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Abstract

We propose an approach to the problem of detecting
and segmenting generic object classes that combines three
“off the shelf” components in a novel way. The compo-
nents are a generic image segmenter that returns a set of
“super pixels” at different scales, a generic classifier that
can determine if an image region (such as one or more
super pixels) contains (part of) the foreground object or
not; and a generic belief propagation (BP) procedure for
tree-structured graphical models. Our system combines the
regions together into a hierarchical, tree-structured con-
ditional random field, applies the classifier to each node
(region), and fuses all the information together using be-
lief propagation. Since our classifiers only rely on color
and texture, they can handle deformable (non-rigid) objects
such as animals, even under severe occlusion and rotation.
We demonstrate good results for detecting and segmenting
cows, cats and cars on the very challenging Pascal VOC
dataset.

1. Introduction

Recognizing, localizing and segmenting generic object
classes is a challenging problem in computer vision, with
many important applications. We propose a system for solv-
ing this which uses three “off the shelf” components: a
generic image segmenter that returns a set of “super pixels”
at different scales; a generic classifier that can determine if
an image region (such as one or more super pixels) contains
(part of) the foreground object or not; and a generic be-
lief propagation (BP) procedure for tree-structured graphi-
cal models. Our system combines the regions together into a
multi-scale tree, applies the classifier to each node (region),
fuses all the information together using BP, and classifies
the pixels using the beliefs at the leaves of the tree; this can
be used to segment out the objects (if present).

By segmenting the image at multiple scales, we increase
the chance that we will find some regions that can be con-
fidently classified. (Regions that are too small will be am-
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biguous, because they have insufficient image data, but re-
gions which are too big may also be ambiguous, because
they contain a mixture of foreground and background.) By
using BP on a tree, we can ensure that the unambigious re-
gions can send information to their neighbors to help dis-
ambiguate them. Note that the tree structure, and strength
of the tree edges, are determined dynamically from the seg-
mentations, as we explain below. Also, the local evidence
at each node is computed using a discriminative classifier.
Thus the whole model is a tree-structured conditional ran-
dom field (CRF).

The basic idea is illustrated in Figure 1. We see that re-
gions that are too small to be classified accurately can “in-
herit” the labels of their parents. This allows us to estimate
the object boundaries fairly accurately, using small regions,
while simultaneously benefiting from the lower ambiguity
afforded by larger regions.

Since our classifiers only rely on color and texture, they
can handle deformable (non-rigid) objects such as animals.
In this paper, we focus on detecting and segmenting cows
and cats. However, to demonstrate the generality of the
technique, we also use it to detect and segment cars. We
use data from the very challenging Pascal VOC dataset.'
for our experiments.

2. Related work

There are many papers that discuss generic object de-
tection. These can roughly be grouped into approaches that
use sliding window classifiers (e.g., [18, 22]), and those that
use parts-based models, applied to sparse features (e.g., [7])
or dense features (e.g., [15, 6]). We use boosted decision
stumps as in [22], and graphical models, as in [7, 15, 6].
However, parts-based models use graphical models where
the nodes represent locations of the parts, whereas we use
graphical models where the nodes represent labels of image
patches. This will allow us to detect multiple objects and to
perform object segmentation.

!'Specifically, we used the 2006 training and validation dataset from
http://www.pascal-network.org/challenges/VOC/. Note
that the test set was not available at the time that this work was done.
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Figure 1. Simulated segmentations at multiple scales (left), together with a set of trees (right), with
one node per region. Level 1 is at the bottom, level 3 at the top. Regions 11 and 12 may be too small
to reliably classify in isolation, but when they inherit a message from their parent (region 5), they can
be correctly classified as “cow”. Similar reasoning applies to other regions.

The problem with sliding window classifiers is that they
usually assume the object is rigid and mostly fills the bound-
ing box. While one can learn to ignore areas with the bound-
ing box (using fragments or masks [3]), this requires a lot
of training data, and cannot easily handle out-of-plane ro-
tation. The problem with parts-based approaches is that for
some kinds of objects, such as cats, it is hard to detect dis-
tinct parts, and even when parts are detectable, they may
have complex spatial relationships which are hard to model.

In [23], it was shown that a simple color and texture
based classifier can do remarkably well at detecting 9 differ-
ent kinds of objects, ranging from cows to bicycles. How-
ever, their system could only classify individual points, or
regions chosen by a user. We also use color and texture fea-
tures, but we use an image segmenter to automatically de-
tect regions, which often coincide with object boundaries.

There has been a lot of work on image segmentation,
but only a few papers look at it in the context of object de-
tection. Borenstein et al [3, 2, 1] have proposed to com-
bine bottom up segmentation with top down object detec-
tion. Their system is similar to ours in that they construct a
hierarchical tree structured CRF, and use BP to infer figure-
ground labels. However, they only have image evidence at
the leaves, and their classifier is based on image patches,
which is not robust to object rotation. (For instance, they
only show results on side views of horses, whereas we use
the much harder Pascal VOC dataset.)

