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Abstract

Standard approaches to object detection focus on locah@stof the
image, and try to classify them as background or not. We meo
use thescene conteximage as a whole) as an extra source of (global)
information, to help resolve local ambiguities. We presenbnditional
random field for jointly solving the tasks of object detentiand scene
classification.

1 Introduction

Standard approaches to object detection (e.g., [25, 18Bllydook at local pieces of the
image in isolation when deciding if the object is present or & a particular location/
scale. However, this approach may fail if the image is of lavaldgy (e.g., [24]), or the
object is too small, or the object is partly occluded, etahia paper we propose to use the
image as a whole as an extra global feature, to help overamrakédmbiguities.

There is some psychological evidence that people perfopid global scene analysis be-
fore conducting more detailed local object analysis [4,T2le key computational question
is how to represent the whole image in a compact, yet infammatorm. [22] suggests
a representation, called the “gist” of the image, based oA BfCa set of spatially aver-
aged filter-bank outputs. The gist acts as an holistic, lowedisional representation of the
whole image. They show that this is sufficient to provide gulggrior for what types of
objects may appear in the image, and at which locationg/scal

We extend [22] by combining the prior suggested by the gith thie outputs of bottom-up,
local object detectors, which are trained using boostieg Section 2). Note that this is
quite different from approaches that use joint spatial tairgs between the locations of
objects, such as [11, 21, 20, 8]. In our case, the spatiati@ints come from the image as
a whole, not from other objects. This is computationally tsitnpler.

Another task of interest is detecting if the object is préserywhere in the image, regard-
less of location. (This can be useful for object-based imagigeval.) In principle, this
is straightforward: we declare the object is present iffdie¢ector fires (at least once) at
any location/scale. However, this means that a single fads#ive at the patch level can
cause a 100% error rate at the image level. As we will see itidded, even very good

*This is an extended version of our NIPS 2003 paper, and waspdated on 17 January 2004.



detectors can perform poorly at this task. The gist, howéveble to perform quite well at
suggesting the presence of types of objects, without ustgector at all. In fact, we can
use the gist to decide if it is even “worth” running a detectdthough we do not explore
this here.

Often, the presence of certains types of objects is coe@la.g., if you see a keyboard,
you expect to see a screen. Rather than model this correldtiectly, we introduce a
hidden common cause/ factor, which we call the “scene”. latiBe 5, we show how
we can reliably determine the type of scene (e.g., officajdaror street) using the gist.
Scenes can also be defined in terms of the objects which asenir@ the image. Hence
we combine the tasks of scene classification and objecepeoesdetection using a tree-
structured graphical model: see Section 6. We perform taprdinference (scenes to
objects) and bottom-up inference (objects to scenes)smtioidel. Finally, we conclude in
Section 7.

2 Object detection and localization

2.1 General approach

For object detection there are at least three families ofagahes: parts-based (an object is
defined as a specific spatial arrangement of small partJ&]g.patch-based (we classify
each rectangular image region as object or background)emioin-based (a region of the
image is segmented from the background and is described d&tyod features that provide
texture and shape information e.g., [5]).

Here we use a patch-based approach. For objects with rigittdefined shapes (screens,
keyboards, people, cars), a patch usually contains theobjiict and a small portion of
the background. For the rest of the objects (desks, bookstigbuildings), rectangular
patches may contain only a piece of the object. In that cdmeydgion covered by a
number of patches defines the object. In such a case, thet diejector will rely mostly
on the textural properties of the patch.

The main advantage of the patch-based approach is that-agtction can be reduced to
a binary classification problem. Specifically, we compB(@? = 1|v¢) for each classg
and patchi (ranging over location and scale), whéé = 1 if patchi contains (part of) an
instance of class, andOy§ = 0 otherwiseyy is the feature vector (to be described below)
for patchi computed for class.

To detect an object, we slide our detector across the imagag and classify all the
patches at each location and scale (20% increments of sizevamy other pixel in loca-
tion). After performing non-maximal suppression [1], wpoet as detections all locations
for which P(O¢|vf) is above a threshold, chosen to given a desired trade-ofideet false
positives and missed detections.

