
Variational Methods for Detecting
Copy Number Alterations

by

Guillaume Alain

B.Sc., The University of Ottawa, 2004
M.Sc., The University of Ottawa, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

June 2009

c© Guillaume Alain 2009

Abstract

DNA copy number alterations (CNAs) are genetic changes that can produce adverse effects
in numerous human diseases, including cancer. Various techniques exist to identify them,
but the problem is far from solved and the prohibitive computational costs rule out many
approaches.

We show how the current state-of-the-art model hmmmix can be trained using variational
methods with minimal assumptions. We show how this allows for partial patients clustering
and how it partly addresses the difficult issue of determining the number of clusters to use. We
compare our technique with the current best and show how it can handle very large datasets.

iii

Table of Contents

Abstract . iii

Table of Contents . v

List of Tables . vii

List of Figures . ix

Acknowledgments . 1

1 Introduction . 3
1.1 Our contributions . 3
1.2 Outline of the thesis . 3

2 Description of the current model . 5
2.1 The hmmmix generative model . 5
2.2 Priors for learning the parameters . 7
2.3 Inference in the hmmmix-hard model . 8
2.4 Determining the number of clusters . 8

3 Generalization of hmmmix . 11
3.1 Note on forwards-backwards . 12
3.2 Notation and assumptions for variational methods 13
3.3 Training . 14

3.3.1 Hidden chains . 14
3.3.2 Partial patients assignments . 16
3.3.3 Parameters . 17

3.4 Cluster initialization . 20
3.5 Algorithm initialization and updating scheme 20
3.6 Flow of approximations . 21

4 Results and implementation . 23
4.1 Benchmark with synthetic data . 23
4.2 Comparison with hmmmix-hard on FL data 24
4.3 Multiple chromosomes . 27
4.4 Complexity analysis . 27
4.5 Scalability . 28

4.5.1 Hardware issues . 29
4.5.2 Parallelization and other tricks . 31

4.6 Free energy variant . 32
4.7 Bayesian information criterion . 33v

5 Conclusion and future work . 35
5.1 Summary . 35
5.2 Future work . 35

Bibliography . 37

List of Tables

4.1 Comparing hmmmix-soft to hmmmix-hard using Jaccard coefficient. The val-
ues are averaged over 50 generated datasets and the standard deviations are
included to give an idea of how spread results are. 24

vii

List of Figures

2.1 The hmmmix model. When generating data, the parameters π1:G, A1:G, µ1:P
1:K , λ1:P

1:K

are fixed. The parameters αL, αN , αG are not shown here. 6
2.2 The silhouette coefficient (vertical axis) depending on the number of clusters

used (horizontal axis) for different artificial datasets. The number G is the
true number of clusters in the datasets and L is the length of the alterations
inserted. The green curve is the average of the results for 50 datasets and the
blue curves show the standard deviation. The silhouette coefficient is a good
way to detect the real number of clusters for those artificial datasets when the
values of (G,L) are small, but it’s not reliable in cases (f), (h), (i) as the curves
don’t peak at the true values of G. 9

3.1 The relations between the different parts of the algorithm in terms of approxi-
mations. 21

4.1 The original results for hmmmix-hard. Figure (a) shows the initial imputed
values for Z1:P

1:T . Figure (b) shows the values after running hmmmix-hard to
cluster the patients. The values displayed are those of the hidden chains to
which each patient belongs. The patients are reordered for easier visualization.
The green segments correspond to Mg

t = high while red segments correspond
to Mg

t = low. 25
4.2 Three possible sets of imputed values for hidden chains and patients using

hmmmix-soft. These are a good representation of the kind of results that we
get. The choices of parameters αL, αN , αG are shown here, but we refrained
from showing the effects of the other free parameters as they are somewhat
similar. These values are imputed by a pass of Viterbi because hmmmix-soft
keeps full distributions h(M1:G

1:T). 26
4.3 The execution time for the basic implementation of hmmmix-soft (in blue)

compared to a low-memory implementation (in black). 30

ix

Acknowledgments

This work is based on Sohrab Shah’s work with my M.Sc. supervisor Kevin Murphy. I thank
them both for giving me the chance to work on this project. I am indebted to Kevin Murphy
for taking me as student and to Sohrab Shah for providing me with an opportunity to work
on a relevant biological problem without having background knowledge in the field.

1

Chapter 1

Introduction

The purpose of this thesis is to expand on Sohrab Shah’s work on detecting shared chromoso-
mal aberrations in cohorts of patients. His novel approach, presented in [Sha08] and [SJJ+09],
which he names the hmmmix model, treats the gene sequences as hidden Markov chains and
clusters the patients to reduce the effects of noise in the measured data.

We believe Shah’s model would perform better and would be more flexible if it were trained
using variational methods instead of using its current approximations. We propose to explore
this approach and compare it to the one introduced by [Sha08].

1.1 Our contributions

Our contributions to the hmmmix model are three-fold. First, we use variational methods
can be used to extend the model. The most interesting consequence of this is the possibility
to assign patients to multiple clusters. We derive the new update formulas to train the model
and we analyze its runtime performance.

Secondly, we show how variational methods open the way to other initialization methods
than the k-medoids method used in [Sha08]. This was a serious limitation in their model as it
required the number of clusters to be selected a priori. We also discuss the addition of scaling
constants to the variational entropy terms in order to smooth out the algorithm.

Finally, in addition to providing the normal code for our implementation, give a low-memory
implementation made to handle large datasets. We compare the performance of both on small
and large datasets. We have also rewritten the forwards-backwards algorithm in C to speed
up considerably the original code from [Sha08].

1.2 Outline of the thesis

In chapter 2, we describe the hmmmix model completely and discuss how [Sha08] learn the
parameters. This model is the basis of this thesis.

3

In chapter 3 we show how it is possible with variational methods to extend the model to
remove some of the constraints that [Sha08] has.

In chapter 4 we compare our method with that of [Sha08] using his benchmarks on artificial
data and by comparing visually the results on real data. We also analyze the computa-
tional/memory complexity of the algorithm and discuss how it scales to accommodate the
very large datasets that are common in biology.

Finally, in chapter 5, we conclude with a general discussion and point to potential improve-
ments.

Chapter 2

Description of the current model

In this section we will provide a complete description of the hmmmix model introduced in
[Sha08] and [SJJ+09].

We follow certain naming conventions in order to tell apart the model in [Sha08] from ours,
and to tell the difference between the statistical models themselves and the various methods
to train them. What we refer to as hmmmix is a generative model with various parameters.
Exact inference in that model is very hard and various approximations can be done to simplify
this task. In [Sha08] a certain technique is used for that, and we will refer to it as hmmmix-
hard as it performs hard cluster assignments to patients and uses the Viterbi algorithm to
impute values to the hidden Markov chains.

In this thesis, we start again from the hmmmix model but we solve the learning problem
by using variational inference. We call our method hmmmix-soft in reference to the partial
cluster assignments for patients. The underlying model is still the hmmmix model but we
approach it differently.

Although this chapter will cover the hmmmix model in details, we will only summarize the
hmmmix-hard method because it is not the object of our study. The reader can always refer
to [Sha08] or [SJJ+09] for more details.

Certain parameters of the model can be given priors, but to avoid putting the ox before the
plow, these priors will be discussed in (2.2) after the core of the hmmmix model is explained
in (2.1). One could also argue that the priors could be considered part of the inference
mechanism and not really part of the model (as we are not integrating over them). An
important component of the model comes in the definition of p(Y 1:P

1:T |Z1:P
1:T , θ) and the method

to learn the parameters θ. For this, [Sha08] borrows from [Arc05] but the actual formulas
from the latter have to be adapted to our particular case.

2.1 The hmmmix generative model

The hmmmix model is a generative model that has G hidden Markov chains and P patients,
with every patient assigned to one of the chains (we assume that P À G). Figure 2.1 shows
the graphical representation of the model.

5

Figure 2.1: The hmmmix model. When generating data, the parameters π1:G, A1:G, µ1:P
1:K , λ1:P

1:K

are fixed. The parameters αL, αN , αG are not shown here.

For every group g = 1, . . . , G, we have a corresponding hidden Markov chain of length T whose
states are represented by Mg

1:T . These chains have K discrete states that, for the purposes
of this work, can take one of K = 3 discrete values corresponding to different copy number
alterations : {1=loss, 2=normal, 3=gain}. For every g, we sample one full sequence Mg

1:T

from a hidden Markov chain with corresponding prior πg and transition matrix Ag. These
parameters should be chosen to encourage the normal (k = 2) state and discourage state
transitions.

