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Abstract

Standard approaches to object detection focus on local patches of the
image, and try to classify them as background or not. We propose to
use thescene context(image as a whole) as an extra source of (global)
information, to help resolve local ambiguities. We presenta conditional
random field for jointly solving the tasks of object detection and scene
classification.

1 Introduction

Standard approaches to object detection (e.g., [25, 15]) usually look at local pieces of the
image in isolation when deciding if the object is present or not at a particular location/
scale. However, this approach may fail if the image is of low quality (e.g., [24]), or the
object is too small, or the object is partly occluded, etc. Inthis paper we propose to use the
image as a whole as an extra global feature, to help overcome local ambiguities.

There is some psychological evidence that people perform rapid global scene analysis be-
fore conducting more detailed local object analysis [4, 2].The key computational question
is how to represent the whole image in a compact, yet informative, form. [22] suggests
a representation, called the “gist” of the image, based on PCA of a set of spatially aver-
aged filter-bank outputs. The gist acts as an holistic, low-dimensional representation of the
whole image. They show that this is sufficient to provide a useful prior for what types of
objects may appear in the image, and at which locations/scale.

We extend [22] by combining the prior suggested by the gist with the outputs of bottom-up,
local object detectors, which are trained using boosting (see Section 2). Note that this is
quite different from approaches that use joint spatial constraints between the locations of
objects, such as [11, 21, 20, 8]. In our case, the spatial constraints come from the image as
a whole, not from other objects. This is computationally much simpler.

Another task of interest is detecting if the object is present anywhere in the image, regard-
less of location. (This can be useful for object-based imageretrieval.) In principle, this
is straightforward: we declare the object is present iff thedetector fires (at least once) at
any location/scale. However, this means that a single falsepositive at the patch level can
cause a 100% error rate at the image level. As we will see in Section 4, even very good
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detectors can perform poorly at this task. The gist, however, is able to perform quite well at
suggesting the presence of types of objects, without using adetector at all. In fact, we can
use the gist to decide if it is even “worth” running a detector, although we do not explore
this here.

Often, the presence of certains types of objects is correlated, e.g., if you see a keyboard,
you expect to see a screen. Rather than model this correlation directly, we introduce a
hidden common cause/ factor, which we call the “scene”. In Section 5, we show how
we can reliably determine the type of scene (e.g., office, corridor or street) using the gist.
Scenes can also be defined in terms of the objects which are present in the image. Hence
we combine the tasks of scene classification and object-presence detection using a tree-
structured graphical model: see Section 6. We perform top-down inference (scenes to
objects) and bottom-up inference (objects to scenes) in this model. Finally, we conclude in
Section 7.

2 Object detection and localization

2.1 General approach

For object detection there are at least three families of approaches: parts-based (an object is
defined as a specific spatial arrangement of small parts e.g.,[6]), patch-based (we classify
each rectangular image region as object or background), andregion-based (a region of the
image is segmented from the background and is described by a set of features that provide
texture and shape information e.g., [5]).

Here we use a patch-based approach. For objects with rigid, well-defined shapes (screens,
keyboards, people, cars), a patch usually contains the fullobject and a small portion of
the background. For the rest of the objects (desks, bookshelves, buildings), rectangular
patches may contain only a piece of the object. In that case, the region covered by a
number of patches defines the object. In such a case, the object detector will rely mostly
on the textural properties of the patch.

The main advantage of the patch-based approach is that object-detection can be reduced to
a binary classification problem. Specifically, we computeP (Oc

i = 1|vc
i ) for each classc

and patchi (ranging over location and scale), whereOc
i = 1 if patchi contains (part of) an

instance of classc, andOc
i = 0 otherwise;vc

i is the feature vector (to be described below)
for patchi computed for classc.

To detect an object, we slide our detector across the image pyramid and classify all the
patches at each location and scale (20% increments of size and every other pixel in loca-
tion). After performing non-maximal suppression [1], we report as detections all locations
for whichP (Oc

i |v
c
i ) is above a threshold, chosen to given a desired trade-off between false

positives and missed detections.