There have been several papers on grid-structured CRFs
for object detection and segmentation (e.g., [13, 4, 12, 14,
20]). Some of these models can model contextual relations
between object classes. However, all these models only
work at a single scale. Also, note that grid-structured CRFs
are computationally intractable, whereas trees support lin-
ear time inference.

Schiele and students have produced several papers (e.g.,
[10]) describing methods for object detection and segmen-
tation. These approaches work by building a dictionary of
image patches and masks, together with offset vectors rel-
ative to the centroid of an object; at test time, the patches
are detected and they vote for the centroid; the peaks in vot-
ing space are back-projected and masks super-imposed to
yield a segmentation, which can be verified by a discrimina-
tive classifier. While very successful, this approach requires
a lot of memory to store the large dictionary of patches.
In contrast, our system, which is based on boosted deci-
sion stumps, has very few parameters (about 300, chosen
by cross validation); this should enable it to scale to more
classes, especially since such features can easily be shared
across classes [21].



3 Our approach

We first give a brief outline of the steps that we follow
when given a test image.

1. Perform histogram equalization to deal with images
with low contrast.

2. Run a segmenter at multiple scales to return a set of
segmented images.

3. Compute feature vectors for each region.
4. Apply a probabilistic binary classifier to each region.

5. Build a tree where nodes represent regions. Attach
weights to the edges according to how similar the re-
gions are. Attach weights to the nodes based on the
output of the binary classifier.

6. Run belief propagation.

7. Threshold the beliefs at the leaves to segment out the
object(s).

We explain the steps in more detail below.
3.1 Segmentation

We run a segmenter at multiple scales to return a set of
segmented regions, vf, where ¢ indexes levels { = 1 : L,
and ¢ indexes regions. We use L = 3 levels, and typically
have ~ 100 regions at the bottom (finest) level and ~ 10
regions at the top (coarsest) level. We use the segmenta-
tion method of Felzenszwalb and Huttenlocher [5], because
it is very fast, and seems to work as well as more complex
schemes, such as normalized cuts [19]. The method has 3
free parameters: o controls the amount of image smooth-
ing, k controls how similar regions have to be in order to
be merged, and m controls the minimum region size. See
Figure 2 for an illustration of the effect of changing these
parameters.

3.2 Feature vectors

We compute feature vectors for each region as follows.
We use color and texture histograms, since they are simple
and work well for discriminating animal fur etc. from back-
ground. Also, they are easy to compute from an arbitrary-
shaped region. Specifically, we use a 100-bin histogram
for hue and saturation, and a 10-bin histogram for value
(intensity). For texture, we convolve the image with a
bank of Gabor filters at 6 orientations and 4 scales, and
compute the average energy of the response in each re-
gion; we bin this response into 10 intervals. Thus we have
100 + 10 4 6 x 4 x 10 = 350 features in total.

3.3 Classifier

We apply a probabilistic binary classifier to compute
p(yf = 1|2%,6), where z¢ is the feature vector, ¢ € {1,0}
is the label (object or background), and 6 are the parame-
ters of the classifier. We use boosted decision stumps as our
classifier [8, 9, 22], since they work well, and are fast to
train and apply. That is, each weak learner is a function of
the form

(i) = sgn(wizy (i) — wo)

where 2 (4) is the k’th feature (histogram entry) evaluated
at super-pixel ¢; the parameters of the weak learner are the
index k, the weight w, and the offset wy. We used 7" = 300
rounds of boosting for cows and cats, and 150 for cars this
value was chosen using a validation set.

Boosted decision stumps implicitly perform feature se-
lection, so the final classifier only uses at most 1" features
(corresponding to 37" parameters), chosen from the original
350. However, since boosting is a greedy procedure that
cannot go back and adjust weights of the weak learners, it
often adds multiple copies of the same weak learner with
different weights. These can all be combined at the end of
training, to save time and space at runtime. The total num-
ber of unique features was 121 for cows, 131 for cats and
98 for cars.

The training procedure was as follows. We ran the seg-
menter on the training images, and then labeled every re-
gion as positive if it contained 75% or more overlap with the
ground truth foreground; otherwise it was labeled negative.
The original labeled data in the Pascal dataset consisted of
bounding boxes, but we found that this resulted in a lot of
regions being labeled positive even if they only contained
a tiny fraction of the foreground. Hence we relabeled the
data to get silhouettes (using Photoshop’s flood-fill tool), as
shown in Figure 3. This resulted in an improvement of the
cow object base classifier (area under ROC (AUC) score)
from approximately 73% to 89%.

The output of a boosted classifier is a number ¢ which
represents the “confidence” that the label is class 1. Follow-
ing [17], we rescale these confidence values to the [0, 1] in-
terval using logistic regression: p(y = 1|z) = o(ac(x)+Db),
where o(u) = 1/(1+e~%) is the sigmoid function. The pa-
rameters a and b were fit by maximum likelihood on a sep-
arate validation set (to avoid overconfidence). The resulting
values can be interpreted as probabilities (albeit poorly cal-
ibrated ones). This makes it easier to combine the detector
results with other sources of information. To this end, let us
define the local evidence at node ¢ to be the vector

¢i = (p(y = 1|2£,0), p(y; =0]2%,0)).

