Vol. 00 no. 00
Pages 1-9

Efficient parameter estimation for RNA secondary

structure prediction

Mirela Andronescu®, Anne Condon?, Holger H. Hoos#, David H. Mathews ",

and Kevin P. Murphy?

a Dept. of Computer Science, University of British Columbia, Vancouver BC V6T 174
b Dept. of Biochemistry & Biophysics and Dept. of Biostatistics & Computational Biology, University

of Rochester Medical Center, Rochester NY 14642

ABSTRACT

Motivation: Accurate prediction of RNA secondary structure from the
base sequence is an unsolved computational challenge. The accu-
racy of predictions made by free energy minimization is limited by
the quality of the energy parameters in the underlying free energy
model. The most widely used model, the Turner99 model, has hun-
dreds of parameters, and so a robust parameter estimation scheme
should efficiently handle large data sets with thousands of structu-
res. Moreover, the estimation scheme should also be trained using
available experimental free energy data in addition to structural data.
Results: In this work, we present constraint generation (CG), the first
computational approach to RNA free energy parameter estimation
that can be efficiently trained on large sets of structural as well as
thermodynamic data. Our constraint generation approach employs
a novel iterative scheme, whereby the energy values are first com-
puted as the solution to a constrained optimization problem. Then
the newly-computed energy parameters are used to update the cons-
traints on the optimization function, so as to better optimize the energy
parameters in the next iteration. Using our method on biologically
sound data, we obtain revised parameters for the Turner99 energy
model. We show that by using our new parameters, we obtain signifi-
cant improvements in prediction accuracy over current state-of-the-art
methods.

Availability: Our constraint generation implementation is available at
http://www.rnasoft.ca/CG/.

Contact: andrones@cs.ubc.ca

1 INTRODUCTION

RNA molecules play essential roles in living cells. Many orip
ant and diverse functions of RNA molecules, including catal
of chemical reactions and control of gene expression, haWe o
recently come to light. Outside of the cell, novel nucleidadhave
been selected using directed molecular evolution teclesiguvitro,
which can function as enzymes or aptamers with high bindpeg s
cificity for target proteins (Breaker, 2002), with medic&ghostic
or biosensing applications (Benensetral,, 2004; Dirks and Pierce,
2004).

that forms when the molecule folds (see Figure 1 for an exempl
Therefore, current RNA structure prediction methods arestiyio
focused on secondary structure. Given a sequence, the gtal i
predict the structure with minimum free energy (MFE), reto
its unfolded state. There is considerable evidence that Réddn-
dary structures do indeed adopt their MFE configurations@irt
natural environments (Tinoco and Bustamante, 1999), aatiith
many cases these structures are pseudoknot-free (i.¢ajrcamly
hierarchically nested base-pairs).

Most models assume that the free energy of sequanaad
structurey is given by an equation of the form

K
AG(w,y,0) = c(z,9) 8 = > e, 1)00

k=1

@)

whereK is the number of featuresy (z, y) is the number of times
featurek occurs in secondary structugeof sequencer, anddy,

is a parameter modeling the energy contribution of each reccu
rence of featurek. In this paper, we use the features proposed
by Mathewset al. (1999), which are widely accepted as biologi-
cally realistic, and are used in several software packagel as
Mfold (Zuker, 2003), RNAstructure (Mathews, 2004), the iia
RNA package (Hofackeet al, 1994) and SimFold (Andronescu,
2003). We shall call this the Turner99 model. We will explain
these features in more detail in Section 2 (see Figure 1 fareso
examples).

Given a set of features, we are faced with the problem of estim
ting the model parameteés— this is the focus of this work. Suppose
we have a datas& consisting of a set ofz, y.) pairs, wherey,
is the true MFE structure of sequenegas determined using tru-
sted and highly accurate methods). We created such a datisgt
databases of known RNA structures (Cannenal., 2002; Sprinzl
and Vassilenko, 2005, and other databases). One approartth e
to estimate the parameter vectbthat maximizes the likelihood of
S, as used in the CONTRAfold algorithm (D=t al., 2006). Howe-
ver, there are several problems with this approach. Firg,viery
slow, which prevents us from applying it to large trainingsséFor
example, it took more than 80 hours on a single referenceeproc

Because of the importance of RNA molecules, and because strusor to train CONTRAfold on 190 sequences of average length 10

ture is key to the function of RNA molecules in their diversées,
there is a need to improve the accuracy of computationaigireds
of RNA structure from the base sequence. RNA tertiary stinecis
difficult to predict, but significantly constrained by sedary struc-

However, a much larger training set is needed for accuratape

ter estimation.) Second, it does not handle the fact tha¢ timay be
label noise in the training set, i.a,, may not actually be the MFE
structure forz, since the feature set is not perfect, and the structures

ture (Tinoco and Bustamante, 1999) — i.e., the set of bass pai may not be perfectly annotated.