The overall detector takes about 2 s/frame/object usinddidain 320x240 monochrome
images. We could get substantial speedups if we trainedaadasas in [25], and if we
re-implemented in C.

2.2 Features for objects and scenes

We would like to use the same set of features for detectingrietyaof object types, as
well as for classifying scenes. Hence we will create a lagg®&features and use a feature
selection algorithm (Section 2.3) to select the most disicrative subset.

We compute a single featukdor image patchi in three steps, as follows. First we convolve
the (monochrome) patch(x) with a filter g, (x), chosen from the set of 13 (zero-mean)



filters shown in Figure 1(a). This set includes oriented sdgelLaplacian filter, corner
detectors and long edge detectors. These features can Ipaitsahefficiently: The filters
used can be obtained by convolution of 1D filters (for ins&arthe long edge filters are
obtained by the convolution of the two filtefs1 0 1]7 and[1 1 1 1 1 1]) or as linear
combinations of the other filter outputs (e.g., the first dterfs are steerable).

We can summarize the response of the patch convolved wiffiitdre| I; (z) * gx (x)|, using
a histogram. For natural images, we can further summarigéhtbtogram using just two
statistics, the variance and the kurtosis [7]. Hence intstepwe computél; (x)*gy ()|,
for v, € {2,4}. (The kurtosis is useful for characterizing texture-likgions.)

Often we are only interested in the response of the filteriwalctertain region of the patch.
Hence we can apply one of 30 different spatial templateschvaie shown in Figure 1(b).
The use of a spatial template provides a crude encoding efpshinside the rectangular
patch. We use rectangular masks because we can efficientiyute the average response
of a filter within each region using the integral image [25].

Summarizing, we can compute featude for patch i as follows: f;(k) =

>ow Wi () (|I(x) * gp(x)|[™*), . (To achieve some illumination invariance, we also stan-
dardize each feature vector on a per-patch basis.) Theéatator has sizé€3 x 30 x 2 =

780 (the factor of 2 arises because we consiget 2 or 4).

Figure 2 shows some of the features selected by the leartgogtam for different kinds
of objects. For example, we see that computer monitor ssraencharacterized by long
horizontal or vertical lines on the edges of the patch, waetsuildings, seen from the
outside, are characterized by cross-like texture, duegodpetitive pattern of windows.

(a) Dictionary of 13 filtersg(x
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(b) Dictionary of 30 spatial templatesy

Figure 1:(a) Dictionary of filters. Filter 1 is a delta function, 2—7 are 3x3 Gaussian derieati8 is

a 3x3 Laplacian, 9 is a 5x5 corner detector, 10-13 are long ddtgctors (of size 3x5, 3x7, 5x3 and
7x3). (b) Dictionary of 30 spatial templates Template 1 is the whole patch, 2—7 are all sub-patches
of size 1/2, 8-30 are all sub-patches of size 1/3.

2.3 Classifier

Following [25], our detectors are based on a classifier éihinsing boosting. There are
many variants of boosting [10, 9, 18], which differ in theddanction they are trying to

optimize, and in the gradient directions which they folla¥e, and others [14], have found
that GentleBoost [10] gives higher performance than AdaB@bB], and requires fewer
iterations to train, so this is the version we shall (brieflygsent below.

The boosting procedure learns a (possibly weighted) coatioim of base classifiers, or
“weak learners”a(v) = >, a:h:(v), wherev is the feature vector of the patchy, is the

The Viola and Jones [25] feature set is equivalent to usiegdtmasks plus a delta function filter;
the result is like a Haar wavelet basis. This has the advariteay objects of any size can be detected
without needing an image pyramid, making the system vetty g contrast, since our filters have
fixed spatial support, we need to down-sample the image &xtletrge objects.
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Figure 2:Some of the features chosen after 100 rounds of boostingémgnizing screens, pedes-
trians and buildings. Features are sorted in order of deitrgaveight, which is a rough indication of
importance. “Energy” meang, = 2 and “Kurt” (kurtosis) means;, = 4.

base classifier used at roundanda is its corresponding weight. (GentleBoost, unlike
AdaBoost, does not weight the outputs of the weak learners; s= 1.) For the weak
classifiers we use regression stumps of the fo(m) = afvy > 0] +b, wherefvy > 0] =1

iff componentf of the feature vector is above threshold. For most of the objects we
used about 100 rounds of boosting. (We use a hold-out set mtonmverfitting.) See
Figure 2 for some examples of the selected features.