For every patient p = 1, . . . , P , we assign that patient to one of the groups {1, . . . , G} with
equal probability. We let Gp be the index identifying to which hidden Markov chain p belongs.
We then take the associated chain Mg

1:T (for Gp = g) and we sample a sequence of hidden
states Zp

1:T associated to that patient. Note that the Zp
1:T sequence is not a Markov chain.

The discrete value of Zp
t is sampled from a multinomial whose parameters are given by one

of K predefined vectors αL, αN , αG depending on the state {1=loss, 2=normal, 3=gain} of
the source Mg

t .

We usually define the parameter vectors as αL = (aL, 1, 1), αN = (1, aN , 1), αG = (1, 1, aG)
for an appropriate choice of aL, aG ≥ aN ≥ 1. These parameters determine how likely the
patients are to have the same hidden states as the ones found in the group to which they
belong.

Finally, we generate the observations Y 1:P
1:T given Z1:P

1:T .

p(Y p
t |Zp

t = k) = Student
(
Y p

t |mean=µp
k, precision=λp

k,degrees of freedom=νp
k

)
(2.1)

where

Student (x|µ, λ, ν) =
Γ

(
ν+1
2

)

Γ
(

ν
2

)
√

λ

νπ

[
1 +

λ

ν
(µ− x)2

]− ν+1
2

(2.2)

2.2 Priors for learning the parameters

There are two places in this model where priors are used to learn the parameters. The
first place is when estimating the transition matrices involved in the hidden chains. We put a
Dirichlet prior on every row of Ag with parameters picked to encourage same-state transitions.
This essentially corresponds to putting pseudocounts on the transition matrices. More details
on this are found in section 3.1 when we put the forwards-backwards algorithm in context.

The second place where priors are used when we are estimating the parameters θ = {µ1:P
1:K , λ1:P

1:K}
that take part in p(Y 1:P

1:T |Z1:P
1:T , θ) =

∏
t

∏
p p(Y p

t |Zp
t , θ). There are slight divergences in nota-

tion between [Sha08] and [Arc05] as well as some imprecision concerning the roles that the
hyperparameters play. We decided to follow [Arc05] whenever possible and to be explicit
about the density functions whenever confusion could arise. This is important as we will be
using these definitions in section 3.3.3 when addressing how to learn the parameters from
hmmmix-soft. It should be understood that these priors are there to give the model some
flexibility and there might be better ways to train the values of µ1:P

1:K , λ1:P
1:K when we have

domain-specific knowledge.

We factor the prior as p(µ, λ) = p(µ|λ)p(λ). On the precisions λp
k, we put a Gamma prior

with hyperparameters γp
k , Sp

k also indexed by k, p :

p
(
λp

k|γp
k , Sp

k

)
= Gamma

(
λp

k|γp
k , Sp

k

)
(2.3)

where
Gamma (x|a, b) =

1
Γ(a)

baxa−1 exp (−bx) . (2.4)

On the means µp
k, we put a normal prior with hyperparameters mp

k, η
p
k :

p
(
µp

k|mp
k, η

p
k, λ

p
k

)
= N (

µp
k|mean=mp

k,precision=ηp
kλ

p
k

)
(2.5)

where

N (x|mean=µ,precision=λ) =

√
λ

2π
exp

(
−λ

2
(x− µ)2

)
. (2.6)

It should be noted that, in [Sha08], the hyperparameters mp
k, ν

p
k are only indexed as mk, νk.

From personal correspondence with the author, we learned that this was how his hmmmix-
hard was implemented and thought it would be better to present the model in this fashion.

As those values are not learned during inference, we can always assign the same values across
patients and it will be equivalent to using the mk, νk indexing.

Finally, there is a certain amount of preprocessing done on the experimental data Y 1:P
1:T before

it is used to learn the hmmmix model. This preprocessing step has more to do with instrument
calibration than with statistics. The effects of that are reflected in the values of mp

k that we use
and they should be consistent with our choice of representation {1=loss, 2=normal, 3=gain}.

2.3 Inference in the hmmmix-hard model

The patients are initially clustered within a specified number of groups with a method de-
scribed in [Sha08]. This method imputes values to the variables Z1:P

1:T and then uses the
k-medoids algorithm to get the initial assignments. From then on, the hmmmix-hard algo-
rithm proceeds by iterative conditional means, updating the hidden chains M1:G

1:T , the patients
assignments G1:P and the parameters µ1:P

1:K , λ1:P
1:K until convergence.

These updates are done by assigning patients to the single group whose hidden chain “ex-
plains” best the observations. The updates to the hidden chains are done by imputing values
to M1:G

1:T using the Viterbi algorithm to get the most likely sequence of states explaining the
observed values for the patients assigned to that group. We refer the reader to [Sha08] for
the actual formulas.

To estimate the parameters, the priors from [Arc05] are used. We are using the same priors
in section 3.3.3, although we use a slightly different approach. The reader can again refer
to [Sha08] and [SJJ+09] for the essential formulas, to [Arc05] for the original derivations or
simply to section 3.3.3 of this thesis.

2.4 Determining the number of clusters

One of the important limitations of the hmmmix-hard approach is that we have to specify in
advance the number of clusters to be used. This is essential for the k-medoids algorithm and
the resulting clustering contains only hard assignments to clusters.

To get around this issue of determining the number of clusters, [Sha08] use the silhouette
coefficient as a measure of quality. They impute the values of the hidden Z1:P

1:T and use them
as input for k-medoids. The quality of the initial clustering naturally depends on the quality
of the imputed values of Z1:P

1:T .

We ran our own simulation to see if we could rely on the silhouette coefficient to estimate the
number of clusters in the case of the data generated by [Sha08]. We used their code to generate

data with different numbers of clusters G = 3, 5, 10 and different lengths L = 25, 50, 75 for
the copy number alterations. For G0 = 2, . . . , 25, we looked at the silhouette coefficients
obtained when selecting the best clustering from k-medoids with G0 clusters. We used the
same parameters as [Sha08] to explore the nine combinations and averaged over 50 datasets
each time. The results are in Figure 2.2.

(a) G=3,L=25 (b) G=3,L=50 (c) G=3,L=75

(d) G=5,L=25 (e) G=5,L=50 (f) G=5,L=75

(g) G=10,L=25 (h) G=10,L=50 (i) G=10,L=75

Figure 2.2: The silhouette coefficient (vertical axis) depending on the number of clusters used
(horizontal axis) for different artificial datasets. The number G is the true number of clusters
in the datasets and L is the length of the alterations inserted. The green curve is the average
of the results for 50 datasets and the blue curves show the standard deviation. The silhouette
coefficient is a good way to detect the real number of clusters for those artificial datasets when
the values of (G,L) are small, but it’s not reliable in cases (f), (h), (i) as the curves don’t peak
at the true values of G.

These graphs were produced from artificial datasets obtained by taking real data and inserting
mutations in them of appropriate lengths. Experimental data does not have a true number
of clusters and the value found by the silhouette coefficient does not guarantee that we will
do any good for any other kind of measure of performance (such as imputing the Z, the M

or predicting Y).

There is also something unsatisfying about the silhouette coefficient because it does not fit
into the statistical framework of the model. The bayesian information criterion (BIC) is a
natural way to add a penalty term to the log-likelihood of the data in order to do model
selection, but we can’t do the equivalent for the silhouette coefficient. In fact, when [Sha08]
compare hmmmix-hard to existing methods with their benchmark test that uses synthetic
data, they omit this step and assume that the true number of clusters G is known by their
k-medoids clustering algorithm.

The reason why the k-medoids algorithm is used instead of the classic k-means is because it
does the clustering with a distance matrix that computes distances between points only P (P−1)

2

times. The cost of each evaluation is prohibitive when we are dealing with long sequences
of genes. The cost of running k-means (or EM) to initialize the algorithm can become as
expensive as running the algorithm itself, so multiple restarts of k-means are not an option.
With k-medoids, the same distance matrix can be used for multiple restarts of the algorithm.

Chapter 3

Generalization of hmmmix

Inference is difficult in hmmmix model mostly due to the fact that the hidden chains are
coupled because of explaining away. This makes learning intractable unless we are willing
to make concessions. [Sha08] assigns temporary values to the hidden G1:P to break the ties
between the hidden chains. With the chains uncoupled, the Viterbi algorithm is used to select
the most likely sequence of states for hidden chains independently.

The hmmmix-hard model gets good results when used with a decent initialization of patients
assignments, but it tends to get stuck in very bad local maxima when not initialized properly.
In this chapter, we will show how we can use variational methods to make it more flexible
and better in some cases (but never worse). The actual benchmarks are found in the next
chapter.

