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Abstract
Causal learning methods are often evaluated in terms of their ability to discover a true underlying
directed acyclic graph (DAG) structure. However, in general the true structure is unknown and
may not be a DAG structure. We therefore consider evaluating causal learning methods in terms of
predicting the effects of interventions on unseen test data. Given this task, we show that there exist
a variety of approaches to modeling causality, generalizing DAG-based methods. Our experiments
on synthetic and biological data indicate that some non-DAG models perform as well or better than
DAG-based methods at causal prediction tasks.
Keywords: Bayesian Networks, Graphical models, Structure Learning, Causality, Interventions,
Cell signalling networks, Bioinformatics.

1 Introduction

It is common to make causal models using directed acyclic graphs (DAGs). However, one problem
with this approach is that it is very hard to assess whether the graph structure is correct or not. Even
if we could observe “nature’s graph”, it probably would not be a DAG, and would contain many
more variables than the ones we happened to have measured. Realistic mechanistic (causal) models
of scientific phenomena are usually much more complex, involving coupled systems of stochastic
partial differential equations, feedback, time-varying dynamics, and other complicating factors.

In this paper, we adopt a “black box” view of causal models. That is, we define causality in
functional terms, rather than by committing to a particular representation. Our framework is as
follows. Suppose we can measure d random variables, Xi, for i= 1:d. For example, these might
represent the phosphorylation levels of different proteins. Also, suppose we can perform k different
actions (interventions), Aj , for j = 1 :k. For example, these might represent the application of
different chemicals to the system. For simplicity, we will think of the actions as binary,Aj ∈ {0, 1},
where a value of 1 indicates that we performed action Aj . We define a causal model as one that can
predict the effects of actions on the system, i.e., a conditional density model of the form p(x|a).
These actions may or may not have been seen before, a point we discuss in more detail below.
Note that our definition of causal model is even more general than the one given in Dawid (2009),
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who defines a causal model as (roughly speaking) any model that makes conditional independence
statements about the X and A variables; as Dawid points out, such assumptions may or may not be
representable by a DAG.

To see that our definition is reasonable, note that it includes the standard approach to causality
(at least of the non-counterfactual variety) as a special case. In the standard approach (see e.g.,
(Spirtes et al., 2000; Pearl, 2000; Lauritzen, 2000; Dawid, 2002)), we assume that there is one
action variable for every measured variable. We further assume that p(x|a) can be modeled by a
DAG, as follows:

p(X1, . . . , Xd|A1 = 0, . . . , Ad = 0, G, f) =
d∏
j=1

fj(Xj , Xπj ) (1)

where G is the DAG structure, πj are the parents of j in G, and fj(Xj , Xπj ) = p(Xj |Xπj , Aj = 0)
is the conditional probability distribution (CPD) for node j, assuming that node j is not being
intervened on (and hence Aj = 0). If node j is being intervened on, we modify the above equation
to

p(X1, . . . , Xd|Aj = 1, A−j = 0, G, f, g) = gj(Xj , Xπj )
∏
k 6=j

fk(Xk, Xπk
) (2)

where gj(Xj , Xπj ) = p(Xj |Xπj , Aj = 1) is the CPD for node j given that node j is being inter-
vened on. In the standard model, we assume that the intervention sets the variable to a specific state,
i.e., gj(Xj , Xπj ) = I(Xj = Sj), for some chosen target state Sj . This essentially cuts off the influ-
ence of the parents on the intervened-upon node. We call this the perfect intervention assumption.
A real-world example of this might be a gene knockout, where we force Xj to turn off (so Sj = 0).
The crucial assumption is that actions have local effects, and that the other fj terms are unaffected.

If we do not know which variables an action affects, we can learn this; we call this the uncertain
intervention model (Eaton and Murphy, 2007). In particular, this allows us to handle actions which
affect multiple nodes. These are sometimes called “fat hand” actions; the term arises from think-
ing of an intervention as someone “sticking their hand” into the system, and trying to change one
component, but accidently causing side effects. Of course, the notion of “fat hands” goes against
the idea of local interventions. In the limiting case in which an action affects all the nodes, it is
completely global. This could be used to model the effects of a lethal chemical that killed a cell,
and hence turned all genes “off”.

