998.

10. Y. LeCun, Fu-Jie Huang, and L. Bottou. Learning methods for generic object
recognition with invariance to pose and lighting. In Proceedings of CVPR’04.
IEEE Press, 2004.

11. B. Leibe and B. Schiele. Analyzing appearance and contour based methods for ob-
ject categorization. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’03), Madison, WI, June 2003.

12. K. Levi, M. Fink, and Y. Weiss. Learning from a small number of training examples
by exploiting object categories. In Workshop of Learning in Computer Vision, 2004.

13. R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection cas-
cades of boosted classifiers for rapid object detection. In DAGM 25th Pattern
Recognition Symposium, 2003.

14. D. G. Lowe. Object recognition from local scale-invariant features. In Proc. of
the International Conference on Computer Vision ICCV, Corfu, pages 1150–1157,
1999.

15. H. Murase and S. Nayar. Visual learning and recognition of 3-d objects from
appearance. Intl. J. Computer Vision, 14:5–24, 1995.

16. C. Papageorgiou and T. Poggio. A trainable system for object detection. Intl. J.
Computer Vision, 38(1):15–33, 2000.

17. R. Schapire. The boosting approach to machine learning: An overview. In MSRI
Workshop on Nonlinear Estimation and Classification, 2001.

18. R. Schapire and Y. Singer. BoosTexter: A boosting-based system for text catego-
rization. Machine Learning, 39(2/3):135–168, 2000.

19. H. Schneiderman and T. Kanade. A statistical model for 3D object detection
applied to faces and cars. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2000.

20. S. Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local descriptors and neigh-
borhood statistics for texture recognition. In Intl. Conf. on Computer Vision, 2003.

21. E. Sudderth, A. Torralba, W.T. Freeman, and A. Willsky. Learning hierarchical
models of scenes, objects, and parts. In IEEE Conf. on Computer Vision and
Pattern Recognition, 2005.



18 Antonio Torralba et al.

22. S. Thrun and L. Pratt, editors. Machine Learning. Special issue on Inductive
Transfer. 1997.

23. A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient boosting
procedures for multiclass object detection. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2004.

24. M. Vidal-Naquet and S. Ullman. Object recognition with informative features and
linear classification. In IEEE Conf. on Computer Vision and Pattern Recognition,
2003.

25. P. Viola and M. Jones. Robust real-time object detection. Intl. J. Computer
Vision, 57(2):137–154, 2004.