An interesting consequence of our approach is that we will be dealing with soft patient as-
signments. The case for hard patients assignments versus soft patients assignments is very
similar to the case of k-means versus gaussian mixture models learned by EM. We hope that
the patients will put their weights in single clusters depending on their CNA profiles, but we
can only hope that the real data can be explained by such a clustering.

A very insightful paper on variational methods used for coupled hidden Markov chains is
[GJ97]. Chapter 10 of [Bis06] also contains relevant material to justify optimizing the varia-
tional lower bound, but they focus more on indirected models and generalization to Power EP.
Hidden Markov models are always special cases where we can do certain things in linear time
so [GJ97] is the reference that we’ll be following more closely. We are dealing with a model a
bit more involved than in [GJ97] so we have to re-derive the formulas for our particular case.

At the core of the hmmmix-soft algorithm is a variational lower bound for the log-likelihood
of the data that we want to maximize. This is a technique that maximizes the log-likelihood
itself, but we are more interested in the variational approximations to the hidden chains
because they are supposed to represent the underlying biological phenomenon that we are
studying. The final log-likelihood quantity whose value we optimize marginalizes over these
hidden chains. Having optimal values for the transition matrices A1:G is not half as interesting
as knowing where the state transitions are located. Again, we can draw a comparison with the
case of gaussian mixture models trained with EM where we are very interested in seeing which
data points lie in which cluster, but we might not even care about the final log-likelihood.

11

A crucial optimization step in section 3.3.1 requires a good eye to identify certain quantities
as being the log-likelihood of a hidden Markov chain with given observations. To simplify the
exposition of our model, we felt that it would be appropriate to devote section 3.1 to derive
certain formulas in a context where we have only one chain. That way, it will be easier to
untangle expressions involving G chains. Section 3.1 should simply be viewed a collection of
useful lemmas.

Section 3.2 sets up the context for our model. In section 3.3 we derive the formulas for
updating the parameters. We return briefly to the topic of cluster initialization in 3.4 and
explain in 3.5 how the updates should be performed. In section 3.6, we sketch a map of
the approximations that were used to make the original model tractable and discuss in more
depths those pertaining to the parameters µ1:P

1:K , λ1:P
1:K .

3.1 Note on forwards-backwards

Let M1:T be a Markov chain with K states, with transition matrix A and initial state priors
given by a multinomial of parameter π. Moreover, for all hidden states Mt at time t ∈
{1, . . . , T}, let Rt[k] be the log-likelihood of the observed data for state k ∈ {1, . . . , K}. This
encapsulation of the log-likelihood values enables us to focus on the chains without thinking
about the rest of the model at this point. The complete data log-likelihood for M1:T can be
written as

T∑

t=1

K∑

k=1

I(Mt = k)Rt(k) +
K∑

k=1

I(M1 = k) log πk +
T∑

t=1

K∑

j=1

K∑

k=1

I(Mt−1 = j, Mt = k) log A(j, k).

Thus, if we are faced with an expression of the type

∫
h(M1:T)

[
T∑

t=1

K∑

k=1

I(Mt = k)Rt(k) + const1

]

+
∫

h(M1:T)




K∑

k=1

I(M1 = k) log πk +
T∑

t=1

K∑

j=1

K∑

k=1

I(Mt−1 = j, Mt = k) log A(j, k)




−
∫

h(M1:T) log h(M1:T) + const2

(3.1)

that we want to maximize with respect to h(M1:T) taken to be any joint distribution on
(M1, . . . , MT) ∈ {1, . . . , K}T , that maximal value is achieved when h(M1:T) follows the
same distribution as the one induced on a first-order Markov chain by observations with
log-likelihood values Rt[k]. This follows from the uniqueness of the minimizing distribution
Q in KL(Q‖P) when Q is allowed to take the value P .

The optimal h(M1:T) can be obtained by running the forwards-backwards algorithm (see
[Bis06] chap 13.2). It can be expressed analytically with the help of a vector of marginals
h(M1) and a set of T − 1 square matrices called the two-slice marginals that are denoted by
ξt−1,t(j, k) = h(Mt−1 = j, Mt = k). We can sample from h(M1:T) easily with those quantities
and we get the smoothed marginals h(Mt) as a bonus from the forwards-backwards algorithm.

The transition matrix A can have a conjugate prior that takes the form of pseudocounts
APC(j, k) ≥ 0 with a pdf proportional to

p(A|APC(j, k)) ∝
K∏

j=1

K∏

k=1

A(j, k)APC(j,k).

This can be achieved more formally by taking the rows of A to be distributed independently
according to Dirichlet(APC(j, 1), . . . , APC(j,K)) for row j = 1, . . . , K.

The MLE with respect to A of equation (3.1) is given by the fowards-backwards algorithm
as an average of the two-slice marginals ξt−1,t. We can find the MAP estimate of A with
pseudocounts simply by adding those to the two-slice marginals before renormalizing the
rows (to get a proper transition matrix).

(
AMLE(j, 1), . . . , AMLE(j, K)

) ∝
T∑

t=2

ξt−1,t(j, 1:K) + APC(j, 1:K)

These are the quantities that maximize (3.1) with respect to A when all other variables are
fixed. A similar reasoning shows that the MLE for the initial state priors π1:K is given by the
smoothed marginals M1(1:K).

3.2 Notation and assumptions for variational methods

The most important hidden quantities in our model are the patients assignments G1:P , the
chains M1:G

1:T and the hidden states Z1:P
1:T of the patients. We will use f to refer to the original

pdf from the hmmmix model and h to refer to the pdf of the variational approximation
to the hidden variables. Thus, we will be interested in maximizing a quantity of the form
L(h) =

∫
h(W) log f(Y, W |τ)dW −∫

h(W) log h(W) where W are the hidden variables, Y are
the observed variables and τ are the parameters of the function f .

The tractability of our model comes from restricting the possibilities of h to a subfamily where
the factorization h(M1:G

1:T , G1:P) = h(M1:G
1:T)h(G1:P) holds. This makes the chains independent

and allows us to maximize iteratively h(M1:G
1:T) and h(G1:P). Moreover, we will assume that

we can further factorize the factors as h(M1:G
1:T) =

∏
g h(Mg

1:T) and h(G1:P) =
∏

p h(Gp), both
of those assumptions being quite reasonable since patients are not supposed to be related
and neither should the CNA profiles be. We will not assume that h(Mg

1:T) =
∏

t h(Mg
t) but,

for other purposes than for estimating the transition matrices Ag and initial state priors πg,
the distributions h(Mg

1:T) will propagate through the hmmmix-soft model in the same way
as if we assumed that h(Mg

1:T) =
∏

t h(Mg
t). We decided to marginalize out analytically the

hidden variables Z1:P
1:T from the model. This is why we don’t have a variational term h(Z1:P

1:T),
but Z1:P

1:T still play a part in the formulas.

The full data log-likelihood to be maximized is

L(h) =
∫

h(M1:G
1:T)h(G1:P) log f(Y 1:P

1:T ,M1:G
1:T , G1:P , A1:G, π1:G, θ)dG1:P dM1:G

1:T −
∫

h log h.

(3.2)
where we use θ as shorthand for (µ1:P

1:K , λ1:P
1:K) and where f decomposes as

f(Y 1:P
1:T , M1:G

1:T , G1:P , A1:G, π1:G, θ) =f(Y 1:P
1:T |M1:G

1:T , G1:P , θ)f(M1:G
1:T |A1:G, π1:G)f(G1:P) (3.3)

f(A1:G|APC)f(π1:G)f(µ1:P
1:K , λ1:P

1:K |m1:P
1:K , η1:P

1:K , γ1:P
1:K , S1:P

1:K).

It will be convenient also to let Cp
g be the probability under h(G1:P) that patient p is assigned

to cluster g. This is well-defined because we assume that the assignments to clusters between
patients are independent. It also means that

∑G
g=1 Cp

g = 1 for all patients p.