If we model p(x|a) by a DAG, and make the perfect intervention assumption, then we can make
predictions about the effects of actions we have never seen before. To see this, suppose we have
collected N samples from the non interventional regime, D = {xn}Nn=1, where xn ∼ p(x|a = 0)
(this is called observational data). We can use this data to learn the non-interventional CPDs fj .
Then we make a prediction about what would happen if we perform a novel action, say turning
Aj on, by simply replacing fj with gj , which we assume is a delta function, I(Xj = Sj). Of
course, if the data is only observational, we will not, in general, be able to uniquely infer the DAG,
due to problems with Markov equivalence. However, if some of the data is sampled under perfect
interventions, then we can uniquely recover the DAG (Eberhardt et al., 2005, 2006).

The key question is: is the assumption of DAGs and perfect interventions justified in any given
problem? What other models might we use? It seems that the only way to choose between methods
in an objective way, without reference to the underlying mathematical representation, is to collect
some real-world data from a system which we have perturbed in various ways, partition the data
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into a training and test set, and then evaluate each model on its ability to predict the effects of
interventions. This is what we do in this paper.

An important issue arises when we adopt this functional view of causality, which has to do
with generalizing across actions. In the simplest case, we sample training data from regimes
p(x|a1), . . . , p(x|ar), for r different action combinations, and then sample test data from the same
regimes. We will see an example of this in Section 3.1, where we discuss the intracellular flow
cytometry dataset analyzed in Sachs et al. (2005). In this setup, we sample data from the system
when applying one chemical at a time, and then ask the model to predict the protein phosphorylation
levels when the same chemical is applied.

A more interesting task is to assume that the test data is drawn from a different sampling regime
than the training data. This clearly requires that one make assumptions about how the actions
affect the variables. We will see an example of this in Section 3.2, where we discuss another flow
cytometry dataset, used in the Dream 2008 competition. In this setup, we sample data from the
system when applying one inhibitory chemical and one excitatory chemical at a time, but then ask
the model to predict the protein phosphorylation levels when a novel pair of chemicals is applied.
For example, we train on data sampled from p(x|a1 = 1, a2 = 1, a3 = 0) and p(x|a1 = 0, a2 =
1, a3 = 1), and test on data sampled from p(x|a1 = 1, a2 = 0, a3 = 1). That is, we have seen
A1 and A2 in combination, and A2 and A3 in combination, and now want to predict the effects of
the A1, A3 combination. Another variation would be to train on data from p(x|a1 = 1, a2 = 0)
and p(x|a1 = 0, a2 = 1), and test on data sampled from p(x|a1 = 1, a2 = 1). This is similar to
predicting the effects of a double gene knockout given data on single knockouts.

The most challenging task is when the testing regime contains actions that were never tried
before in the training regime, neither alone nor in combination with other actions. For example,
suppose we train on data sampled from p(x|a1 = 1, a2 = 0) and test on data sampled from p(x|a1 =
0, a2 = 1). In general, these distributions may have nothing to do with each other. Generalizing to
a new regime is like predicting the label of a novel word in a statistical language model. In general,
this is impossible, unless we break the word down into its component pieces and/or describe it in
terms of features (e.g., does it end in “ing”, does it begin with a capital letter, what is the language
of origin, what is the context that it was used in, etc). If we represent actions as “atomic”, all we
can do is either make the DAG plus perfect intervention assumption, or assume that the action has
no affect, and “back-off” to the observational regime. We will compare these approaches below.

2 Methods

In this section, we discuss some methods for learning conditional density models to represent
p(x|a), some based on graphs, others not. We will compare these methods experimentally in the
next section. Code for reproducing these experiments will be made available at www.cs.ubc.
ca/˜murphyk/causality.

2.1 Approaches to Modeling Interventions

We consider several classes of methods for creating models of the form p(x|a):
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1. Ignore: In this case, we simply ignore A and build a generative model of P (X). This has
the advantage that we gain statistical strength by pooling data across the actions, but has the
disadvantage that we make the same prediction for all actions.

2. Independent: In this case, we fit a separate model P (X|A) for each unique joint configura-
tion ofA. This is advantageous over the ignore model in that it makes different predictions for
different actions, but the disadvantage of this model is that it does not leverage information
gained between different action combinations, and can not make a prediction for an unseen
configuration of A.

3. Conditional: In this case, we build a model of P (X|A), where we use some parametric
model relating the A’s and X’s. We give the details below. This will allow us to borrow
strength across action regimes, and to handle novel actions.