© Oxford University Press .
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AGY=+0.5-2.1-0.7-2.1-2.4
-2.0 + 5.4 = 3.4 keal/mol

Fig. 1. Secondary structure of an RNA strand of length 20. An RNA mole
cule, or strand, is a sequence of Adenine (A), Cytosine (Ciare (G),
or Uracil (U) bases, with two chemically distinct ends, kmoas the5” and

3’ ends. The secondary structure is the set of base pairsdtediby black
boxes) that form when the molecule folds, under fixed envirental condi-
tions. Throughout, we consider only pseudoknot-free sgagnstructures.
The base pairs give rise toops The depicted structure includes a hairpin
loop (right end of diagram), as well as three base pair staoklsa 2x 2
internal loop. In the Turner99 model, the total free enefggnge of a struc-
ture, relative to its unfolded state, is the sum of the fremgynchanges of its
loops. The lower the free energy change, the more stablértietige. Gene-
rally, stacked base pairs tend to stabilize the RNA strectwhereas loops
with unpaired bases are destabilizing. In the depictectistre, contributi-
ons to the total free energy change af @7 denoted byAGg7 (measured
in kcal/mol), include a+5.4 penalty for closing the hairpin loop, which is
largely an entropic cost, &2.4 favourable term for the rightmost (UA/CG)
stacked pair, and &0.5 penalty for an AU pair at the end of a helix (as well
as other terms).

the goals of accurately modeling physical principles, ahdrsu-
ring that the resulting optimization problem of finding the~i
structure can be solved efficiently (using dynamic programgm
in O(n®) time, wheren is the sequence length). Some Turner99
free energy parameters were determined using reliabléalexpe-
riments, while others were estimated from known structdedh.
However, estimation of parameter values was done in stagts,
some values being fixed before others were determined, aachpa
ter estimation did not take advantage of the large body atsiral
information available today. The Turner99 model achieves\e-
rage prediction accuracy (sensitivity) of 73% on a large afet
biological RNAs of length shorter than 700 nucleotides witlown
secondary structures (Mathewsal., 1999).

The model features capture all types of stacked base pairs as
well as loops, including hairpin loops, internal loops andltin
loops. Non-canonical base pairs (i.e., base pairs othar@ita AU
and GU) are not explicitly predicted; however, parametduas
for internal loops do implicitly account for bonds betweeonn
canonical base pairs. For larger loops, features inclueetimber

of branches, number of unpaired bases between branches, the

closing base pairs and unpaired (“dangling”) bases nexhemt
Thus, there are one or more features associated with eaphdso
illustrated in Figure 1.

Overall, the Turner99 model has tabulated energy valuestiont
7600 features; most of these can be determined by applying si
ple extrapolation rules to 363 free parameters. For contiput
efficiency, in this study, we assume the 3’ dangling end param
ter values, used for multiloops and exterior loops (Mathewal,,
1999), are always lower than the respective values for 5glitam
ends. To find improved values for the set of 363 free paraméter

We propose a novel algorithm that overcomes both of these prohe goal of our work presented in the following.

blems: it is very fast (less than 20 minutes to train on 19@isages
of length 100), thus letting us train on large datasets, sisddbust
to label noise. We show that the parameters learned usinglgow
rithm yield 7% better prediction accuracy (as determinedgithe

F-measure on base pairs) than the standard Turner99 paramet

3 PARAMETER ESTIMATION

Having defined the set of features, we now discuss some tpotmi
for parameter estimation.

and 5% better accuracy than the CONTRAfold predictions,rwhe 3.1  Maximum likelihood (ML) method

measured on a large structural dataset.

In addition to predicting the secondary structure, to beiofob
gical interest, a model must also accurately predict the émergy
changes for structure formation. We therefore collecteécisd
dataset, the thermodynamic §et comprised of triplegz, y=, €x),
wherez is an RNA sequencey,. is the MFE secondary structure
of z, ande, is the free energy of structurg, for sequencer,
measured within some small experimental error. We comgtfiesd
dataset from the results of thermodynamic experiments H{ites
et al, 2004, 1999; Xieet al,, 1998). Not surprisingly, we find that
our ability to accurately predict free energies is enhankdn we

also train usingZ. Note that in contrast the scores produced by

CONTRAfold have no intrinsic biological meaning.

2 THE TURNER99 MODEL

An obvious approach to parameter estimation is to use the-max
mum likelihood (ML) method, as in the CONTRAfold algorithm
of Do et al. (2006). Specifically, we define the probability of an
RNA structurey, given an RNA sequence and parameter vector
0, using a conditional log-linear model (Boltzmann disttibn) as
follows:

L AG(z,y,0)).

1
p(ylz,0) = Z(.0) eXP(—RT

Here, R is the gas constant]’ is the absolute temperature, and
Z(z, 0) is the partition function (McCaskill, 1990).

It is well known thatp(y|x, ) is a convex function oB (see
e.g., Laffertyet al. (2001)), and hence we can find the globally
optimal parameter estimate of the log likelihood function(6) =
Z(z,yI)GS log p(y=|x, ©) using a gradient-based optimizer, such as
the Limited-Memory Broyden-Fletcher-Goldfarb-Shann@HGS)

Turner and co-workers derived and refined an energy modéthwh algorithm, provided we can efficiently compute Since we disal-
we call the Turner99 model, over a period of more than two decalow pseudoknots, we can compufeand the gradient of in O(n?)
des (Mathewet al, 1999; Xiaet al., 1998). The model pertains to time using dynamic programming (McCaskill, 1990), wherie the
free energy changes at32. Further refinements to the parameters length ofy.