The overall detector takes about 2 s/frame/object using Matlab on 320x240 monochrome
images. We could get substantial speedups if we trained a cascade, as in [25], and if we
re-implemented in C.

2.2 Features for objects and scenes

We would like to use the same set of features for detecting a variety of object types, as
well as for classifying scenes. Hence we will create a large set of features and use a feature
selection algorithm (Section 2.3) to select the most discriminative subset.

We compute a single featurek for image patchi in three steps, as follows. First we convolve
the (monochrome) patchIi(x) with a filter gk(x), chosen from the set of 13 (zero-mean)



filters shown in Figure 1(a). This set includes oriented edges, a Laplacian filter, corner
detectors and long edge detectors. These features can be computed efficiently: The filters
used can be obtained by convolution of 1D filters (for instance, the long edge filters are
obtained by the convolution of the two filters[−1 0 1]T and [1 1 1 1 1 1]) or as linear
combinations of the other filter outputs (e.g., the first six filters are steerable).

We can summarize the response of the patch convolved with thefilter, |Ii(x)∗gk(x)|, using
a histogram. For natural images, we can further summarize this histogram using just two
statistics, the variance and the kurtosis [7]. Hence in steptwo, we compute|Ii(x)∗gk(x)|γk ,
for γk ∈ {2, 4}. (The kurtosis is useful for characterizing texture-like regions.)

Often we are only interested in the response of the filter within a certain region of the patch.
Hence we can apply one of 30 different spatial templates, which are shown in Figure 1(b).
The use of a spatial template provides a crude encoding of “shape” inside the rectangular
patch. We use rectangular masks because we can efficiently compute the average response
of a filter within each region using the integral image [25].1

Summarizing, we can compute featurek for patch i as follows: fi(k) =
∑

x wk(x) (|I(x) ∗ gk(x)|γk )i . (To achieve some illumination invariance, we also stan-
dardize each feature vector on a per-patch basis.) The feature vector has size13×30×2 =
780 (the factor of 2 arises because we considerγk = 2 or 4).

Figure 2 shows some of the features selected by the learning algorithm for different kinds
of objects. For example, we see that computer monitor screens are characterized by long
horizontal or vertical lines on the edges of the patch, whereas buildings, seen from the
outside, are characterized by cross-like texture, due to the repetitive pattern of windows.

(a) Dictionary of 13 filters,g(x).

(b) Dictionary of 30 spatial templates,w(x).

Figure 1:(a) Dictionary of filters . Filter 1 is a delta function, 2–7 are 3x3 Gaussian derivatives, 8 is
a 3x3 Laplacian, 9 is a 5x5 corner detector, 10–13 are long edge detectors (of size 3x5, 3x7, 5x3 and
7x3). (b) Dictionary of 30 spatial templates. Template 1 is the whole patch, 2–7 are all sub-patches
of size 1/2, 8–30 are all sub-patches of size 1/3.

2.3 Classifier

Following [25], our detectors are based on a classifier trained using boosting. There are
many variants of boosting [10, 9, 18], which differ in the loss function they are trying to
optimize, and in the gradient directions which they follow.We, and others [14], have found
that GentleBoost [10] gives higher performance than AdaBoost [18], and requires fewer
iterations to train, so this is the version we shall (briefly)present below.

The boosting procedure learns a (possibly weighted) combination of base classifiers, or
“weak learners”:α(v) =

∑

t αtht(v), wherev is the feature vector of the patch,ht is the

1The Viola and Jones [25] feature set is equivalent to using these masks plus a delta function filter;
the result is like a Haar wavelet basis. This has the advantage that objects of any size can be detected
without needing an image pyramid, making the system very fast. By contrast, since our filters have
fixed spatial support, we need to down-sample the image to detect large objects.
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Figure 2:Some of the features chosen after 100 rounds of boosting for recognizing screens, pedes-
trians and buildings. Features are sorted in order of decreasing weight, which is a rough indication of
importance. “Energy” meansγk = 2 and “Kurt” (kurtosis) meansγk = 4.

base classifier used at roundt, andαt is its corresponding weight. (GentleBoost, unlike
AdaBoost, does not weight the outputs of the weak learners, so αt = 1.) For the weak
classifiers we use regression stumps of the formh(v) = a[vf > θ]+ b, where[vf > θ] = 1
iff componentf of the feature vectorv is above thresholdθ. For most of the objects we
used about 100 rounds of boosting. (We use a hold-out set to monitor overfitting.) See
Figure 2 for some examples of the selected features.