2.2 Approaches based on DAGs

In the ignore case, we find the exact MAP DAG using the dynamic programming algorithm proposed
in (Silander and Myllmaki, 2006) applied to all the data pooled together. We can use the same
algorithm to fit independent DAGs for each action, by partitioning the data. In the conditional
case, there are two ways to proceed. In the first case, which we call perfect, we assume that
the interventions are perfect, and that the targets of intervention are known. In this case, it is
simple to modify the standard BDeu score to handle the interventional data, as described in Cooper
and Yoo (1999). These modified scores can then be used inside the same dynamic programming
algorithm. In the second case, which we call uncertain, we learn the structure of an augmented
DAG containing A and X nodes, subject to the constraint that there are no A→A edges or X→A
edges. It is simple to modify the DP algorithm to handle this; see (Eaton and Murphy, 2007) for
details.

2.3 Approaches based on undirected graphs

DAG structure learning is computationally expensive due to the need to search in a discrete space of
graphs. In particular, the exact dynamic programming algorithm mentioned above takes time which
is exponential in the number of nodes. Recently, computationally efficient methods for learning
undirected graphical model (UGM) structures, based on L1 regularization and convex optimization,
have become popular, both for Gaussian graphical models (Meinshausen and Buhlmann, 2006;
Friedman et al., 2007; Banerjee et al., 2008), and for Ising models (Wainwright et al., 2006; Lee
et al., 2006). In the case of general discrete-state models, such as the ternary T-cell data, it is
necessary to use a group L1 penalty, to ensure that all the parameters associated with each edge
get “knocked out” together. Although still convex, this objective is much harder to optimize (see
e.g., (Schmidt et al., 2008) and (Duchi et al., 2008) for some suitable algorithms). However, for the
small problems considered in this paper, we found that using L2 regularization on a fully connected
graph did just as well as L1 regularization, and was much faster. The strength of the L2 regularizer
is chosen by cross validation.

To apply this technique in the ignore scenario, we construct a Markov random field, where we
create factors for each Xi node and each Xi − Xj edge. For the independent scenario, one such
Markov random field is learned for each action combination in the training set. In the interventional
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scenario, we construct a conditional random field, in which we additionally create factors for each
Xi − Aj edge, and for each Xi, Xj , Ak triple (this is similar to a chain graph; see (Lauritzen and
Richardson, 2002) for a discussion.) Since it does not contain directed edges, it is harder to interpret
from a causal perspective. Nevertheless, in Section 3.1, we show that the resulting model performs
very well at the task of predicting the effects of interventions.

2.4 Other methods

There are of course many other methods for (conditional) density estimation. As a simple example
of a non graph based approach, we considered mixtures of K multinomials. In the ignore case, we
pool the data and fit a single model. In the independent case, we fit a separate model for each action
combination. In the conditional case, we fit a mixture of independent logistic regressions:

p(x|a) =
∑
k

p(z = k)
d∏
j=1

p(xj |z = k,a) (3)

where p(z = k) is a multinomial, and p(xk|a, z = k) is multinomial logistic regression. This is
similar to a mixture of experts model (Jordan and Jacobs, 1994).

2.5 Summary of methods

In summary, we have discussed 10 methods, as follows: 3 models (Mixture Model, UGM or DAG),
times 3 types (ignore, independent, conditional), plus perfect intervention DAGs. We did not try
independently trained DAGs, because it was substantially slower than other methods (using exact
structure learning), so we only consider 9 methods in total.

3 Experimental results

In the introduction, we argued that, in the absence of a ground truth graph structure (which in general
will never be available), the only way to assess the accuracy of a causal model is to see how well it
can predict the effects of interventions on unseen test data. In particular, we assume we are given a
training set of (a,x) pairs, we fit some kind of conditional density model p(x|a), and then assess
its predictive performance on a different test set of (a,x) pairs.

3.1 T-cell data

Flow cytometry is a method for measuring the “status” of a large number of proteins (or other
molecules) in a high throughput way. In an influential paper in Science in 2005, Sachs et al. used
flow cytometry to collect a dataset of 5400 samples of 11 proteins which participate in a particular
pathway in T-cells. They measured the protein phosphorylation levels under various experimental
conditions. Specifically, they applied 6 different chemicals separately, and measured the status
of the proteins; these chemicals were chosen because they target the state of individual proteins.
They also measured the status in the unperturbed state (no added chemicals).1 Sachs et al. then