were made by Mathewst al. (2004), based on new experimen-  We can consider the thermodynamic §etas prior knowledge
tal data. The Turner99 features were carefully chosen tanbal by assuming the observed energigsare noisy versions of the true
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Fig. 2. Schematic representation of the structural and thermadimdata
sets we use in our constraint generation algorithm. The XYaaxges repre-
sent RNA sequences and secondary structures, respeciiveydiamonds
on the left representz, y., e.) triples that form the thermodynamic set,
while the dots on the right represet, y..) pairs forming the structural set.
The curves depict the fact that the knowa structures from the structural
set have lower free energy change than any other structirevitich z can
fold, although we do not know where these points are situaiteitie vertical
free energy axis.

energies. We can model this with a Gaussian distributioh pie-

AG

Turner99 model

Perfect model

Predicted structure Known structure Structures

Fig. 3. Depiction of the motivation for the use of inequality coastts for
a given sequence. Secondary structures far are represented on the X
axis, and free energy changes on the Y axis. The left curuesepts the
free energy curve under the Turner99 model, which, when tedigtion is
incorrect, assigns a higher free energy to the known secpsttaicture than
to the predicted secondary structure, although in the idealel it should
be lower (right curve). We wish to modify the parametérso as to push
up the free energy of the incorrectly predicted secondancttres (and of
other structures), and to pull down the free energy of thevknsecondary
structures.

cision+ and compute the maximum a posteriori (MAP) estimate of Where(z, y.) € S andy € Y5\ {y. }, andY; is the set of all secon-

the posterior distributiop(0|S, 7):

p(0|S,7T) x Ls(0) + 7 (ex — c(a@yx)TG)Q.

>

(z,yz,e0)€T

We implemented the objective function and its gradient inrC+

and optimised it using an unconstrained and unbounded Matla

LBFGS implementation. Since our model assumes constr@irs
parameters (namely dangling end parameters), in our dumghe-
mentation we fix these values to the Turner99 values. A nuogali
constrained optimization software would be needed to dpérfor
all 363 parameters.

However, in practice there are problems with using the M
approach (with or without prior). First, the method is cortgtio-
nally expensive, because evaluating the objective functiod its
gradient is slow, and this needs to be done many times. (Fonex

dary structures for sequencethese constraints ensure that for each
sequencer all non-optimal secondary structurgsof sequencer
have higher energy than the MFE structure (Throughout we

assume there is no other structure which has the same minimum

free energy as the known structure, and thus use strict aliéigs.
This can be relaxed to non-strict inequalities.)

3.2.1 Handling infeasible constraints.Due to inaccuracies in the
given MFE structuregy, (label noise) or inherent limitations of
the given feature set, it may happen that this system of mins
is infeasible, i.e., no solutio@ exists that satisfies all constraints
simultaneously. To deal with infeasibility, we introdudack varia-

blesé..,, > 0into the constraints, whose values are then minimized;

L this leads to relaxed constraints of the form:

AG(z, Yz, 0) < AG(2,Y,0) + da,y-

Considering the definition of the energy functidtz (see Eq. 1),

ple, CONTRAfold took more than 80 hours to train on a small setihase structural constraints can be expressed as a systémeaf

of 190 sequences, and our own implementation of maximum like

lihood took about 66 hours on the same data.) Second, thisagip
does not gracefully handle the case where there is no pasaxrest-
tor © such thaty, is the MFE structure for with respect tad for

inequalities

(c(z,yz) — c(z,)) 10 — 8zy <O

all (z, y.) in the structural set. This case can arise for two reasonsfor all (z,y.) € S andy € Y. \ {y.}. This can be written more

the feature set is not likely to be perfect, and the strustaray not
be perfectly annotated.

3.2 Constraint generation (CG) approach

An alternative approach to parameter estimation is to firmwtion
0 for a system of constraints

AG(I’, Z/z: 9) < AG(:E7 y7 9)7

compactly in matrix form as
MsO—86<0

where each row of the matriXs is (c(z, y.) —c(z,y)) " for some
(z,y.) € S and somey € Y, \ {y.}, ands is the vector of slack
valuesé,,,. (The rows ofMs and the elements of are ordered
consistently.)
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This leads to the following formulation as a constrainedropt
zation problem:

minimize ||6||*

subject to
Ms® —8<0
5 >0.

@)

where||8]| is the L2-norm ofs. (This system can get quite large,
and we explain below how to address this issue.)

This is similar to the large margin approach proposed by dlask
etal.(2005) for learning connectivity parameters for disulfidats
in protein structures. However, it is not quite the same.dewrpro-
blem, we do not want to force a large distance between the fknow
RNA secondary structures and other secondary structutepdda-
meters are meant to have physical meaning, and there isneede
that there can be many low-energy folds of an RNA moleculé tha
have energy close to the minimum free energy (Uhlenbeck5)199
Thus, margin approaches are not directly applicable to miylem.

3.2.2 Incorporating thermodynamic dataWe incorporate the
thermodynamic data by adding the following additional ¢oaists:

®)

where¢, is the error in predicting,. Again we can write this in
vector form as

AG(x?ZU?“ 9) - él = c(x,yw)e - gac = €z.