As in decision tree induction, we can find the optimal featfirand threshold by ex-
haustive search (since the data has a finite number of spfitg)o We can then find the
corresponding optimal regression parametefsto minimize the weighted squared error
on the training set:

EZZUH (zi — alz; > 0] — b)*

wherex; = v;(f) is componeny of examplev;, w; is the normalized weight of example
1 at this round of boosting, and € {—1, 41} is the target label. Partitioning the data into
examples below and above the thresold, we get

E = Zwl(zZ —b)? —I—ZwZ(zl —a—b)?

i<6 i>6

The optimal value ob is a weighted average of the labels for the examples bel@slimid,
and the optimal value of + b is a weighted average of the labels for the examples above
threshold:

Zige Wi Z4 atbh— Diso WiZi

Zige w; Zi>0 w;

For most of the objects we used about 100 rounds of boostig.use a hold-out set to
monitor overfitting.) The number of times that a featuressiscl(and the weights given to
it, in the case of AdaBoost) provide an indication of thedieas that are most discriminative
of each object: see Figure 2 for some examples.

b:

The output of a boosted classifier is a “confidence-ratedigtied”, «. We convert this
to a probability using logistic regression?(O§ = 1|a(vf)) = o(wl[1 «]), where
o(z) = 1/(1 + exp(—x)) is the sigmoid function [17]. We compute the optimal maxi-
mum likelihood estimate of the weight vecterby a gradient method (IRLS) applied to
a separate validation set (to avoid over confidence). Weltam ¢hange the hit rate/false
alarm rate of the detector by varying the threshold®i® = 1|«).



2.4 Training set

For training, we hand labeled about 2400 images (collectiéd awearable webcam and
with hand-held digital cameras) by drawing bounding boxesiiad a subset of the objects
in each image; we also specified the scene label. (For pé&testwe used the MIT-CBCL
data set) The resulting data set has 5-500 examples of each classaWdrained detec-
tors for the following classes, which have at least 100 exasach: screens, keyboards,
bookshelves, desks, standing people, and cars. (Eachatétetrained for a specific view,
such as front, back or side of the object.) In addition, weate a large set of negative
examples £ 10,000) chosen randomly from the regions of the trainingkaetvn not to
contain the object of interest. (We did not use bootstragcsiein [15], although this would
undoubtedly improve performance.)

2.5 Performance of the classifier

Figure 3 summarizes the performances of the detectors fet afsobjects on isolated
patches (not whole images) taken from the test set. Thetsegry in quality since some
objects are harder to recognize than others, and becausedgetts have less training
data. When we trained and tested our detector on the trdiagimg sets of side-views of
cars from UIUC, we outperformed the detector of [1] at every point on theisien-recalll
curve (results not shown), suggesting that our base-litextirs can match state-of-the-art
detectors when given enough training data.

0 5 10 15 20 25 30 35
False alarms (from 2000 distractors)

Figure 3:a) ROC curves for 9 objects; we plot hit rate vs number of falaems, when the detectors
are run on isolated test patches. in order to illustratedhge b) Example of the detector output on
one of the test set images, before non-maximal suppressjoBxample of the detector output on
a line drawing of a typical office scene. The system corred#iiects the screen, the desk and the
bookshelf.

3 Improving object localization by using the gist

One way to improve the speed and accuracy of a detector isitweghe search space, by
only running the detector in locations/ scales that we etpdnd the object. The expected
location/scale can be computed on a per image basis usirgjshes we explain below.
(Thus our approach is more sophisticated than having a fixied, guch as “keyboards
always occur in the bottom half of an image”.)

If we only run our detectors in a predicted region, we riskgimg objects. Instead, we
run our detectors everywhere, but we penalize detecticatsatte far from the predicted
location/scale. Thus objects in unusual locations haveet@drticularly salient (strong
local detection score) in order to be detected, which acoeith psychophysical results of
human observers.