As in decision tree induction, we can find the optimal featuref and thresholdθ by ex-
haustive search (since the data has a finite number of split points). We can then find the
corresponding optimal regression parametersa, b to minimize the weighted squared error
on the training set:

E =
∑

i

wi (zi − a[xi > θ] − b)
2

wherexi = vi(f) is componentf of example~vi, wi is the normalized weight of example
i at this round of boosting, andzi ∈ {−1, +1} is the target label. Partitioning the data into
examples below and above the thresold, we get

E =
∑

i≤θ

wi(zi − b)2 +
∑

i>θ

wi(zi − a − b)2

The optimal value ofb is a weighted average of the labels for the examples below threshold,
and the optimal value ofa + b is a weighted average of the labels for the examples above
threshold:

b =

∑

i≤θ wizi
∑

i≤θ wi

, a + b =

∑

i>θ wizi
∑

i>θ wi

,

For most of the objects we used about 100 rounds of boosting. (We use a hold-out set to
monitor overfitting.) The number of times that a features is used (and the weights given to
it, in the case of AdaBoost) provide an indication of the features that are most discriminative
of each object: see Figure 2 for some examples.

The output of a boosted classifier is a “confidence-rated prediction”, α. We convert this
to a probability using logistic regression:P (Oc

i = 1|α(vc
i )) = σ(wT [1 α]), where

σ(x) = 1/(1 + exp(−x)) is the sigmoid function [17]. We compute the optimal maxi-
mum likelihood estimate of the weight vectorw by a gradient method (IRLS) applied to
a separate validation set (to avoid over confidence). We can then change the hit rate/false
alarm rate of the detector by varying the threshold onP (O = 1|α).



2.4 Training set

For training, we hand labeled about 2400 images (collected with a wearable webcam and
with hand-held digital cameras) by drawing bounding boxes around a subset of the objects
in each image; we also specified the scene label. (For pedestrians, we used the MIT-CBCL
data set.2) The resulting data set has 5–500 examples of each class. We have trained detec-
tors for the following classes, which have at least 100 examples each: screens, keyboards,
bookshelves, desks, standing people, and cars. (Each detector is trained for a specific view,
such as front, back or side of the object.) In addition, we created a large set of negative
examples (> 10,000) chosen randomly from the regions of the training setknown not to
contain the object of interest. (We did not use bootstrap selection [15], although this would
undoubtedly improve performance.)

2.5 Performance of the classifier

Figure 3 summarizes the performances of the detectors for a set of objects on isolated
patches (not whole images) taken from the test set. The results vary in quality since some
objects are harder to recognize than others, and because some objects have less training
data. When we trained and tested our detector on the training/testing sets of side-views of
cars from UIUC3, we outperformed the detector of [1] at every point on the precision-recall
curve (results not shown), suggesting that our base-line detectors can match state-of-the-art
detectors when given enough training data.
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Figure 3:a) ROC curves for 9 objects; we plot hit rate vs number of falsealarms, when the detectors
are run on isolated test patches. in order to illustrate the range b) Example of the detector output on
one of the test set images, before non-maximal suppression.c) Example of the detector output on
a line drawing of a typical office scene. The system correctlydetects the screen, the desk and the
bookshelf.

3 Improving object localization by using the gist

One way to improve the speed and accuracy of a detector is to reduce the search space, by
only running the detector in locations/ scales that we expect to find the object. The expected
location/scale can be computed on a per image basis using thegist, as we explain below.
(Thus our approach is more sophisticated than having a fixed prior, such as “keyboards
always occur in the bottom half of an image”.)