M70—-—&=e

where each row of the matriX/7 is c(z, y..) for some(z, y., ez) €
T . This leads to the following constrained optimization pewb:

minimize (1 — ) - %' HmTSHQ £ |—;| I&]|?
subject to
Ms® —86<0 (4)
M7rO —§&=e
5> 0.

where|S| denotes the number of sequences insset. is 1 divided
by the number of constraints if/s for sequence:, andm is a
vector ofm,, .
The parametek controls the relative importance @fandsS. The
two extreme cases arg: = 0, which means that we do not consi-
der the thermodynamic set at all; ahd= 1, which causes those
parameters which appear in the thermodynamic set to be fixed t
the values which best fit the thermodynamic set, and the pirar
meters are unconstrained. Figure 2 gives a schematic egpation
of 7 andS, and Figure 3 motivates the use of inequality constraints.
One problem with the above objective is that if a certaindeat
does not occur irS or 7, or if it appears only very few times,
its corresponding parameter can become unbounded in mdgnit
We therefore add an additional constraint tBashould be boun-
ded by the Turner99 parameters, plus or miukcal/mol, where
we assumeB is given to the algorithm. If the structural training
data contains all features, we can eveni3ét infinity; however, in
practice, a large value, such as 10 kcal/mol, should suffibese

procedure CG §,7,\, B, K)
input: structural training sef, thermodynamic sef,
parameter\, bounds parametds, number of iterationd<’;
output: thermodynamic parameter vec#®f, accuracyg™;

set0(®) to the Turner99 parameters;
0:=0; Mg :=[];
0* :=0;q¢* :=0;
for i :=1to K do
foreachz € S do
predict MFE structure)’ of = usingo;
add row(c(z, yz) — c(z,y')) T to Ms;
end for;
obtain newd, &, & by minimizing
(1= 37 [lmT8][” + X 3 18l

subject to
Mg0 — 5 <0,
MTB — E, = e,
5 >0,

00 _B<e<0® 4B
q = prediction accuracy obtained by using paramefeos S;
if (g > ¢*)then

q"=¢q; 0" :=0;
end if;
end for;
return (0%, ¢*);
end CG.

Fig. 4. Outline of the constraint generation algorithm for RNA eyyer
parameter optimization.

3.2.3 Sequential constraint generation algorithmrWWe have a
guadratic objective subject to linear equality and ineigualons-
traints, so we can find the global optimum. Unfortunatelye th
number of constraints can grow exponentially with the sizéhe
input, since for eacliz, y. ) in the structural data s&, there may
be exponentially many structures ¥, (Wuchty et al, 1999). To
circumvent this problem, we propose the following heutistigo-
rithm, similar to the cutting plane algorithm used by Tsothadis
et al. (2005). The main idea is to iteratively estim&eising cons-
traintsMs© — & < 0 for a matrixMs that only includes rows for a
manageable subset of sequencesd structureg.

Specifically, starting from an empty set of structures angl th
Turner99 parameters, in each iteration of our algorithm,efach
sequence: from S, we predict its MFE structure using the current
parameter vecto® and add the constraint

—s%, <o,

z,y

(c(@,yz) — c(x,y)) "0
wherey’ € Y, is the MFE structure of predicted using the parame-
ter vectoro“~ 1) from the previous iteration; this constraint enforces
that the true structurg. has lower energy (by marg'ﬁif)y/) than the
predicted structurg’. To avoid vacuous empty and redundant cons-
traints, we never add constraintgjif = y.. or if the new constraint
is already in the system.

The intuition behind this sequential constraint generatieethod
is that most of the exponentially many constraints will neiative,
since they refer to structures that are energetically verfauora-

bounds can be seen as the strength of a prior on the valueg of tible. Assuming we start with a reasonable set of initial patam

Turner99 parameters.

values (here the Turner99 parameters), we can generattuses
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Table 1. Structural and thermodynamic sets. fast. Unannotated branches or branches containing unkhase
pairs have been truncated. For truncated structurgsstaction
string that restricts the cut ends to pair has been added; of these

Setname No.mols.  Avg. length  Used for structures, 66% have been included in S-Processed.

. In addition to the above datasets that we collected, we used t
T-Full 946 17£7  training structural set of Do et al., which we call S-151Rfam. This-con
T-Single 207 14k 4 test tains one sequence-structure pair from each of 151 Rfamliémmi
S-Processed 3439 148179 training . ;
S-Full 1660 295- 508 test collected from published papers. We have not included ahese

S-151Rfam 151 138102 training famjlies in S-Full becguse many of the structures have bestlig
ted in the corresponding published papers (as opposed tuneeh),
and are not biologically reliable.

S-Al 190 10528  training o .
S-A5 836 105+ 28 training Note that in biological data many features do not occur gisakk
S-A10 1531 10329 training Figure 6), making it hard to assess the potential for CG to est
S-A1’ 193 106+ 29 test mate parameters for these features. Moreover, since wetdmow
what is the best accuracy achievable using the Turner9arteatt,
We use two structural sets and one thermodynamic set for even with a data set that covers all features we cannot knog¢ wh
training. For testing, we use one comprehensive structural ther CG has found the best possible parameter values. Fee the
set and one small thermodynamic set. In addition, we use reasons, we also created artificial data sets, generateghbipmly

three artificially created structural sets for training ané for

testing. choosing sequencesand then setting,, to be the MFE secondary

structure predicted using the Turner99 parameters. Onattifiial
data, we know that there exists a parameter setting (nammelyur-
ner99 parameters) which gives perfectly accurate predisti We
sampled the data such that each feature occurs atideastes, for
k = 1,5,10. (Six of the features are very unlikely to occur in MFE

with more plausible (low) energies and effectively use t@sts
based on this much smaller set. The algorithm return®tkalues

which give the best prediction accuracy on the trainingSgure 4 i i
summarizes our constraint generation algorithm, CG. structures, and thus we fixed their parameter values to theef20