1. This original version of the data is available as part of the 2008 Causality Challenge. See the CYTO dataset at
http://www.causality.inf.ethz.ch/repository.php.
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Figure 1: T-cell data. 3-state training data from (Sachs et al., 2005). Columns are the 11 measured proteins,
rows are the 9 experimental conditions, 3 of which are “general stimulation” rather than specific interventions.
The name of the chemical that was added in each case is shown on the right. The intended primary target is
indicated by an E (for excitation) or I (for inhibition). There are 600 measurements per condition. This figure
is best viewed in colour.
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Figure 2: 10-fold cross-validated negative log likelihood on the T-cell data (lower is better). The methods
are divided based on their approach to modeling interventions (Ignore the interventions, fit Independent
models for each intervention, fit a Conditional model that conditions on the interventions, or assume Perfect
interventions). Within each group, we sub-divide the methods into MM (mixture of multinomials), UGM
(undirected graphical model), and DAG (directed acyclic graphical model).
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Figure 3: Average (per-case) negative log-likelihood on the T-cell test data as a function of the amount of
training data for one particular action regime, given the data from all other action regimes. Results when
choosing other actions for the “sparse training regime” are similar. “DAG Cond” is a DAG with uncertain
interventions. “UGM Ind” is a UGM fit independently for each action.
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Figure 4: Negative log-likelihood on the T-cell data for different methods when predicting a novel action,
using data from all the other actions as training. The boxplot shows the variation when different actions are
chosen as the prediction targets. We plot performance relative to the best method for each chosen action,
since some actions are easier to predict than others.
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discretized the data into 3 states, representing low, medium and high activation (see Figure 1), and
learned a DAG model using simulated annealing and the scoring function described in (Cooper and
Yoo, 1999). The resulting DAG was quite accurate, in that it contained most of the known edges in
the biological network, and few false positives. However, it is known that the “true” graph structure
contains feedback loops, which cannot be modeled by a DAG. In addition, there are many variables
in the “true” model that are not measured in the data. Hence assessing performance by looking at
the graph structure is not ideal. Instead, we will measure predictive accuracy of the learned models.

We used the same discretized version of the data as in the original Sachs paper. There are 600
samples in each interventional regime, and 1800 samples in the observational regime, for a total of
5400 samples. There is no pre-specified train/test split in the T-cell data, so we have to make our
own. A natural approach is to use cross validation, but a subtlety arises: the issue is whether the test
set folds contain novel action combinations or not. If the test data contains an action setting that has
never been seen before, in general we cannot hope to predict the outcome, since, for example, the
distribution p(x|a1 = 0, a2 = 1) need have nothing in common with p(x|a1 = 1, a2 = 0).

Initially we sidestep this problem and follow the approach taken by Ellis and Wong (2008),
whereby we assess predictive performance using 10-fold cross validation, where the folds are cho-
sen such that each action occurs in the training and test set. Hence each training set has 540 samples
and each validation set has 60 samples.

The results of evaluating various models in this way are shown in Figure 2. We see that the
methods which ignore the actions, and pool the data into a single model, do poorly. This is not
surprising in view of Figure 1, which indicates that the actions do have a substantial affect on the
values of the measured variables. We also see that the approach that learns the targets of intervention
(the conditional DAG) is significantly better than learning a DAG assuming that the interventions
are perfect (see last two columns of Figure 2). Indeed, as discussed in Eaton and Murphy (2007),
the structure learned by the uncertain DAG model indicates that each intervention affects not only
its suspected target, but several of its neighbors as well. The better prediction performance of this
model indicates that the perfect intervention assumption may not be appropriate for this data set.
However, we also see that all the independent and conditional models not based on DAGs do as
well or better than the DAG methods.

It was somewhat surprising how well the independent models did. This is presumably because
we have so much data in each action regime, that it is easy to learn separate models. To investigate
this, we considered a variant of the above problem in which we trained on all 600 samples for all
but one of the actions, and for this remaining action we trained on a smaller number of samples (and
tested only on this remaining action). This allows us to assess how well we can borrow statistical
strength from the data-rich regimes to a data-poor regime. Figure 3 shows the results for several of
the models on one of the actions (the others yielded largely similar results). We see that the condi-
tional models need much less training data when faced with a novel action regime than independent
models, because they can borrow statistical strength from the other regimes. Independent models
need much more data to perform well. Note that even with a large number of samples, the perfect
DAG model is not much better than fitting a separate model to each regime.