Some formulas contain entropy terms− ∫
h(M1:G

1:T) log h(M1:G
1:T) that we will denote byH[h(M1:G

1:T)]
to lighten the notation. Due to assumptions in our variational approximation, we have that

H[h(M1:G
1:T)] =

G∑

g=1

H[h(Mg
1:T)] and H[h(G1:P)] =

P∑

p=1

H[h(Gp)] (3.4)

3.3 Training

3.3.1 Hidden chains

If we focus on maximizing (3.2) with respect to h(M1:G
1:T), we can omit the unrelated terms

and rewrite (3.2) as
∫

h(M1:G
1:T)h(G1:P)

[
log f(Y 1:P

1:T |M1:G
1:T , G1:P , θ) + log f(M1:G

1:T |A1:G, π1:G)
]
dG1:P dM1:G

1:T +H[h(M1:G
1:T)]

(3.5)
We start by reformulating the first term in the previous expression (3.5) to separate as much
as possible the contributions of the G groups. We have that

∫
h(M1:G

1:T)h(G1:P) log f(Y 1:P
1:T |M1:G

1:T , G1:P , θ)dG1:P dM1:G
1:T (3.6)

=
∫

h(M1:G
1:T)

∫
h(G1:P)

∑
t

log f(Y 1:P
t |M1:G

t , G1:P , θ)dG1:P dM1:G
1:T (3.7)

=
∫

h(M1:G
1:T)

∑
t

∫
h(G1:P)I(Gp = g) log f(Y 1:P

t |M1:G
t , G1:P , θ)dG1:P dM1:G

1:T (3.8)

=
∫

h(M1:G
1:T)

∑
t

∑
g

∑
p

Cp
g log f(Y p

t |Mg
t , Gp = g, θ)dG1:P dM1:G

1:T (3.9)

=
∫

h(M1:G
1:T)

∑
t

∑
g

Rt,g[M
g
t]dM1:G

1:T (3.10)

where, in that last line, we defined

Rt,g[M
g
t] =

∑
p

Cp
g log f(Y p

t |Mg
t , Gp = g, θ). (3.11)

Continuing on (3.10), we get

∫
h(M1:G

1:T)
∑

t

∑
g

Rt,g[M
g
t]dM1:G

1:T =
∑

g

∫
h(Mg

1:T)
∑

t

Rt,g[M
g
t]dMg

1:T . (3.12)

We now come back to the original expression (3.5) using (3.12) and the entropy term decom-
position (3.4) to rewrite our formula of interest (3.5) as

∑
g

[∫
h(Mg

1:T)

[∑
t

Rt,g[M
g
t] + log f(Mg

1:T |Ag, πg)

]
dMg

1:T −
∫

h(Mg
1:T) log h(Mg

1:T)dMg
1:T

]
.

(3.13)
Because the distributions f

(
Mg

1:T |Ag, πg
)

from the hmmmix model are Markov chains, we
can see that (3.13) is essentially a sum of G independent hidden Markov chains as found in
section (3.1). It follows that, to maximize our variational lower bound (3.2) with respect to
h(M1:G

1:T), we should run forwards-backwards on the chains independently for g = 1, . . . , G
with Rt,g[M

g
t = 1, . . . ,K] as observation log-likelihoods.

When implementing the algorithm, we represent internally h(Mg
1:T) as a collection of two-slice

marginals ξt−1,t(1:K, 1:K) along with a vector for the smoothed distribution of the first state
h(M1).

It can easily be shown that, to maximize the original variational lower bound (3.2) with
respect to (A1:G, π1:G), we can use the two-slice marginals and h(M1) to find the new MLE
values. We can add pseudocounts to A1:G by proceeding as explained in section 3.1.

We use iterative conditional mode to optimize with respect to h(M1:G
1:T) and (A1:G, π1:G) be-

cause they depend on each other. We pick a tolerance threshold to determine when the
values have stabilized to avoid excessive computations in the first steps in the algorithm.
Once we are satisfied with the values MLE values of (A1:G, π1:G), we no longer need the
two-slice marginals of h(M1:G

1:T) and it is sufficient to keep only the smoothed marginals
{h(Mg

t)|t = 1 . . . T, g = 1 . . . G} as a K-by-T-by-G matrix.

3.3.2 Partial patients assignments

We now turn to optimizing our lower bound L(h) with respect to the distributions h(G1:P) =∏
p h(Gp).

As the variational parameters h(Gp) are essentially parameters for multinomial distributions
(of one draw), we can represent them by values Cp

g corresponding to the weight of the partial
assignment of patient p in group g. Dropping all unrelated terms from (3.2), we get

L(h) =
∫

h(M1:G
1:T)h(G1:P) log f(Y 1:P

1:T |M1:G
1:T , G1:P , θ)f(G1:P)dM1:G

1:T dG1:P +H
(
G1:P

)
(3.14)

=
∫

h(G1:P)
[∫

h(M1:G
1:T) log f

(
Y 1:P

1:T |M1:G
1:T , G1:P , θ

)
dM1:G

1:T + log f(G1:P)
]

dG1:P +H
(
G1:P

)

(3.15)

=
∫

h(G1:P)

[∫
h(M1:G

1:T)
∑

p

∑
g

I(Gp = g) log f
(
Y 1:P

1:T |M1:G
1:T , Gp = g, θ

)
]

+
∫

h(G1:P) log f(G1:P) +H
(
G1:P

)
(3.16)

=
∫

h(G1:P)

[∑
p

∑
g

∫
h(M1:G

1:T)I(Gp = g) log f
(
Y p

1:T |Mg
1:T , Gp = g, θ

)
]

+
∫

h(G1:P) log f(G1:P) +H
(
G1:P

)
(3.17)

=
∑

p

∫
h(Gp)

∑
g

∫
h(Mg

1:T) log f
(
Y p

1:T |Mg
1:T , Gp = g, θ

)

+
∑

p

∫
h(Gp) log f(Gp) +

∑
p

H (Gp) (3.18)

There are different ways to handle the
∫

h(Gp)f(Gp) terms. The simplest of those is to use a
uniform prior that allows us to ignore them. Another possibility is to take a Dirichlet(τ, . . . , τ)
prior on f(Gp). This prior is such that we have, for every p, that

H (Gp) +
∫

h(Gp) log f(Gp) =
∑

g

Cp
g log Cp

g +
∑

g

Cp
g (τ − 1) log Cp

g + cst(τ) = τH (Gp) + cst(τ)

(3.19)
With this prior, we develop (3.18) further. It can be written as a sum of P independent
expressions, so the maximization problem is solved separately for the many h(Gp). For every
patient p, we get expressions of the form

∫
h(Gp) log(σp

g)−
∫

h(Gp) log h(Gp)dGp (3.20)

where
σp

g = exp
(

τ−1

∫
h(Mg

1:T) log f
(
Y p

1:T |Mg
1:T , Gp = g, θ

)
dMg

1:T

)
. (3.21)

The τ−1 in 3.21 comes from the τ coefficient in (3.19) by which we can divide the whole of
expression (3.18). It follows that the desired distributions of h(Gp) are softmaxima scaled
by a factor of τ−1 > 0. A stronger prior belief that cluster assignments should be uniform
(corresponding to a larger τ) translates into more uniform softmaxima terms due to lighter
evidence (being divided by τ).

The updated quantities for h(G1:P) are given by

Cp
g =

exp
(
τ−1

∫
h(Mg

1:T) log f
(
Y p

1:T |Mg
1:T , Gp = g, θ

)
dMg

1:T

)
∑

g′ exp
(
τ−1

∫
h(Mg′

1:T) log f
(
Y p

1:T |Mg′
1:T , Gp = g′, θ

)
dMg′

1:T

) (3.22)

Cp
g =

exp
(
τ−1

∑T
t=1

∑K
k=1 h(Mg

t = k) log f
(
Y p

1:T |Mg
1:T , Gp = g, θ

))

∑
g′ exp

(
τ−1

∑T
t=1

∑K
k=1 h(Mg′

t = k) log f
(
Y p

1:T |Mg′
t , Gp = g′, θ

)) (3.23)

The uniform prior on f(Gp) corresponds to picking τ = 1. This τ parameter should be seen
as a tool to add flexibility to the model. It can be used to tune the convergence speed of the
whole algorithm. Note also that we only need the smoothed distributions h(Mg

t) to update
the Cp

g and we don’t use the two-slice marginals. This has to do with the fact that the hidden
states Z1:P

1:T are not connected into a Markov chain.

3.3.3 Parameters

When comes to the time to maximize L(h) with respect to θ = {µ1:P
1:K , λ1:P

1:K}, we use the same
prior as [Arc05]. We decided to handle the hidden variables Z1:P

1:T in a slightly different way
than [Arc05], though, by integrating over Zp

t when evaluating the quantity Rp
t [k].