All secondary structure predictions are done using our lchF  Values). We call these sets S-Al, S-A5, and S-A10, and wé tad
software (Andronescu, 2003). Like the widely known Mfolda! feature coveragef the set. We then chegkgd that we could recover
rithm (Zuker, 2003) and the RNAfold procedure from the Viann the Turner99 parameters using these tralnllng sets. We ajasuT?d
RNA package (Hofackeet al, 1994), SimFold is based on Zuker performance on an artificial test set, _S-Al , YVhICh was atadiin
and Stiegler's dynamic programming algorithm and consetiyie exactly the same way as S-A1l, but using a different randormh. see
has time complexityO(n®) and space complexit®)(n?), where
n is the sequence length. The constraint optimization problare

solved with ILOG CPLEX 9.1. 5 EXPERIMENTAL RESULTS
In this section, we report on several aspects of the perfocmaf
4 DATASETS our constraint generation (CG) method. First, using ouficietly-

generated training sets, we show that CG runs much faster tha
CONTRAfold or ML; this is significant, because as a conseqagn
G can be run on much larger training sets, for which running
CONTRAfold or ML would be practically infeasible. Our analy
sis also indicates that CG can indeed find parameters that nes
near-perfect predictions, when such parameters existwaed the
feature count is sufficiently high (10 for our artificial dat&lext,

we compare the accuracy of CG and CONTRAfold, when CG is
trained on the S-151Rfam training set of Do et al., both witl a
without the thermodynamic training set. While CG gives ppr@-
dictions when the thermodynamic set is not included, it tmescor
exceeds the prediction accuracy of CONTRAfold when thentioer
dynamic set is also included in training. Finally, we trai® ©n our
large training set, S-Processed, and evaluate the accof&$ on

our full structural data set, S-Full. We find that the paraneet
found by CG achieves accuracy 7% better than that obtaingd wi
the Turner99 parameter set, and 5% better than that obt&aiyned
CONTRAfold. Following definitions of our accuracy measunegs
first present our results on artificial data and then on biokiglata.

In order to assess the improvement in prediction accurasycn
be achieved using our approach, we collected a large amdunt
structural and thermodynamic data. This data is summaiized
Table 1.

The thermodynamic training set, T-Full, contains opticalting
experimental data that we collected from 39 research papefes
renced by Mathewst al. (2004, 1999). Out of the 946 experiments,
739 are on RNA duplexes, which CONTRAfold cannot currently
take as input for prediction. We therefore created a tesfsgingle,
which contains the remaining 207 experimental results iiogle
sequences.

The structural test set, S-Full, is a comprehensive RNAcgiru
ral set that we assembled from databases of well-deternfingl
secondary structures. Table 4 shows the RNA families iredud
this set, with their sizes and lengths, and references tdatea-
ses of provenance. Several preprocessing steps have hgledap
including removal of RNAs for archeae (which live in extreme
environments), unannotated loops or unknown nucleotitiem-
canonical base pairs and a minimal number of bases to reanjve
pseudoknots have been removed.

The training set, S-Processed, is similar to S-Full, butemol °-1 Performance measures
cules longer than 700 nucleotides have been divided intotesho We use sensitivity and positive predictive value (PPV) aasnees
sequences, so that the MFE structure prediction step ismably  of structural prediction accuracy; a third measure, thedasare (in
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Table 2. Results when training on artificial data sets.

Alg. and Set Train Test (S-A1l) Number  Runtime
options train F-measure F-measure iterations
CGB=1 S-Al 100 0.90 9 am
CGB=10 S-Al 1.00 0.80 23 19m
CGB=1 S-A5 1.00 0.96 9 24m
CGB =10 S-A5 1.00 0.95 13 1h35m
CGB=1 S-Al10 1.00 0.98 9 49m
CGB =10 S-Al10 1.00 0.98 13 4h

ML S-Al 0.94 0.77 - 66h
CF~=6 S-A1  0.83 0.64 - > 80h

CG refers to constraint generation, CF refers to CONTRAfaldere we sety = 6, as
recommended by Det al. (2006)), and ML refers to maximum likelihood. All CG and
ML runs were performed with = 0 andT = 0, respectively, so the thermodynamic
set was not used.

shortF’), combines both sensitivity and PPV:

number of correctly predicted base pairs

Sensitivity= -
y number of true base pairs

number of correctly predicted base pairs

PPV =
number of predicted base pairs

2 x sensitivity x PPV
sensitivity+ PPV

Do et al.(2006) introduced a parameter calleds a way to trade
off sensitivity against PPV using their prediction algbnit. They
found that settingy = 6 gave the best overall performance. We
could obtain a similar trade-off by computing the base paibpbi-
lities and thresholding them, following Mathews (2004) wéwer,
in this work, we focus on MFE structure prediction, which sloet
support this trade-off.

F-measure=

5.2 Results on artificial data

In this section, we report on our runtime analysis, which e d
primarily using our artificially-generated sets. We thesess whe-
ther the CG method can robustly find an optimal parameternvect
0 when one exists. Finally, we evaluate the sensitivity of @@
method to the feature count of the artificial training data.