The logical extreme of the above experiment is when we get no training samples from the novel
regime. That is, we have 600 training samples from each of the following: p(x|1, 0, 0, 0, 0, 0),
p(x|0, 1, 0, 0, 0, 0), ... p(x|0, 0, 0, 0, 1, 0), and we test on 600 samples from p(x|0, 0, 0, 0, 0, 1),
where the bit vector on the right hand side of the conditioning bar specifies the state of the 6 Aj
action variables. We can then repeat this using leave-one-action out. The results are shown in
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Figure 5: Dream 3 phosphoprotein data. See text for details.

Stimulus︷ ︸︸ ︷ Inhibitor︷ ︸︸ ︷
INFg TNFa IL1a IL6 IGF1 TGFa LPS MEK P38 P13K IKK mTOR GSK3 JNK12 X1 X17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5578 275
0 0 0 0 0 0 0 1 0 0 0 0 0 0 454 89
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1001 99

.

.

.
.
.
.

0 0 0 0 0 0 1 0 0 0 0 0 1 0 22 33

Figure 6: The dream 3 training data represented as a design matrix. We treat each cell type and time point
separately, and show the response of the 17 phosphoproteins to 58 different action combinations (58 is 8× 8
minus the 6 test conditions shown in Figure 5.) Each 14-dimensional action vector has 0, 1 or 2 bits turned
on at once. For example, the last row corresponds to stimulus=LPS, inhibitor = GSK3.

Figure 4. (We do not show results for the independently trained models, since their predictions on
novel regimes will be based solely on their prior, which is essentially arbitrary.) We see that all
methods do about the same in terms of predictive accuracy. In particular, the perfect DAG model,
which is designed to predict the effects of novel actions, is actually slightly worse than conditional
DAGs and conditional UGMs in terms of its median performance.

3.2 DREAM data

One weakness of the CYTO dataset discussed above is that the actions are only performed one at a
time. A more recent dataset has been collected which measures the status of proteins under different
action combinations.2 This data is part of the DREAM 3 competition, which took place in Novem-
ber 2008. (DREAM stands for “Dialogue for Reverse Engineering and Assessment of Methods”.)
The data consists of measurements (again obtained by flow cytometry) of 17 phosphoproteins and
20 cytokines at 3 time points in 2 cell types under various combinations of chemicals (7 stimuli and

2. This data is available from http://wiki.c2b2.columbia.edu/dream/index.php/The_
Signaling-Response_Prediction_Challenge._Description.
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Team MSE
PMF 1483
Linear regression 1828
Team 102 3101
Team 106 3309
Team 302 11329

Figure 7: Mean squared error on the DREAM 3 dataset, using the training/test set supplied with the challenge.
Also listed is the performance of the three other teams who competed in the challenge.

7 inhibitors). In the challenge, the response of the proteins under various stimulus/ inhibitor pairs is
made available, and the task is to predict the response to novel stimulus/ inhibitor combinations. In
this paper, we focus on the phosphoprotein data. The data is illustrated in Figure 5. Another way to
view this data is shown in Figure 6.

The DREAM competition defines a train/test split, and evaluates methods in terms of their mean
squared error for predicting the responses of each variable separately to 6 novel action combinations.
In Table 7, we show the scores obtained by the 3 entrants to the competition in November 2008.
The method used by these teams has not yet been disclosed, although the organizer of the Dream
competition (Gustavo Stolovitzky) told us in a personal communication that they are not based on
graphical models. We also show two approaches we tried. The first uses simple linear regression
applied to the 14-dimensional binary action vector a to predict each responseXj (since the methods
are evaluated in terms of mean squared-error, this is equivalent to using a conditional DAG model
with linear-Gaussian CPDs) We see that this beats all the submitted entries by a large margin.
However, the significance of this result is hard to assess, because there is only a single train/test
split. We also tried probabilistic matrix factorization, using K = 3 latent dimensions. This is
similar to SVD/PCA but can handle missing data (see Salakhutdinov and Mnih (2008) for details).
This choice was inspired by the fact that the data matrix in Figure 5 looks similar to a collaborative
filtering type problem, where the goal is to “fill in” holes in a matrix. We see that PMF does even
better than linear regression, but again it is hard to assess the significance of this result. Hence in the
next section, we will discuss a synthetic dataset inspired by the design of the DREAM competition.

3.3 Synthetic Data

Since the DREAM data uses population averaging rather than individual samples, it does not contain
enough information to learn a model of the underlying system. Thus, we sought to validate some of
the approaches discussed here on a synthetic data set. To this end, we generated synthetic data sets
that simulate the DREAM training/testing regime (i.e., where we train on pairs of actions and test
on novel pairs).