If we only run our detectors in a predicted region, we risk missing objects. Instead, we
run our detectors everywhere, but we penalize detections that are far from the predicted
location/scale. Thus objects in unusual locations have to be particularly salient (strong
local detection score) in order to be detected, which accords with psychophysical results of
human observers.

2http://www.ai.mit.edu/projects/cbcl/software-datasets/
3http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car/



3.1 Computing the gist

We define the gist as a feature vector summarizing the whole image, and denote it byvG.
One way to compute this is to treat the whole image as a single patch, and to compute
a feature vector for it as described in Section 2.2. If we use 4image scales and 7 spatial
masks, the gist will have size13×7×2×4 = 728. Even this is too large for some methods,
so we consider another variant that reduces dimensionalityfurther by using PCA on the
gist-minus-kurtosis vectors. Following [23, 22], we take the first 80 principal components;
we call this the PCA-gist.

3.2 Predicting location/scale using the gist

We can predict the expected location/scale of objects of classc given the gist,E[Xc|vG],
by using a regression procedure. We have tried linear regression, boosted regression [9],
and cluster-weighted regression [22]; all approaches workabout equally well.

Using the gist it is easy to distinguish long-distance from close-up shots (since the overall
structure of the image looks quite different), and hence we might predict that the object is
small or large respectively. We can also predict the expected height. However, we cannot
predict the expected horizontal location, since this is typically unconstrained by the scene.
(It is constrained by other objects, a fact which is exploited in works such as [11, 21, 20, 8].
However, these methods are much more complicated than what we are about to describe.)

We considered three different regression methods: (1) boosted regression stumps applied
to the gist, where the goal is to minimize the squared error instead of the classification error
[9]; (2) linear regression applied to PCA-gist; (3) clusterweighted regression (a varient of
mixtures of experts) applied to PCA-gist, which was shown tobe effective in [22]. (Note
that linear regression is a special case of cluster weightedregression in which we only use
one cluster; linear regression has the advantage that thereis a closed form solution, so one
does not need EM.)

We found that linear regression and boosting worked about equally well. The advantage
of the boosting approach is that it is very similar to the strategy that we use for object
detection, simplifying the code. Also, this method is capable of doing feature selection.
The advantage of linear regression is that it is simple and fast to train, and it tends to work
slightly better. Our experience with cluster-weighted regression was disappointing: the
model needs to be fit using EM, which is prone to local minima and numerical problems
caused by shrinking covariance matrices.

3.3 Combining the predicted location/scale with the detector outputs

To combine the local and global sources of information, we construct a feature vector
f which combines the output of the boosted detector,α(vc

i ), and the vector between
the location of the patch and the predicted location for objects of this class,xc

i − x̂c.
We then train another classifier to computeP (Oc

i = 1|f(α(vc
i ), x

c
i , x̂

c)) using either
boosting or logistic regression. In Figure 4, we compare localization performance using
just the detectors,P (Oc

i = 1|α(vc
i ), and using the detectors and the predicted location,

P (Oc
i = 1|f(α(vc

i ), x
c
i , x̂

c)). For keyboards (which are hard to detect) we see that us-
ing the predicted location helps a lot, whereas for screens (which are easy to detect), the
location information does not help.
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Figure 4: ROC curves for detecting the location of objects in the image: (a) bookshelf, (b) car,
(c) desk, (d) keyboard, (e) person, (f) computer screen. Thegreen circles are the local detectors
alone, and the blue squares are the detectors and predicted location. (The red lines with stars can be
ignored.)

4 Object presence detection

We can compute the probability that the object exists anywhere in the image (which can be
used for e.g., object-based image retrieval) by taking the OR of all the detectors:

P (Ec = 1|vc
1:N ) = ∨iP (Oc = 1|vc

1:N).

Unfortunately, this leads to massive overconfidence, sincethe patches are not independent.
As a simple approximation, we can use

P (Ec = 1|vc
1:N) ≈ max

i
P (Ec = 1|vc

1:N ) = P (Ec = 1|max
i

αi(v
c
i )) = P (Ec = 1|αc

max).