2http://www.ai.mit.edu/projects/cbcl/software-datase
3http://12r.cs.uiuc.edutcogcomp/Data/Car/



3.1 Computing the gist

We define the gist as a feature vector summarizing the whagémnand denote it byg.
One way to compute this is to treat the whole image as a simgflehpand to compute
a feature vector for it as described in Section 2.2. If we ugaaje scales and 7 spatial
masks, the gist will have sizi8 x 7 x 2 x 4 = 728. Even this is too large for some methods,
so we consider another variant that reduces dimensiorfalitiyer by using PCA on the
gist-minus-kurtosis vectors. Following [23, 22], we take first 80 principal components;
we call this the PCA-gist.

3.2 Predicting location/scale using the gist

We can predict the expected location/scale of objects skelgiven the gist,F[X ¢|v%],
by using a regression procedure. We have tried linear reigresboosted regression [9],
and cluster-weighted regression [22]; all approaches wbdut equally well.

Using the gist it is easy to distinguish long-distance frdose-up shots (since the overall
structure of the image looks quite different), and hence vightrpredict that the object is
small or large respectively. We can also predict the expdetéght. However, we cannot
predict the expected horizontal location, since this isdgiy unconstrained by the scene.
(It is constrained by other objects, a fact which is exploited inkssuch as [11, 21, 20, 8].
However, these methods are much more complicated than wéhatevabout to describe.)

We considered three different regression methods: (1)tbdoegression stumps applied
to the gist, where the goal is to minimize the squared ersiead of the classification error
[9]; (2) linear regression applied to PCA-gist; (3) clustgrighted regression (a varient of
mixtures of experts) applied to PCA-gist, which was showhéceffective in [22]. (Note
that linear regression is a special case of cluster weiglegession in which we only use
one cluster; linear regression has the advantage thatiherdosed form solution, so one
does not need EM.)

We found that linear regression and boosting worked aboudlggwell. The advantage
of the boosting approach is that it is very similar to thetsgg that we use for object
detection, simplifying the code. Also, this method is cdpaif doing feature selection.
The advantage of linear regression is that it is simple astkéetrain, and it tends to work
slightly better. Our experience with cluster-weightedreagion was disappointing: the
model needs to be fit using EM, which is prone to local miniméd anmerical problems
caused by shrinking covariance matrices.

3.3 Combining the predicted location/scale with the detecir outputs

To combine the local and global sources of information, westuct a feature vector

f which combines the output of the boosted detectdrs), and the vector between
the location of the patch and the predicted location for aisj®f this classz§ — z°.

We then train another classifier to comput¢O; = 1|f(a(v§),x5,2¢)) using either
boosting or logistic regression. In Figure 4, we comparalieation performance using
just the detectorsP(O¢ = 1|a(vg), and using the detectors and the predicted location,
P(O§ = 1|f(af(v§),x5,2°)). For keyboards (which are hard to detect) we see that us-

ing the predicted location helps a lot, whereas for screehsch are easy to detect), the
location information does not help.
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Figure 4: ROC curves for detecting the location of objects in the ima@g bookshelf, (b) car,
(c) desk, (d) keyboard, (e) person, (f) computer screen. gfken circles are the local detectors
alone, and the blue squares are the detectors and predictgtbh. (The red lines with stars can be
ignored.)
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4 Object presence detection

We can compute the probability that the object exists anya/imethe image (which can be
used for e.g., object-based image retrieval) by taking tReoall the detectors:

P(Ec = 1|UT:N) = \/iP(OC = 1|UfN)

Unfortunately, this leads to massive overconfidence, dine@atches are not independent.
As a simple approximation, we can use

P(E° = 1of,y) ~ max P(E° = 1|of,y) = P(E° = 1| maxa,(s5)) = P(E° = 1]af, ).