We sought to generate a data set that has a clearly defined notion of intervention, but that is not
a DAG. To do this we simulated data from a discrete structural equation model (SEM) (see Pearl
(2000)). In particular, we generated a data set where each variable Xj is updated based on

p(Xj = 1|xπj ,θj) = σ(w0j + wT
j xπj ) (4)

p(Xj = −1|xπj ,θj) = 1− p(Xj = 1|xπj ,θj) (5)
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Figure 8: Negative log-likelihood for novel action combinations on synthetic data generated from a fully
visible SEM. We plot NLL relative to the best performing method.

where σ() is the sigmoid function σ(x) , 1/(1 + exp(−x)), and θj = (w0j ,wj) are the paramters
for each node; here w0j is the bias term and wj are the regression weights. We generated each
w0 from a standard Normal distribution, and to introduce strong dependencies between nodes we
set each element of each w vector to U1 + 5sgn(U2), where U1 and U2 were generated from a
standard Normal distribution. For each node j, we included each other node in its parent set πj with
probability 0.25. To generate samples that approximate the equilibrium distribution of the model, we
started by sampling each node’s value based on its bias w0 alone, then we performed 1000 updates,
where in each update we updated all nodes whose parents were updated in the previous iteration. We
assume perfect interventions, which force a variable into a given state. In the special case where the
dependency structure between the nodes is acyclic, this sampling procedure is exactly equivalent to
ancestral sampling in a DAG model (and the update distributions are the corresponding conditional
distributions), and these interventions are equivalent to perfect interventions in the DAG. However,
we do not enforce acyclicity, so the distribution may have feedback cycles (which are common in
biological networks).

We considered 2 variants of this data, one where all variables are visible, and one with hidden
variables (as is common in most real problems). In the visible SEM data set, we generated from an
8-node SEM model under all 28 pairs of action combinations. In our experiments, we trained on
27 of the action pairs and tested on the remaining action pair, for all 28 pairs. In the hidden SEM
data set, we generated from a 16-node SEM model under the 28 pairs of actions combinations for
the first 8 nodes, but we treat the odd-numbered half of the nodes as hidden (so half of the actions
affect a visible node in the model, and half of the actions affect a hidden node). We think that this is
a slightly more realistic synthetic data set than a fully visible DAG with perfect interventions, due
to the presence of hidden nodes and feedback cycles, as well as interventions that affect both visible
and hidden nodes. When the data is visualized, it looks qualitatively similar to the T-cell data in
Figure 1 (results not shown).

11



DUVENAUD, EATON, MURPHY, SCHMIDT

The results on the visible data are shown in Figure 8. Since we are only testing on new action
combinations, independent models cannot be applied. As expected, conditional models do better
than ignore models. However, amongst the conditional models there does not appear to be a clear
winner. In particular, DAG models, even perfect DAGs which are told the target of intervention, do
no better than non-DAG models.

The results on the hidden data are not shown, since they are qualitatively similar to the visible
case. Note that in this setting, we cannot use the perfect intervention model, since some of the
interventions affected hidden nodes; hence the target of intervention is not well defined. We have
obtained qualitatively similar results on other kinds of synthetic data.

4 Conclusions

In this paper, we have argued that it is helpful to think of causal models in functional terms, and to
evaluate them in terms of their predictive performance, rather than in terms of graph structures that
they learn. In particular, we view causal modeling as equivalent to learning a conditional density
model of the form p(x|a).

A criticism of this work could be that we are not really doing causality because we can’t predict
the effects of new actions. However, in general, this is impossible unless we know something (or
assume something) about the new action, since in general p(x|a1 = 1, a2 = 0) need have nothing
to do with p(x|a1 = 0, a2 = 1). Indeed, when we tested the ability of various methods, including
causal DAGs, to predict the effects of a novel action in the T-cell data, they all performed poorly —
not significantly better than methods which ignore the actions altogether. This is despite the fact that
the DAG structure we were using was the MAP optimal DAG, which had previously been shown to
be close to the “true” structure, and that we knew what the targets of the novel action were.

We think a promising direction for future work is to describe actions, and/or the variables they
act on, in terms of feature vectors, rather than treating them as atomic symbols. This transforms the
task of predicting the effects of new actions into a standard structured prediction problem, that could
be addressed with CRFs, M3Ns, etc. Just like predicting the labeling of a new sentence or image
given only its features, if there is some regularity in the action-feature space, then we can predict
the effects of a new action given only the features of the action, without ever having to perform it.
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