We want to maximize the component of the lower bound of L(h) that depends on θ. This
quantity is

L(θ) =
∫

h(M1:G
1:T)h(G1:P) log f(Y 1:P

1:T |M1:G
1:T , G1:P , θ)f(θ)

=
∫

h(M1:G
1:T)h(G1:P)

[
log

∫
f(Y 1:P

1:T |Z1:P
1:T , θ)f(Z1:P

1:T |M1:G
1:T , G1:P)dZ1:P

1:T + log f(θ)
]

(3.24)

≥
∫ [

h(M1:G
1:T)h(G1:P)f(Z1:P

1:T |M1:G
1:T , G1:P)dM1:G

1:T dG1:P
] [

log f(Y 1:P
1:T |Z1:P

1:T , θ)f(θ)
]
dZ1:P

1:T

(3.25)
Now we will maximize a lower bound on L(θ) instead of maximizing that quantity itself. A
legitimate alternative would have been to start out with a variational parameter h(Z1:P

1:T) to
go along h(M1:G

1:T)h(G1:P), but we opted against this approach. In any case, the effects of
the relaxation from (3.24) to (3.25) are limited to the optimization of the parameter θ. We
discuss this further in section 3.6.

For the rest of this section, we will be dealing with the distribution

q(Z1:P
1:T) =

∫
h(M1:G

1:T)h(G1:P)f(Z1:P
1:T |M1:G

1:T , G1:P)dM1:G
1:T dG1:P (3.26)

from equation (3.25). We can rewrite (3.25) as an expectation Eq(Z1:P
1:T)

[
log f(Y 1:P

1:T |Z1:P
1:T , θ)f(θ)

]
.

However, as q(Z1:P
1:T) =

∏
t

∏
p q(Zp

t), it will be more convenient to define a special notation
for the quantities q(Zp

t = k) and use them to write the formulas. Thus, we define :

ρp
t (k) :=

∫
h(M1:G

1:T)h(G1:P)f(Zp
t = k|M1:G

1:T , G1:P)dM1:G
1:T dG1:P (3.27)

=
∫

h(M1:G
t)h(G1:P)f(Zp

t = k|M1:G
t , G1:P)dM1:G

t dG1:P (3.28)

=
G∑

g=1

Cp
g

K∑

j=1

h(Mg
t = j)f(Zp

t = k|Mg
t = j, Gp = g) (3.29)

As illustrated at line (3.28), these quantities are easily computed from the smoothed marginals
h(Mg

t) because the Zp
t are independent given the chains h(M1:G

1:T). We need the partial patients
assignments Cp

g and the parameters αL, αN , αG that govern f(Zp
t = k|Mg

t = j,Gp = g) to
evaluate ρp

t (k). At line (3.29) we find a more “algorithmic” expression. Note that the values
of f(Zp

t = k|Mg
t = j, Gp = g) don’t depend on the chain, the patient or the time so we can

define a K-by-K matrix S(j, k) := f(Zp
t = k|Mg

t = j, Gp = g) to precompute and cache the
values in (3.29).

We rewrite our lower bound (3.25) as

∑

k

∑
p

∑
t

ρp
t (k) log f(Y p

t |Zp
t = k, µp

k, λ
p
k) +

∑

k

∑
p

log f(µp
k, λ

p
k) (3.30)

that we now want to maximize with respect to θ = (µ1:P
1:K , λ1:P

1:K). We will temporarily refer to
the first term of (3.30) as A1 and to the second as A2 for convenience. Note that, among all
the hyperparameters (ν1:P

1:K , η1:P
1:K ,m1:P

1:K , γ1:P
1:K , S1:P

1:K), A1 depends on ν1:P
1:K and A2 depends on

η1:P
1:K ,m1:P

1:K , γ1:P
1:K , S1:P

1:K .

As Archambeau explains in [Arc05], there is no closed form solution for estimating the param-
eters of a Student-t, but we can always use a EM trick from Liu and Rubin [LR95] involving
a latent variable u to estimate µ, λ. We follow that procedure, adopting the notation from
[Arc05]. This essentially amounts to decomposing A1 as

∑

k

∑
p

∑
t

ρp
t (k) log

∫
N (

Y p
t |µp

k, uλp
k

)
Gamma

(
u|ν

p
k

2
,
νp

k

2

)
du (3.31)

and maximizing instead the quantity

A∗1 =
∑

k

∑
p

∑
t

ρp
t (k) logN (

Y p
t |µp

k, ū
p
t (k)λp

k

)
+ log Gamma

(
ūp

t (k)|ν
p
k

2
,
νp

k

2

)
. (3.32)

We use ūp
t (k) to denote the fact that we have such a latent variable u for all patients 1:P , all

time steps 1:T and all states 1:K.

The prior A2 was defined in section 2.2 to be

A2 =
∑

k

∑
p

logN (
µp

k|mp
k, precision = λp

kη
p
k

)
+ log Gamma

(
λp

k|γp
k , Sp

k

)
. (3.33)

We are now looking for a set of values ūp
t (k), µp

k, λ
p
k for which the derivatives of A∗1 + A2

with respect to all these variables are equal to zero. There are no constraints other than
λ1:P

1:K > 0 because the precision is a positive quantity. Dropping all constants not involving
µp

k, λ
p
k, ū

p
t (k), we get that A∗1 +A2 is equal to

∑

k

∑
t

∑
p

ρp
t (k)

[
1
2

log
(
ūp

t (k)λp
k

)− ūp
t (k)λp

k

2
(
Y p

t − µp
k

)2 +
(

νp
k

2
− 1

)
log ūp

t (k)− νp
k

2
ūp

t (k)
]

+
∑

k

∑
p

[
1
2

log λp
k −

ηp
kλ

p
k

2
(
µp

k −mp
k

)2 +
(
γp

k − 1
)
log λp

k − Sp
kλp

k

]
.

(3.34)

We now set all the derivatives to zero and see what equalities must hold for us to have a
maximum. First, we set ∂(A∗1+A2)

∂ūp
t (k)

= 0 :

0 = ρp
t (k)

[
1
2
ūp

t (k)−1 − λp
k

2
(
Y p

t − µp
k

)2 +
(

νp
k

2
− 1

)
ūp

t (k)−1 − νp
k

2

]
(3.35)

ūp
t (k)−1

[
1
2

+
(

νp
k

2
− 1

)]
=

λp
k

2
(
Y p

t − µp
k

)2 +
νp

k

2
(3.36)

ūp
t (k) =

1
2 + νp

k
2 − 2

2
λp

k
2

(
Y p

t − µp
k

)2 + νp
k
2

=
νp

k − 1

λp
k

(
Y p

t − µp
k

)2 + νp
k

(3.37)

Then, we set ∂(A∗1+A2)

∂µp
k

= 0 :

0 =
∑

t

ρp
t (k)

[
−2

2
ūp

t (k)λp
k

(
Y p

t − µp
k

)
(−1)

]
− 2ηp

kλ
p
k

2
(
µp

k −mp
k

)
(3.38)

0 =
∑

t

ρp
t (k) ūp

t (k)λp
kY

p
t + ηp

kλ
p
km

p
k +

∑
t

ρp
t (k) ūp

t (k)λp
k(−1)µp

k − ηp
kλ

p
kµ

p
k (3.39)

µp
k =

∑
t ρp

t (k) ūp
t (k)λp

kY
p
t + ηp

kλ
p
km

p
k∑

t ρp
t (k) ūp

t (k)λp
k + ηp

kλ
p
k

=
∑

t ρp
t (k) ūp

t (k)Y p
t + ηp

km
p
k∑

t ρp
t (k) ūp

t (k) + ηp
k

(3.40)

Finally, we set ∂(A∗1+A2)

∂λp
k

= 0 to have :

0 =
∑

t

ρp
t (k)

[
1
2
(λp

k)
−1 − ūp

t (k)
2

(
Y p

t − µp
k

)2
]
+

1
2
(λp

k)
−1−ηp

k

2
(
µp

k −mp
k

)2+
(
γp

k − 1
)
(λp

k)
−1−Sp

k

(3.41)

0 = (λp
k)
−1

[
1
2

∑
t

ρp
t (k) +

1
2

+ (γp
k − 1)

]
−

[∑
t

ρp
t (k) (−1

2
)ūp

t (k)
(
Y p

t − µp
k

)2 − ηp
k

2
(
µp

k −mp
k

)2 − Sp
k

]

(3.42)

(λp
k)
−1 =

∑
t ρp

t (k) ūp
t (k)

(
Y p

t − µp
k

)2 + ηp
k

(
µp

k −mp
k

)2 + 2Sp
k∑

t ρp
t (k) + 2γp

k − 1
(3.43)

We iterate a few times updating the quantities in the order (3.37), (3.40), (3.43) until they
stabilize. We don’t need to update the values for ρp

t (k) as we iterate as they don’t depend on
θ.