Unfortunately, even for good detectors, this can give poor results: the probability of error
at the image level is1 −

∏

i(1 − qi) = 1 − (1 − q)N , whereq is the probability of error at
the patch level andN is the number of patches. For a detector with a reasonably lowfalse
alarm rate, sayq = 10−4, andN = 5000 patches, this gives a 40% false detection rate at
the image level! For example, see the reduced performance atthe image level of the screen
detector (Figure 5(a)), which performs very well at the patch level (Figure 4(a)).

An alternative approach is to use the gist to predict the presence of the object, without using
a detector at all. This is possible because the overall structure of the image can suggest
what kind of scene this is (see Section 5), and this in turn suggests what kinds of objects
are present (see Section 6). We trained another boosted classifier to predictP (Ec = 1|vG);
results are shown Figure 5. For poor detectors, such as keyboards, the gist does a much
better job than the detectors, whereas for good detectors, such as screens, the results are
comparable. Finally, we can combine both approaches by constructing a feature vector
from the output of the global and local boosted classifiers and using logistic regression:

P (Ec = 1|vG, vc
1:N ) = σ(wT [1 α(vG)αc

max]).



However, this seems to offer little improvement over the gist alone (see Figure 5), presum-
ably because our detectors are not very good.
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Figure 5:ROC curves for detecting the presence of object classes in the image: (a) bookshelf, (b)
car, (c) desk, (d) keyboard, (e) person, (f) computer screen. The green circles use the gist alone, the
blue squares use the detectors alone, and the red stars use the joint model, which uses the gist and all
the detectors from all the object classes.

5 Scene classification

As mentioned in the introduction, the presence of many typesof objects is correlated.
Rather than model this correlation directly, we introduce alatent common “cause”, which
we call the “scene”. We assume that object presence is conditionally independent given
the scene, as explained in Section 6. But first we explain how we recognize the scene type,
which in this paper can be office, corridor or street.

The approach we take to scene classification is simple. We train a one-vs-all binary clas-
sifier for recognizing each type of scene using boosting applied to the gist.4 Then we

normalize the results:P (S = s|vG) = P (Ss=1|vG)
∑

s′
P (Ss′=1|vG)

whereP (Ss = 1|vG) is the

output of the s-vs-other classifier.5 This approach works very well: see Figure 6(b).

In previous work [23], we considered the problem of classifying scenes collected with a
wearable camera. We found that many of our images were ambiguous, e.g., a close-up of a
white wall, as a person turns around in a narrow corridor. However, by using an HMM to
exploit temporal context, we were able to resolve such ambiguities.

4An alternative would be to use the multi-class LogitBoost algorithm [10]. However, training
separate one-vs-all classifiers allows them to have different internal structure (e.g., number of rounds).

5For scenes, it is arguably more natural to allow multiple labels, as in [3], rather than forcing each
scene into a single category; this can be handled with a simple modification of boosting [19].
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for classc. Other terms are defined in the text.(b) Precision-recall curve for scene classification.

In this paper, we ignore temporal information, and we only try to classify “interesting”
scenes (i.e., ones which have been annotated as containing objects). For long-distance
shots, the gist is very good at classifying the scene, but forclose-ups, it is the objects in
the image, rather than the overall image “texture”, that defines the scene. This suggests
a model which uses both objects and the gist for scene classification, which we discuss
below.

6 Joint scene classification and object-presence detection

We now discuss how we can use scene classification to facilitate object-presence detec-
tion, and vice versa. The approach is based on the tree-structured graphical model6 in
Figure 6(a), which encodes our assumption that the objects are conditionally independent
given the scene.

6.1 Model definition

This graphical model encodes the following conditional joint density:

P (S, E1:n, Oc
1:N , . . . , Ocn

1:N |v) =
1

Z
P (S|vG)

∏

c

φ(Ec, S)
∏

i

P (Oc
i |E

c, vc
i )

wherevG andvc
i are deterministic functions of the imagev andZ is a normalizing constant.

called the partition function (which is tracatable to compute, since the graph is a tree). By
conditioning on the observations as opposed to generating them, we are free to incorporate
arbitrary, possibly overlapping features (local and global), without having to make strong
independence assumptions c.f., [13, 12].