5.2.1 Runtime comparison.We measured the run time of CG
and CONTRAfold when trained on the artificial structural SeA1,

Turner99 vs. CG S-Al B=10 A=0 Turner99 vs. CG S-A10 B=10 A=0
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Fig. 5. Correlation between “true” Turner99 parameters and estidhpara-
meters on the artificial training set when the feature cgyeta(minimum
number of times each feature occurs in the set), is 1 (leff) Eh (right),
Whenk = 10, the estimated parameters are very close to the “true” ones.

artificial sets, CG always converges within 23 iterationfiéWtrai-
ned on larger artificial sets, such as S-A5 and S-A10, CG8mén
was within two and four hours on a single processor.

For the remaining experiments we parallelized the presfictiep
and ran iton 20 similar processors. When trained on S-15hRfse
total runtime of CG was within 4 hours, while the total rungirof
ML was within 3 days. When trained on S-Processed, the runtim
of CG was within 12 hours. Moreover, the number of iteratigns
takes CG to converge remains low, even on our largest tiuisen
S-Processed, as shown in Figure 7.

5.2.2 Accuracy of CG on artificial training data.When trained
on the artificial sets, CG obtaindd = 1 on all training sets within
23 iterations (recall the initial set of parameters had FBsnee no
more than 0.45). CONTRAfold obtaindd = 0.85 on the training
set, but the fact that CONTRAfold did not obtaii = 1 is not
surprising, since CONTRAfold uses a different set of feaguthan
does the Turner99 model.

5.2.3 Feature count and CG accuracy on artificial test data.
Table 2 also shows that the accuracy of CG improves as the fea-
ture counts increase. On the test set S-Al’, Fhecore improves
from FF = 0.90 to F' = 0.98, as the feature couritincreases from
1to 10. We also note that the accuracy of the CG parametegais s
sitive to the choice of the bounds paramet8;swhich should be
optimized to account for the size and feature counts of teitrg

data set. In addition to improvements in accuracy, a higbatufre
count also improves the ability of CG to recover the true €u®8
parameters, as the correlation plots of Figure 5 show. Tdisates

using a 2.4GHz Intel Xeon CPU with 512 KB cache size and 1GBthat CG is a consistent estimator.

RAM, running Linux 2.6.16 (SUSE 10.1). For CG training, we-pe
turbed the Turner99 parameters by a number chosen unifamly
random between 0 and 1 kcal/mol, and we used this set as tia ini
set of parameters. The F-measures of this initial set a46&; 0.42,
0.45 for S-Al, S-A5 and S-A10, respectively, and 0.43 fortts
set S-Al.

5.3 Results on biological data

In order to compare CG with CONTRAfold, we first trained on

S-151Rfam, which was used by Do et al. to train CONTRAfold.
However, S-151Rfam does not include many of the solved secon
dary structures available today. Since CG is very efficiemt also

As Table 2 shows, when trained on S-Al, having 190 StruC+rained it on the large structural data set S-Processete Bathows

tures, CG took 4 minutes witlB = 1, and 19 minutes with

the results on the training sets, and the accuracy of theefa®n

B = 10, whereas CONTRAfold took more than 80 hours. Our ML parameters (columns 3 and 4). We test all three predictichade

implementation took 66 hours.

on T-Single and S-Full (columns 5 and 6).

Thus, CG is more than two orders of magnitude faster than con-

ditional maximum likelihood methods on our artificial da@n the

5.3.1 Results when training on S-151RfariVhen\ = 0.995
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Table 3. Prediction quality achieved by CG, CONTRAfold and the Tu@i®eparameters.

Training S-151Rfam S-Processed T-Single S-Full T-Single
sets Method F (sens/ppv) F (sens/ppv) F (sens/ppv) F (g@ns/p AG error
used (training) (training) (test) (test) (kcal/mol)

CGB =1.5A=0 0.59 (0.56/0.62) - 0.60 (0.44/0.95) 0.58 (0.55/0.61) 73.1
e T CGB =10)A=0 0.57 (0.54/0.60) - 0.47 (0.3100 0.48 (0.45/0.51) 6.08
(1= A) - S-ASIRfam+ A TRUl Ao 53— 0.995 0.69 (0.73/0.65) - 0.90 (0.85/0.96)  0.64 (0.65/0.63) 0.59
CGB=10X=0.995 0.66(0.69/0.63) - 0.68 (0.53/0.96) 0.64 (0.65/0.63) 0.56
e . CGB =10 A=0 - 0.68 (0.69/0.67) 0.68 (0.53/0.96) 0.56 (0.57/0.54)  63.6
(1 =) - S-Processed A-T-Full -~ 10 Z 0.905 - 0.75(0.77/0.73) 0.960.93/0.96) 0.67 (0.70/0.64)  0.54
S.151Rfam CONTRAfoldy=4 0.70(0.730.67) - 0.76 (0.64/0.93) 0.62 (0.62/0.61) -,
CONTRAfold v=6 0.69 0.750.64) - 0.84 (0.76/0.93) 0.62 (0.64/0.60)
—  Turner99 0.65(0.72/0.60) 0.72 (0.75/0.70) 0PSY0.88) 0.60 (0.64/0.57) 0.96

Column 1 gives the training sets we used. Column 2 gives thtadeve are testing: CG (constraint generation) with varioput parameters, CONTRAfold, and the Turner99
parameters. Columns 3 and 4 show the accuracy (F-measoséj\sy and PPV) of CG and CONTRAfold, when tested on tlaénting structural set used (S-151Rfam in Column
3 and S-Processed in Column 4); the last row of the table shimsvaccuracy of Turner99 on both training sets, for comparidhe closer the accuracy values are to 1.00,
the better. Columns 5 and 6 show the prediction accuracy otestisets. The last column gives the average error of thdigbeel free energy score, when compared with the
measured free energy value for T-Singe;, |e. — é.|/N, whereN = 207 is the size of T-Single (the smaller the average error, theteBold face values indicate cases

where the corresponding parameter set performs best focdhann.