3.4 Cluster initialization

Depending on the data given and the choice of hyperparameters, both hmmmix-hard and
hmmmix-soft can be very sensitive to the initial clustering. When using artificial data sampled
from the hmmmix model itself, hmmmix-soft performed quite well in terms of identifying the
hidden chains without any need for a good initialization (i.e. using uniform random noise
as initial assignments). The patients assignments usually converge to hard assignments even
thought they are not required to do so. It is not uncommon with soft assignments to get
duplicate clusters (the T -dimensional equivalent of two cluster centers at the same location),
especially when using a number of clusters G larger than the true number of clusters. In those
cases, we can identify the copies to merge them before computing the Jaccard coefficient.

More on the topic of cluster initialization is found in sections 4.1, 4.2 and 4.6 when we discuss
particular applications.

3.5 Algorithm initialization and updating scheme

Our variational inference approach is about trying to find the best distributions h(M1:G
1:T), h(G1:P)

and parameters A1:G, π1:G, µp
k, λ

1:P
1:K that maximize the full data log-likelihood (3.2). There

are three main components to this algorithm :

• updating the hidden chains h(M1:G
1:T) along with their associated parameters A1:G, π1:G

• updating the partial patients assignments h(G1:P)

• updating the parameters θ = (µp
k, λ

1:P
1:K)

If we start with good initialization values for the patients clusterings (e.g. from k-medoids),
it is important that we do not lose these values by updating them prematurely while we still
have crude values of h(M1:G

1:T) and θ. In that particular case, we recommend doing a few

updates of h(M1:G
1:T) and θ, alternating between them, before updating the partial patients

assignments h(G1:P). After that, we can proceed in any order and see what works best for
our particular case. We have tried a few variants but they are roughly equivalent.

3.6 Flow of approximations

On top of the original assumptions about the factorization of our variational distribution
h(M1:G

1:T , G1:P) = h(M1:G
1:T)h(G1:P) =

∏
g

∏
p h(Mg

1:T)h(Gp), we used a few tricks to learn the
parameters θ = µ1:P

1:K , λ1:P
1:K . We can get a good overview of all the approximations used in

Figure 3.1.

Figure 3.1: The relations between the different parts of the algorithm in terms of approxima-
tions.

We never showed that the values of ūp
t (k), µp

k, λ
p
k that we get by iterative substitutions in

section 3.3.3 were a maximum and not an minimum. However, we can always compute the
value of either (3.24) or (3.25) to determine if we want to accept a proposed update or to
reject it.

In our implementation, we compute the values of f(Y p
t |Zp

t = k, θ) and store them in a matrix
of size (K,T,P). By storing ρp

t (k) also in a matrix of size (K,T,P), it relatively straightforward
to evaluated the two quantities used as safeguards against bad parameter updates.

The original log-likelihood lowerbound (3.24) is given by

sum(sum(log(sum(rho KTP .* YgivenZ KTP,1)))) (3.44)

and the lower bound (3.25) on (3.24) is given by

sum(sum(sum(rho KTP .* log(YgivenZ KTP)))). (3.45)

If we trust the parameter updates, we can speed up the algorithm greatly by not computing
the log-likelihood. As explained in section 4.4, the performance bottleneck comes from the
evaluations of p(Y p

t |Zp
t = k, θ).

Chapter 4

Results and implementation

In this chapter we describe two experiments done to evaluate the performance of hmmmix-
soft. We then analyze the complexity of the algorithm and discuss the potential hardware
issues that arise when the size of datasets exceeds the amount of available memory. We point
out how the algorithm could be parallelized and we come back to the topic of the free energy
scaling constant first introduced in section 3.3.2.

4.1 Benchmark with synthetic data

In [Sha08] hmmmix-hard is compared to the current state-of-the-art methods using a bench-
mark test with artificial data. We reproduced their experiment with hmmmix-hard and ran
hmmmix-soft on the same data to see how our method would compare.

As mentioned in section 2.4, one of the limitations of hmmmix-hard is its reliance on good
cluster initialization for the patients. For this reason, we have spent most of our efforts
trying to beat hmmmix-hard on the synthetic data benchmark without having to resort to
a k-medoids initialization that knows the real number of clusters a priori. This turns out to
be really hard with the data used except in cases where k-medoids fails to produce anything
useful.

The measure of success chosen is the Jaccard coefficient. It requires knowledge of the true
cluster assignments to be computed and this is why it can only be used on artificial data. The
Jaccard coefficient is always in [0, 1], higher being better, and a value of 1 can be achieved if
and only if we find cluster assignments equivalent to the true clustering. The order or labels of
the clusters does not affect the result, but using the wrong number of clusters gives a smaller
Jaccard coefficient.

We used the same data as [Sha08] and explored the combinations of values from G = 3, 5, 10
and L = 25, 50, 75 where L corresponds to the length of the mutations introduced. As
hmmmix-hard performs quite well in most of the cases with G = 3, 5, we decided to focus on
G = 10. Our results can be summarized by table 4.1.

We have in the first row the value of the Jaccard coefficient with the initial clustering obtained
from k-medoids. We can see that it’s already large in the case of L = 25 and that it’s almost

23

Table 4.1: Comparing hmmmix-soft to hmmmix-hard using Jaccard coefficient. The values
are averaged over 50 generated datasets and the standard deviations are included to give an
idea of how spread results are.

L=25 L=50 L=75
k-medoids initialization 0.77 ± 0.11 0.33 ± 0.01 0.15 ± 0.03

hmmmix-hard 0.90 ± 0.13 0.61 ± 0.17 0.17 ± 0.08
hmmmix-soft 0.93 ± 0.11 0.58 ± 0.15 0.35 ± 0.09

worthless in the case of L = 75. With a completely random initialization of 10 clusters,
the Jaccard coefficient is a little bit above 0.10. In the case of L = 75, we can see that
hmmmix-soft can improve on the initial clustering while hmmmix-hard cannot. These results
are averaged on 50 tries so the difference is statistically significant, but one could argue that
0.35 is still relatively bad.

One of the difficulties that we encountered here was that the Jaccard coefficient does not care
about the fact that a soft clustering might be desirable or even very informative. We merge
identical clusters after running hmmmix-soft (or during execution), but some clusters might
be relatively similar without being identical. They can also be merged using a tolerance
threshold, and if we know the real number number of clusters, we merge clusters until we
reach that number. The main problem, however, is the lower quality of local maxima that we
reach when we don’t start from a good initialization.

4.2 Comparison with hmmmix-hard on FL data

It is difficult to compare quantitatively the performance of hmmmix-soft and hmmmix-hard
on real data because often there are no target values available as ground truth. Not only are
we missing information, but the parameters from the models don’t necessarily correspond to
any real feature. One way to proceed is to predict biological phenomena from the models and
verify with experts if your predictions are correct (or useful). The is one of ways in which
[Sha08] justified the hmmmix model.

With our hmmmix-soft, we would like to be able to achieve results similar to those of hmmmix-
hard with real data in terms of imputing hidden values. Our measure of success is how close we
can get to the results presented in section 5.4.1 of [Sha08] using the same dataset. The dataset
has P = 106 patients, with sequences of length T = 24 881 spanning over 22 chromosomes.
To determine the number of clusters, [Sha08] used weighted k-medoids on imputed values of
Z1:P

1:T to maximize the silhouette coefficient (they got G = 6 clusters). Their original results
are included here in figure 4.1.

The results that we get from the hmmmix-soft algorithm naturally depend on the choices that
we make for the free parameters in the model, but we generally get results that range from

(a) values of chains associated to patients after
hmmmix-hard

(b) initial imputed values of Z1:P
1:T

Figure 4.1: The original results for hmmmix-hard. (a) the initial imputed values for Z1:P
1:T . (b)

the values after running hmmmix-hard to cluster the patients. The values displayed are those
of the hidden chains to which each patient belongs. The patients are reordered for easier
visualization. The green segments correspond to Mg

t = high while red segments correspond
to Mg

t = low.

modeling noise too closely to being insensitive to the data. In the transition from one extreme
to the other, though, the regions of interest are more or less consistent. We show in figure 4.2
three possible outcomes of hmmmix-soft. The closest match to the original is figure 4.2(a).

In particular, choosing αL, αN , αG to be higher forces the hidden chains to “explain” the data
better, but it undermines the smoothing effect that the transition matrices are supposed to
have in the chains. In all three cases, there seems to be certain groups with a good number
of patients where we’re not really capturing the essence of the data. Using smaller values
of αL, αN , αG gives less erratic values in problematic regions, but this weakens the relation
between the group hidden chains Mg

1:T and the chains Zp
1:T . In the extreme case, setting

αL, αN , αG = (1, 1, 1) makes the algorithm ignore the data so we’d like to stay with high
values whenever possible.