The training algorithm (implemented in Matlab) takes
about 3 hours to run on 100 images. However, most of this



Figure 2. Hierarchy of segmentations produced by varying the parameters (o,k,m) =

{0.5,500, 50}, {0.75, 500, 200}, {0.75, 500, 500}.

(c).

Figure 3. Example of training data (a). Input image, (b). Bounding box annotation, (c). Pixel level

labeling.

time is spent computing the texture features. We are con-
fident that with a faster implementation of Gabor filtering
(e.g., in C++), we could reduce the training time by at least
a factor of 10.

3.4 Tree-construction

We build a tree where node ¢ at level £ connects to a sin-
gle node j at level £+ 1, where j is the region with maximal
pixel overlap with z:

|‘/i€ N ijﬁ+1|

| = arg max
G T

The result is a forest of trees, since the nodes at level L have
no parents. We do not merge these top levels into a single
tree, since the resulting super regions would be a mix of
foreground and background and hence hard to classify.

The topology of the tree depends on the location of the
regions, but not on the image data per se. This can result in
a child region being connected to a parent which contains it,
even though they are visually dissimilar. In such a case, we
do not want to force the labels of the parent and child to be
the same (which would be overconstraining them). So we
weight the edges based on how similar the corresponding
regions are. Specifically, let X?j be the x? distance between
the feature vectors (histograms) for regions ¢ and j. Let

Aij = e’X?J‘, so similar regions (with small x?) will have

Aij ~ 1, and dissimilar regions (with large x?) will have
Aij =~ 0. We define the following edge potentials (c.f., an
Ising model):

eNii Y

Vij = [ e—NigY

We used v = 100, chosen by cross validation. Thus some
edges in the tree are effectively “disconnected” if the corre-
sponding regions are too dissimilar.

The overall model defines a CRF:

Pyl 0) = ﬁ TT o) [T &1 (w:l0)

<ij> i

e~y
eNig Y

where []_; > is a product over adjacent nodes ¢ and j
(which must be at different levels). Since the graph is tree
structured, we can efficiently compute Z using belief prop-
agation. Hence we could learn the parameters in ¢ and v
jointly. However, in this work we learn them separately, for
simplicity.

3.5 Belief propagation

We use the sum-product algorithm (see e.g., [11]), send-
ing messages from the leaves to the root and back. This
takes time linear in the number of nodes, and is exact, since
the graph is a tree. We then threshold the beliefs at the
leaves to choose the pixels that are considered foreground
and use this binary mask to segment out the object.



4 Results

We show some sample results of our system on some of
the Pascal test images in Figure 4. The base classifier does
remarkably well, given its simplicity. However, there are
some regions about which the classifier is uncertain, and it
is here that the tree structure can help. We see that BP tends
to push some false positive regions below threshold, such
as the top left background region in the car image, while
simultaneously raising some false negative regions above
threshold, such as the top right horse. However, the system
is not fool-proof: since the base detector essentially failed
to detect the bottom cat, adding BP does not help.

In Figure 5, we present some quantitative results. By
varying the threshold on the beliefs at the leaves, we can
produce a ROC curve, which measures the tradeoff between
detection rate and the false alarm rate. We see that the base
classifiers do quite well, and that adding BP helps in each
case, albeit sometimes by a rather modest amount. The per-
formance of the car detector is rather low, and BP cannot
help it much. However, our technique was not really de-
signed for rigid objects such as cars, for which standard
sliding window classifiers work very well [18]. Note that
our framework can be used to potentially improve the per-
formance of any set of features or any classifier, and is not
tied to the simple ones we used here.

5 Conclusions and future work

We have presented a simple technique for detecting and
segmenting deformable objects such as cows and cats. The
system can be easily assembled from standard parts and
trained very quickly.

There are many ways to improve performance, includ-
ing: improving the base features, e.g. by including shape
features [1, 14]; improving the classifier, e.g., by using
boosted decision trees instead of stumps [9]; learning all
the parameters of the CRF jointly [13, 14]; modeling corre-
lation of the labels within a level of the tree [14, 20]; adding

Object Base classifier Post BP ‘
Color [ Texture | Combined

Cow 0.818 | 0.809 0.894 0.916

Cat 0.734 | 0.792 0.799 0.819

Car N/A N/A 736 0.744

Table 1. Area under the ROC curve for 3 dif-
ferent object classes using the base classi-
fier, with color, texture, and combined color
and texture features, and using belief propa-
gation (BP) with the combined features.

contextual priors (e.g., to a global root node) about the ob-
jects that are likely to be present [16]; etc. We leave these
extensions to future work.
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cats with color and texture, and (d) cars with color and texture. Solid blue line is the base level
classifier (pre BP), dotted red line is the combined system (post BP).
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