Feature counts for S-151Rfam and S-Processed
100000 T T T

' S-lSlhfam i

i S-Processed =======-
10000 63 parameters in our model -+------ 1
1000 ey,
2 e
3 100 \ ~~~~~~~~~~~
° ~~.'~-
10 \_\_‘_ ., .
1-\-‘_\_‘ Ta
! L 1
0.1
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Features

Fig. 6. The feature counts for various structural sets (featuresoade-
red according to decreasing counts). Out of the 363 totarpaters, only
254 appear at least once in S-151Rfam, and 348 appear abteasin S-
Processed. The thermodynamic set T-Full contains 203 rfaiout of all
363 features in the model.

F-measures for 6 at each CG iteration, trained on S-Processed
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Fig. 7. F-measure when trained on S-Processed vs iteration numibtref
CG algorithm. Usually the accuracy at the first iterationsnisch lower
than the accuracy of the initial parameter set used (i.e.,Tthrner99 set),
because the number of inequality constraints is small. Tgaithm usually
converges in about 20 iterations.

CG performs 4% better than Turner99 and 1% worse than CON5.3.2 Results when training on the large structural set S-
TRAfold on the training set. On the S-Full test set howeveg C Processed. Next we trained CG on S-Processed with= 10 and
performs 4% better than Turner99 and 2% better than CONTIRAfo A = 0.995, and tested on S-Full. This resulted in a 3% impro-

(F=0.64 vs 0.60 and 0.62, see Table 3).

vement in prediction accuracyF (= 0.67 vs 0.64) compared to

When the 48 dangling end parameters were fixed to the Turner9€G when trained on S-151Rfam, a 5% improvement compared to

values for both ML and CG, ML with prior{ = 1) performed

only 1% better than CGX = 0.995, B = 10) on the training set

S-151Rfam and test set S-Processed. This clearly inditizeshe

CONTRAfold trained on S-151Rfam¥{= 0.67 vs 0.62), and a 7%
improvement compared to the Turner99 parametérs=(0.67 vs
0.60, see Table 3).

accuracy of CG is comparable with the accuracy of ML when the Figure 8 summarizes the sensitivity and PPV for the Turner99
same model is used. (ML without prior performed 7% worse thanparameters, CONTRAfold, CG trained on S-151Rfam wih=

ML with prior on the test set, but better than CG with= 0, and
B = 1.5 andB = 10, respectively.)

1.5 and\ = 0.995, and CG trained on S-Processed wish= 10
and\ = 0.995.
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Prediction accuracy of CG, CF and Turner99 on S-Full L. .
Y Table 4. Prediction accuracy on various classes of RNAs from S-Full

0.72 .
CG S-Processed B=10 A=0.995
0.7 %
RNA class No Length CG  Turner99 CF (begt
0.68 () (F)
CG S-151Rfam B=1.5 A=0.995
R o {RNA 484 7745 075 059 0.734=3)
Z oes \*%k\k RNase PRNA 379 33350 0.57 0.53 0.57 =3)
g rurner99 \k 5S rRNA 375 118-2 0.63 0.61 0.51 ¢=10)
@062 16S rRNA 117 1326t 273 0.50 0.41 0.37 ¢=3)
06 CONTRAfold 23S rRNA 36 282443 051 0.44 0.45 §=10)
' SRP RNA 68 16396 0.60 0.69 0.61 (=10)
0.58 Ribozymes 63 568 0.84 0.88 0.86 (y=2)
Other 138 74270 0.89 0.88 0.87 {=4)
0.56
0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 S-Full 1660 295-508 0.67 0.60 0.62 §=4)
PPV

F-measures for our best parameters (CG trained on S-Pestesgh B = 10 and
A = 0.995) and the prediction accuracy of CONTRAfold and Turner9%paeters,

Fig. 8. RNA secondary structure prediction accuracy obtained wisimg ; P
on various RNA families.

the Turner99 parameters, CONTRAfold parameters({2, 3, 4, 6, 8, 10,
20}) and CG parameters (trained on S-151Rfam and S-ProceSssdgd

on a wide range of biological RNA structures in set S-Fulg fflarameters . o
obtained using CG give significantly better accuracy thars¢hfound by the structural set. It glso improves when strong weifig placgd
CONTRAfold and the Turner99 parameters. on the thermodynamic set. If many feature counts are zeeoe tis

no absolute free energy information in the constraints efgha-
dratic program (i.e., no equality constraints), and théuieacounts