One of the goals of this thesis is to see what can be done with the extended hmmmix model
once we can use partial patients assignments. For that reason, to get the results from figure
4.2 we didn’t use the k-medoids initialization from [Sha08] but we decided instead to see if
we could achieve similar results using the classic mixture of gaussians trained with EM.

The idea was to get a rough partial clustering that distributes the weights of the patients to
multiple clusters in a useful way. We didn’t want patients to be assigned to a single cluster but
we didn’t want to have a trivial uniform cluster assignment either. The high dimensionality
T of the data tends to make EM assign patients to single clusters. To mitigate the effects of
the large T , we introduced a scaling factor to the entropy term similar to the τ from section
3.3.2 (also discussed in section 4.6).

It’s hard to justify any value for the scaling factor a priori, but we investigated values from
different orders of magnitude and computed the entropy of the resulting EM clustering dis-

(a) αL, αN , αG = (3, 3, 3) (b) αL, αN , αG = (10, 5, 10)

(c) αL, αN , αG = (20, 10, 20)

Figure 4.2: Three possible sets of imputed values for hidden chains and patients using
hmmmix-soft. These are a good representation of the kind of results that we get. The
choices of parameters αL, αN , αG are shown here, but we refrained from showing the effects
of the other free parameters as they are somewhat similar. These values are imputed by a
pass of Viterbi because hmmmix-soft keeps full distributions h(M1:G

1:T).

tributions (merging duplicate clusters). There was a clear and identifiable threshold value
at which the patients went from having all their weight assigned to single clusters to being
spread around more evenly (but not in a trivial uniform way). That threshold value stayed
roughly the same when restarting EM multiple times.

The cost of running EM on a large dataset is high, but an iteration of EM is cheaper than an
iteration of hmmmix-soft itself. If we refrain from doing multiple restarts of EM, it will not be
the performance bottleneck. If it’s still somewhat prohibitive, we can also use a subsequence
of the indices t = 1 : T and we certainly don’t need to iterate until the EM stabilizes within
a very small tolerance bound.

4.3 Multiple chromosomes

The description of the hmmmix model was simplified a bit here to deal with only one chain for
every group. When dealing with real data, we have data coming from multiple chromosomes
and we don’t necessarily want to treat them all as one long chain. As mentioned in [Sha08],
there are good reasons to believe that the best values for the transition matrices vary from
chromosome to chromosome within any given group.

Multiple chromosomes can be handled very easily by running the forwards-backwards algo-
rithm separately for each chromosome, keeping track of the parameters MLE (a transition
matrix and a vector of beliefs about the initial states) for every chromosome and every group.

The complexity analysis from section 4.4 only has terms involving the chain lengths T linearly
so we don’t get penalized in terms of computational costs by doing to the forwards-backwards
on chromosomes separately. In fact, if we were dealing with an enormous dataset, we could
analyze the different chromosomes in parallel when solving for the multi-chromosome equiv-
alent of h(M1:G

1:T). The update formulas for h(G1:P) and θ are not even aware of the chain
structure of the hidden Markov chains Mg

1:T . They stay the same when dealing with multiple
chromosomes. We can just link the chromosomes one after the other as long as we keep track
of the cuts when doing forwards-backwards on the sections.

4.4 Complexity analysis

When analyzing the complexity of each of the components of the algorithm, we have to
remember that we are not taking into consideration the number of iterations that they will
take to stabilize (within a certain tolerance). It usually takes a bit less than 10 iterations
(update M , update θ, update G, update θ, . . .) to have patients assignments stabilize, but we
can always pick a large value of τ for the assignment prior (from section 3.3.2) to slow down
the algorithm and have it take around 50 such iterations.

With this in mind, it is still relevant to analyze the complexity of one such iteration to get
a good picture of what is involved. The main loop of the algorithm goes over the following
important steps :

• compute the values of Rt,g[k] for all chains : O (
GPTK2

)

• do the following until stabilization

– update the chains h(Mg
1:T) using the values of Rt,g[k] : O (

GTK2
)

– update the parameters Ag, πg for all chains : O (
GTK2

)

• update the patient assignments h(Gp) using Rt,g[k] and the current chains h(Mg
1:T) :

O (GPTK)

• compute ρp
t (k) : O (

GPTK2
)

• update the parameters θ by updating the following values until stabilization :

– ūp
t (k) : O (PTK)

– µ1:P
1:K : O (PTK)

– λ1:P
1:K : O (PTK)

We are usually using K = 3 and G ≈ 10 so the most important terms are P and T . The
whole hmmmix-soft algorithm run as O (

GPTK2
)

times the number of iterations that we do
externally (usually between 10 and 50). In our experiments, the update steps that involve
some indefinite number of iterations internally (to stabilize within a certain tolerance) have
never taken more than a dozen iterations.

It should also be noted that we need to take logarithms to compute Rt,g[k], but all the other
operations involve only basic arithmetic. The runtime profiling confirms that the performance
bottleneck comes from the evaluations of p(Y p

t |Zp
t = k, θ) and Rt,g[k]. With the exception of

the possible random initialization, the algorithm is deterministic so there are no hidden costs
from random number generation.

It is interesting to note that, due to the hard patients assignments in hmmmix-hard, that algo-
rithm can do certain things in O (PTK) that would take hmmmix-soft O (GPTK) operations
to do.

4.5 Scalability

As explained in section 4.4, the hmmmix-soft algorithm has an asymptotic computational
cost of O(GPTK2). Our basic implementation has memory requirements proportional to

O(GTK2 +PTK) simply because of the size of the quantities found in the formulas of section
3.3. Without the memory constraints, this means that the algorithm scales linearly in terms
of increasing the number of groups, patients or length of the sequences. It would be hard to
expect better, but the memory requirements can still be a problem when dealing with very
large datasets.

4.5.1 Hardware issues

We ran hmmmix-soft on a dual-core Mac Mini with 2 gigabytes of RAM for various sequence
lengths ranging from T = 200 to T = 1, 000, 000. We used artificial data with G = 10 groups
and P = 100 patients. In figure 4.3(a) and 4.3(b) we show in blue the execution time for
one iteration of the main loop. We can see in the second plot 4.3(b) that the line breaks at
T = 80, 000 when Matlab ran out of memory.

We ran more tests on a PC with a dual-core AMD 64-bit processor with 4 gigabytes of RAM
and 12 gigabytes of swap memory. The goal was to see if the swap could be used to allow
the algorithm to handle larger datasets. When running hmmmix-soft on a large dataset with
G = 10, P = 100, T = 250 000, the available memory wasn’t enough to satisfy the algorithm
and there were a lot of page misses. In fact, the processor was reported to be only running
at around 20% efficiency because most of the execution time was spent transferring variables
to and from the swap (the swap being on a regular hard drive). One time, Matlab issued
an out of memory error while processing a dataset with T = 100 000 even though the swap
could easily have handled this. This is clearly unacceptable and the swap memory solution is
a temporary fix that will break if we multiply the number of patients or do anything else to
increase the datasets by an order of magnitude.

After accepting the fact that, by using the swap memory, we were going to do reads and writes
to the hard drive during the execution, we wrote a version of the algorithm that keeps nothing
in memory except what it needs at a given moment. After splitting the initial dataset of size
(P, T) into P sequences stored on the hard drive, the total memory usage for the algorithm
falls to O(TK2). We decided to draw the line there, but we could have gone further and
stored the chromosomes separately.

To compare the two approaches, we ran the low-memory implementation on the same Mac
Mini. The results are again show in figure 4.3 in black. We can see in 4.3(a) how the disk
I/O operations slow down the execution significantly for short sequences. It becomes more
acceptable in 4.3(b) in the context of larger datasets, and it is absolutely necessary in 4.3(c)
with huge datasets. The low-memory implementation also reports that the Mac Mini’s two
cores are both used to their maximum capacity, unlike the 20% efficiency that we got earlier
on by delegating the task of memory management to the kernel. The issue might be more

(a) short sequences

(b) T=10,000 to 100,000

(c) T=100,000 to 1,000,000

Figure 4.3: The execution time for the basic implementation of hmmmix-soft (in blue) com-
pared to a low-memory implementation (in black).

complicated and there might be a way to help Matlab manage its memory better. In any
case, we recommend the low-memory implementation for larger datasets.