Unfortunately, even for good detectors, this can give pesults: the probability of error

at the image level is — [],(1 — ¢;) = 1 — (1 — q)", whereg is the probability of error at
the patch level an@ is the number of patches. For a detector with a reasonablfdlse
alarm rate, say = 10~4, and N = 5000 patches, this gives a 40% false detection rate at
the image level! For example, see the reduced performaribe ahage level of the screen
detector (Figure 5(a)), which performs very well at the pdével (Figure 4(a)).

An alternative approach is to use the gist to predict thegmes of the object, without using
a detector at all. This is possible because the overalltstreiof the image can suggest
what kind of scene this is (see Section 5), and this in turgesty what kinds of objects
are present (see Section 6). We trained another boostesifiglao predictP(E¢ = 1[v%);
results are shown Figure 5. For poor detectors, such as keydahe gist does a much
better job than the detectors, whereas for good detectoch, & screens, the results are
comparable. Finally, we can combine both approaches bytemting a feature vector
from the output of the global and local boosted classifietsusing logistic regression:

P(E® =1]v% v%.y) = o(w[I a(v®)af,.,))-



However, this seems to offer little improvement over the gisne (see Figure 5), presum-
ably because our detectors are not very good.
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Figure 5:ROC curves for detecting the presence of object classe®iimtage: (a) bookshelf, (b)
car, (c) desk, (d) keyboard, (e) person, (f) computer scrébe green circles use the gist alone, the
blue squares use the detectors alone, and the red starsysmtimodel, which uses the gist and all
the detectors from all the object classes.

5 Scene classification

As mentioned in the introduction, the presence of many tygfesbjects is correlated.
Rather than model this correlation directly, we introdudatant common “cause”, which
we call the “scene”. We assume that object presence is ¢ondily independent given
the scene, as explained in Section 6. But first we explain hewesognize the scene type,
which in this paper can be office, corridor or street.

The approach we take to scene classification is simple. Wedrane-vs-all binary clas-
sifier for recognizing each type of scene using boostingiagpb the gist Then we
: . S5 =1|v% s .
normalize the resultsP(S = s[v¢) = % where P(S* = 1[v9) is the
output of the s-vs-other classifieiThis approach works very well: see Figure 6(b).

In previous work [23], we considered the problem of claseifyscenes collected with a
wearable camera. We found that many of our images were amisge.g., a close-up of a
white wall, as a person turns around in a narrow corridor. el@w, by using an HMM to
exploit temporal context, we were able to resolve such anitiés.

“An alternative would be to use the multi-class LogitBoosgjosithm [10]. However, training
separate one-vs-all classifiers allows them to have difféngéernal structure (e.g., number of rounds).

SFor scenes, it is arguably more natural to allow multipleslabas in [3], rather than forcing each
scene into a single category; this can be handled with a simpHdification of boosting [19].
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Figure 6:(a) Graphical model for scene and object recognition. This ralitional density models,
of the form P(Hidderjobs), so the arcs are directed away from the observable varigstesied)
towards the hidden variables (clear). The visible varislale:v the whole imagey® the gist,uf a
feature vector for class and patchi. The hidden variables ar&y true iff an instance (or part) of
classcisin locationi; E° true iff an instance of classis present anywhere in the imaggethe scene
type. The constants are: = 6 is the number of object class€s,. ~ 5000 is the number of patches
for classc. Other terms are defined in the te#th) Precision-recall curve for scene classification.

In this paper, we ignore temporal information, and we onyyttr classify “interesting”
scenes (i.e., ones which have been annotated as containjects). For long-distance
shots, the gist is very good at classifying the scene, butlfse-ups, it is the objects in
the image, rather than the overall image “texture”, thatrdefithe scene. This suggests
a model which uses both objects and the gist for scene ctasifi, which we discuss
below.

6 Joint scene classification and object-presence detection

We now discuss how we can use scene classification to faeiliaject-presence detec-
tion, and vice versa. The approach is based on the treexstedcgraphical modelin
Figure 6(a), which encodes our assumption that the objeetsanditionally independent
given the scene.