5.3.3 Feature counts. Figure 6 shows that only 254 out of the Cannotcompensate for the lack of free energy information.

363 features underlying the Turner99 model appear at all-in S5 3.6 Free energy accuracy.In addition to measuring the accu-
151Rfam. In fact, only about 170 of them appear more than.onceracy of secondary structure prediction, we compare theageer
Thus, it is not surprising that CG performs poorly (10% worse ghsolute difference between the experimentally measured f
than the Turner99 parameters or CONTRAfold) when we train ONenergy for the molecules in T-Single, and the predictedescéor
this set and no thermodynamic data is used (Ref), as seen in  tha trye structures. A good free energy estimation meassatfé-

the first row of Table 3. When the thermodynamic set is corside rage error is low (rightmost column of Table 3). While CG with
red, however, CG obtains higher average prediction acguf@n  \ — (.995 yields an average error lower even than the Turner99
CONTRAfold on our large dataset, S-Full. parameters (which is 0.96 kcal/mol), CONTRAfold’s scortieds

Figure 6 also shows that S-Processed contains almost dikeof t by 7.74. This clearly shows that the scores used by CONTRIAfol
Turner99 features, missing only 15 of them. At the same e,  |oge the free energy physical meaning.

prediction accuracy on S-Full further increases when C@Gaise¢d
on S-Processed using= 0.995. 5.3.7 Prediction accuracy for different types of RNA3able 4

The thermodynamic set T-Full contains 203 features outi@&@  shows the F-measures of our best CG parameters (i.e., draime
features in the model. Note that, whan> 0, one occurence of a S-Processed, witl = 10 and\ = 0.995), CONTRAfold and Tur-
feature in the thermodynamic set is sufficient to get a gotithage ~ Ner99 parameters on various families of RNAs. On familiehsas
of the free energy value for that feature; this is differeninf the  transfer RNA, RNase P RNA or ribosomal RNA, CG performs best
situation for the structural set, where it is beneficial tuchaeveral ~ On average, between 2% and 16% better than Turner99, anddretw
occurrences of a feature. 1% and 14% better than CONTRAfold. Note that CONTRAfold

performs particularly poorly on ribosomal RNAs (16S rRNA=la
5.3.4 Bounds parametds. The best setting of the bounds para- 235 rRNAs do not exist in the S-151Rfam set, however 5S rRNAs
meter B is correlated with the feature counts of the structural setdo), although it does perform 3% and 14% better than Turner99
used. If many of the features do not appear in this set, we tteed RNase P and transfer RNAs, respectively.
set a tlghter bound on the pal’ameters. Thus, when we traimed o On two fam”ies' name|y SRP RNAs and ribozymesi CG performs
S-151Rfam, a maximal deviation @ = 1.5 kcal/mol from the  9o4 and 4% worse than Turner99, and 1% and 2% worse than CON-
Turner99 parameters gave better prediction accuracythanl0.  TRAfold. The number of sequences in these families is smisn
It is interesting however that, when = 0.995, the accuracy on  for most of the other families.
S-Full is the same for botB = 1.5 and B = 10.

When we trained on S-Processed, we uBeg¢ 10. Experiments 6 RELATED WORK
with B = 30 gave similar results, indicating that a larger value of

B would not affect the quality of the parameters. As we have mentioned, Turner and his collaborators haveegkfin

their estimates of energy values for over 20 years, basedrirop
5.3.5 Weight of thermodynamic data sefAs we already obser- thermodynamic data, and in part on extrapolations fromcairal
ved with the artificial data set, Table 3 shows clearly tha th data, using genetic and grid search algorithms. Howevémas
accuracy of prediction improves with increasing featurarts in  tion of parameter values was done in stages, with some values
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being fixed before others were determined, and were not able tWe thank Romy Shioda, who suggested usingdtivalues to cap-
take advantage of the large body of structural informatiaailable  ture noise in CG. We thank Daniel G. Brown and colleagues for
today. Doet al. (2006) also considered the problem of parame-early suggestions on the CG algorithm. We thank Chuong B. Do
ter estimation, using maximum likelihood techniques. Qdsineir  for clarifications and help with CONTRAfold. Finally, we thiathe
method, they estimated parameters for a feature set thattre funders of this research. Andronescu, Condon, Hoos and fWurp

structed, using a small training data set (151 Rfam strasjuil hey
showed that, on their training set, predictions with theadel have
higher accuracy than predictions with the Turner99 modsin@
Mfold). However, their feature set is more than twice asdaag that
of Turner et al., making it difficult to assess whether theiccess
is due to their approach or to their set of features. Addéilynfree
energy values, which are valuable to biologists, cannotredigted
by their model. Finally, as our results show, the overaluaacy of
their predictions is poorer on average than our predictions

The idea of sequentially adding constraints to optimize adeg-
tic program was investigated by Tsochantarietsal. (2005), alt-
hough they used a different objective function and did noisater
RNA structure prediction.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present a constraint-based parametenatitn

algorithm, CG, which efficiently combines structural anértho-
dynamic RNA secondary structure data. Our method is sutisiisn
faster than a conditional maximum likelihood method ontieddy

small training sets, and, unlike the maximum likelihood raagh,
can be practically used on large training sets with thousafd
structures.

We applied our method to derive new parameters for the T@éner

acknowledge support from the Natural Sciences and Engirgeer
Research Council of Canada (NSERC), as well as from the Mathe
matics of Information Technology and Complex Systems (MIBA
Network of Centres of Excellence. Mathews is an Alfred Pa8lo
Research Fellow and is supported by National Institutes exilth
grant RO1GMO076485.
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