With figure 4.3 we can also confirm our asymptotic analysis claiming that the algorithm scales
linearly with T . Discussions about hard drive seek times, contiguous memory on the disk,
flash hard drives and network file sharing access speeds fall outside of our domain of expertise.

4.5.2 Parallelization and other tricks

The hmmmix-soft algorithm can be parallelized by at least a factor of G. The updates to
the P patients assignments Cp

g are independent and so are the updates to the G chains. In
theory, the only part of the algorithm that doesn’t lend itself naturally to parallization is
the forwards-backwards algorithm that runs on sequences of length T . Although it seems
sequential in nature, it’s still possible to do something to parallelize it when the number of
states K is small compared to the number of processors. From a more practical standpoint,
the main obstacle to parallelization is the large quantities of data that needs to be passed
around. This makes it hard for us to implement a simple parallelization scheme that doesn’t
depend on the particular hardware available.

While not really part of the theoretical hmmmix-soft model, there is another contribution
worth mentioning. Matlab has problems dealing with non-vectorized operations on arrays
and it’s impossible to vectorize the forwards-backwards algorithm. By rewriting that part of
Sohrab Shah’s code, we gained a 100-fold increase in speed in forwards-backwards, resulting
in a ≈ 20-fold increase for hmmmix-hard. The exact factor depends on the size of the data
because it determines the characteristics of the new bottleneck. This has nothing to do with
clever optimization techniques, but personal past experience taught that Matlab could be
very inefficient in loops.

There are various places in the algorithm (e.g. during patient assignments) where we could
speed things up by using only a subset of the full sequence t = 1, . . . , T of data. If we
were to do that, though, it would make more sense to incorporate it into the pre-processing
step where experts with domain-specific knowledge can point to certain regions where we
should draw more samples. To use sequential data with varying step sizes we need to use
non-stationary transition matrices in the forward-backwards algorithm. Our implementation
of forwards-backwards supports this, but it hasn’t been incorporated into the hmmmix-soft
algorithm.

4.6 Free energy variant

We haven’t explained in section 3.3.2 how to choose the constant τ in the Dirichlet (τ, . . . , τ)
prior on the parameters defining the distributions h(Gp). It really depends on the nature of
the data and on the objectives.

We find in [Ros98] a very interesting discussion about the use of an entropy term scaled by
a factor S−1 to control the formation and fusion of clusters. This is similar to the annealing
process in metallurgy where we heat metals just above the re-crystallization temperature and
then let the metal cool down in a controlled way. This gets rid of the crystal defects and the
internal stresses which they cause [Wik09]. In our case, our value of τ in the prior corresponds
exactly to a scaling of S−1 = τ to the entropy terms H (Gp).

Justifying that scaling term as a prior hyperparameter is easy within a Bayesian framework,
but tinkering with the entropy term in variational methods is a bit harder to justify as it
affects the maximum (in terms of θ) that the original likelihood had. A “safe” thing to try is
to start at equilibrium with τ = 1, let τ grow slowly, have the clusters move around and then
come back to τ = 1 hoping to get better final clusterings.

In many of the cases where we used the prior τ = 1, the algorithm took less than 10 iterations
to converge, assigning many patients to one chain each. Selecting a higher value of τ slowed
the convergence but the same final hard assignments often resulted. A lot of the experiments
were done with a random soft initialization of the patients to many clusters. It was of some
use, but ultimately, the best results were with the use of k-medoids as initialization.

Although we haven’t defined a Dirichlet prior on the states of the chains M1:G
t , we could

proceed by adding a scaling factor of S−1 to the entropy terms H
(
Mg

1:T

)
in (3.13). This would

have the effect of scaling the Rt,g[k] terms by S as well as raising the transition matrices Ag

and initial states priors πg to the power S (renormalizing appropriately). It is also possible
to play with the definition of the model to limit this scaling effect to only the Rt,g[M

g
t] terms

(without affecting the transition matrices). Smaller values of S result in the chains being less
affected by evidence when tuned by forwards-backwards.

One of the approaches tried (to get rid of the need for a good initial clustering) involved
having one cluster for every patient and then letting the clusters merge by running hmmmix-
soft. The clusters would only merge if given enough incentives by way of scaling the entropy
terms sufficiently. We observed that smaller values of S (i.e. large τ) led to better results by
having the clusters merge progressively instead of suddenly collapsing from 100 clusters to 13.

If we choose to scale the entropy terms by such factors, we have to take into consideration
the length T of the sequences to select τ . We can see in (3.23) how the τ−1 factor is fighting
against the sum

∑T
t=1. A good value of τ when T = 100 might not be good when T = 106.

The same applies to the pseudocounts on the transition matrices. They should be chosen
based on how many transitions we expect in the whole sequence.

4.7 Bayesian information criterion

The bayesian information criterion (BIC) is a popular way to do model selection , but there
is a problem with it in this context.

We are using variational methods to maximize the log-likelihood of our data with respect to
the parameter θ, but we really don’t care much about θ itself and we have little use for the
original model in which the hidden chains are marginalized. The quantities that are the most
interesting are the imputed values for the hidden chains because they represent the biological
reality that we are trying to model.

As noted in section 2.4, the silhouette coefficient isn’t compatible with BIC, but the variational
method by which we learn hmmmix-soft doesn’t play too well with BIC either. Our variational
quantities h(M1:G

1:T) may be very informative about the copy number alterations in the data,
but after using them to learn the parameters of the original distribution f in which the chains
are marginalized, the only thing about the chains that we retain are the parameters π1:G, A1:G.
These don’t encode the locations of the special regions of interest identified by h(M1:G

1:T) so
they don’t model the data too well. Adding a BIC term to a quantity that we don’t really
consider important is not a good way to pick the number of clusters.

Chapter 5

Conclusion and future work

5.1 Summary

In this thesis we showed how the hmmmix model from [Sha08] can be trained using variational
methods. This gives the mode more flexibility in terms of allowing partial assignments of
patients to clusters and controling the weight that evidence has on the training process.
Unfortunately, we didn’t manage to beat the results of a good initialization with k-medoids,
but we showed how we can get better results when k-medoids fails.

We compared the performance of our approach to that of [Sha08] on synthetic data using
their benchmark test (we also reproduced their results with their code). We compared the
two methods on real data in terms of the visual representation of the segments where mutations
occur.

Finally, we analyzed the computational complexity and memory usage of our algorithm and
showed how a low-memory implementation can be used to handle very large datasets without
paying an unreasonable price on performance. We briefly addressed the issue of parallelization
and other optimization tricks.

5.2 Future work

Our initial goal was to have a method that can completely do away with the need for good
clustering initialization. Once we had an implementation of hmmmix-soft in hands, many
elaborate methods were tried to accomplish this but they all came short of beating a k-
medoids initialization that knows how many clusters it should identify. It might be the case
that hmmmix-soft could perform better on another kind of data where k-medoids never works.

We briefly mentioned the possibility of selecting special subsets of the gene sequences to focus
on more promising segments. This is one of the next natural steps and some portions of our
code already support non-stationary transition matrices for this.

There is also work to be done to implement a more efficient version of hmmmix-soft that
exploits parallelism. Multicore processors are now the norm and one could imagine how

35

hmmmix-soft could be made to run on Amazon’s Elastic Compute Cloud. It would be inter-
esting to know what is actually worth doing in practice given specific hardware.

Bibliography

[Arc05] Cédric Archambeau, Probabilistic models in noisy environments, Ph.D. thesis, 2005.

[Bis06] C. Bishop, Pattern recognition and machine learning, Springer, 2006.

[GJ97] Z. Ghahramani and M.I. Jordan, Factorial hidden Markov models, Machine learning
29 (1997), no. 2, 245–273.

[LR95] C. Liu and D.B. Rubin, ML estimation of the t distribution using EM and its ex-
tensions, ECM and ECME, Statistica Sinica 5 (1995), no. 1, 19–39.

[Ros98] K. Rose, Deterministic annealing for clustering, compression, classification, regres-
sion, and related optimization problems, Proceedings of the IEEE 86 (1998), no. 11,
2210–2239.

[Sha08] Sohrab Shah, Model based approaches to array cgh data analysis, Ph.D. thesis, 2008.

[SJJ+09] S. Shah, K. J. Cheung Jr., N. Johnson, R. Gascoyne, D. Horsman, R. Ng, G. Alain,
and K. Murphy, Model-based clustering of array CGH with, Bioinformatics (2009),
To appear.

[Wik09] Wikipedia, Annealing (metallurgy) — Wikipedia, the free encyclopedia, 2009, [On-
line; accessed 15-May-2009].

37