6.1 Model definition
This graphical model encodes the following conditionahjaensity:

n c Cn 1 C C (& c
P(S’EI' ) 1:N7"'701:N|v):EP(SlvG)H(b(E ,S)HP(OJE ’Ui)

wherev® andv$ are deterministic functions of the imagend~ is a normalizing constant.
called the partition function (which is tracatable to corgince the graph is a tree). By
conditioning on the observations as opposed to generdtérg,twe are free to incorporate
arbitrary, possibly overlapping features (local and glpbaithout having to make strong
independence assumptions c.f., [13, 12].

We now define the individual terms in this expressiét{.S|v“) is the output of boosting
as described in Section B(E°, S) is essentially a table which counts the number of times
object typec occurs in scene typ§. Finally, we define

T c i _
P(Of=1|EC:e,vf):{ g(w L (i) :;2;(1)

®The graph is a tree once we remove the observed nodes.



This means that if we know the object is absent in the imdgfe=€ 0), then all the local
detectors should be turned of?{ = 0); but if the object is present{® = 1), we do not
know where, so we allow the local evideneg, to decide which detectors should turn on.
We can find the maximum likelihood estimates of the paramseatkthis model by training

it jointly using a gradient procedure; see the long versiothis paper for details.

6.2 Inference

Since the detector node®y, are hidden nodes, and have no obserdeittren (the v
nodes are parents), they do not pass messages upwardsrtpatexits£© [16]. (Such
upward messages would in any case cause overconfidericé diue to the fact that we
did not model dependencies between the detectors.) Theafarason for this is that
the Of nodes are at the bottom of a hidden v-structure, so they bidokmation from
passing from the local patche$ to the presence detectdt’. However, we are free to
pass information from the local detectorsH6 directly (e.g., via the)t, .. = max; a(v)

max 7

node), since all hidden nodes are conditioned on all théleisines.

The benefit of the d-separation discussed above is that weerdorm inference on the
undirected subgraph separately from the directed leavepatticular, we can perform a
bottom-up pass from th&° nodes to the root$, and then a top-down pass from the root
back to theE© nodes. Once we have established the probabilility of olgjeztence given
global factors, we can proceed to localize the object using

P(O; =1Jv) = ZP(OZ-C = 1lv§, E¢ = e)P(E° = e|v) = P(O§ = 1|v{, E°1)P(E° = 1|v)

whereP(E° = 1|v) is computed using inference in the tree. Thus global factansserve
to suppress over-active local detectors.

6.3 Learning

We can fitP(O§ = 1|v§, E. = 1) using logistic regression applied to the boosted detectors
as described in Section 2.3. The remaining parameté £¢) and P(S|a(v%))) can be
estimated jointly by performing gradient descent on thelikglihood [13]; we have found
guasi-Newton methods to be effective. Since this is a coopémization problem, we are
guaranteed to reach the global optimum.

6.4 Results

In Figure 5, we see that we can reliably detect In Figure 5, @ethat we can reliably
detect the presence of the object in an image without usiagitt directly, providing we
know what the scene type is (the red curve, derived from thng foodel in this section,
is basically the same as the green curve, derived from thergidel in Section 4). The
importance of this is that it is easy to label images withtBeene type, and hence to train
P(S|v%), but it is much more time consuming to annotate objects, isaequired to
train P(E¢|v%).’

In Figure 6(b), we see that the joint model does not do anybattscene classification
than just using the gist alone. This is probably because stehjave 6 object classes, and
their detectors are not very reliable, so the signal fromAKenodes toS is less reliable
than than fromy“. However, with a larger number of detectors, we would exjot
object-presence detection and scene recognition to datpersolated classification.

’Since we do not need to know the location of the object in thagienin order to traidP(E¢|v ),
we can use partially annotated data such as image capt®nsed in [5].



7 Conclusions and future work

We have shown how to combine global and local image featareslve the tasks of object
detection and scene recognition. In the future, we planyt@tiarger number of object

classes. Also, we would like to investigate methods for siggpwhich order to run the

detectors. For example, one can imagine a scenario in whichuw the screen detector
first (since it is very reliable); if we discover a screen, wadude we are in an office, and
then decide to look for keyboards and chairs; but if we doistaver a screen, we might
be in a corridor or a street, so we choose to run another deteatlisambiguate our belief
state. This corresponds to a dynamic message passing rotothe graphical model.
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