We now define the individual terms in this expression.P (S|vG) is the output of boosting
as described in Section 5.φ(Ec, S) is essentially a table which counts the number of times
object typec occurs in scene typeS. Finally, we define

P (Oc
i = 1|Ec = e, vc

i ) =

{

σ(wT [1 α(vc
i )]) if e = 1

0 if e = 0

6The graph is a tree once we remove the observed nodes.



This means that if we know the object is absent in the image (Ec = 0), then all the local
detectors should be turned off (Oc

i = 0); but if the object is present (Ec = 1), we do not
know where, so we allow the local evidence,vc

i , to decide which detectors should turn on.
We can find the maximum likelihood estimates of the parameters of this model by training
it jointly using a gradient procedure; see the long version of this paper for details.

6.2 Inference

Since the detector nodes,Oc
i , are hidden nodes, and have no observedchildren (the vc

i

nodes are parents), they do not pass messages upwards to their parentsEc [16]. (Such
upward messages would in any case cause overconfidence inEc due to the fact that we
did not model dependencies between the detectors.) The formal reason for this is that
the Oc

i nodes are at the bottom of a hidden v-structure, so they blockinformation from
passing from the local patchesvc

i to the presence detector,Ec. However, we are free to
pass information from the local detectors toEc directly (e.g., via thevc

max = maxi α(vc
i )

node), since all hidden nodes are conditioned on all the visible ones.

The benefit of the d-separation discussed above is that we canperform inference on the
undirected subgraph separately from the directed leaves. In particular, we can perform a
bottom-up pass from theEc nodes to the root,S, and then a top-down pass from the root
back to theEc nodes. Once we have established the probabilility of objectpresence given
global factors, we can proceed to localize the object using

P (Oc
i = 1|v) =

∑

e

P (Oc
i = 1|vc

i , E
c = e)P (Ec = e|v) = P (Oc

i = 1|vc
i , E

c1)P (Ec = 1|v)

whereP (Ec = 1|v) is computed using inference in the tree. Thus global factorscan serve
to suppress over-active local detectors.

6.3 Learning

We can fitP (Oc
i = 1|vc

i , Ec = 1) using logistic regression applied to the boosted detectors,
as described in Section 2.3. The remaining parameters (φ(S, Ec) andP (S|α(vG))) can be
estimated jointly by performing gradient descent on the log-likelihood [13]; we have found
quasi-Newton methods to be effective. Since this is a convexoptimization problem, we are
guaranteed to reach the global optimum.

6.4 Results

In Figure 5, we see that we can reliably detect In Figure 5, we see that we can reliably
detect the presence of the object in an image without using the gist directly, providing we
know what the scene type is (the red curve, derived from the joint model in this section,
is basically the same as the green curve, derived from the gist model in Section 4). The
importance of this is that it is easy to label images with their scene type, and hence to train
P (S|vG), but it is much more time consuming to annotate objects, which is required to
trainP (Ec|vG).7

In Figure 6(b), we see that the joint model does not do any better at scene classification
than just using the gist alone. This is probably because we just have 6 object classes, and
their detectors are not very reliable, so the signal from theEc nodes toS is less reliable
than than fromvG. However, with a larger number of detectors, we would expectjoint
object-presence detection and scene recognition to outperform isolated classification.

7Since we do not need to know the location of the object in the image in order to trainP (Ec|vG),
we can use partially annotated data such as image captions, as used in [5].



7 Conclusions and future work

We have shown how to combine global and local image features to solve the tasks of object
detection and scene recognition. In the future, we plan to try a larger number of object
classes. Also, we would like to investigate methods for choosing which order to run the
detectors. For example, one can imagine a scenario in which we run the screen detector
first (since it is very reliable); if we discover a screen, we conclude we are in an office, and
then decide to look for keyboards and chairs; but if we don’t discover a screen, we might
be in a corridor or a street, so we choose to run another detector to disambiguate our belief
state. This corresponds to a dynamic message passing protocol on the graphical model.
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