The Bayes Net Toolbox for Matlab

Kevin P. Murphy
Department of Computer Science
University of California, Berkeley

Berkeley, CA, 94720-1776

9 October 2001

Abstract

The Bayes Net Toolbox (BNT) is an open-source Matlab package for directed graph-
ical models. BNT supports many kinds of nodes (probability distributions), exact
and approximate inference, parameter and structure learning, and static and dy-
namic models. BNT is widely used in teaching and research: the web page has
received over 28,000 hits since May 2000. In this paper, we discuss a broad spec-
trum of issues related to graphical models (directed and undirected), and describe,
at a high-level, how BNT was designed to cope with them all. We also compare
BNT to other software packages for graphical models, and to the nascent OpenBayes
effort.

1 Introduction

Over the last decade or so, graphical models have emerged as a powerful unifying
formalism for many probabilistic models which are widely used in statistics, machine
learning and engineering, ranging from mixture models to hidden Markov models
(HMMs), from factor analysis (PCA) to Kalman filters. The reason for this is
well-described in the following quotation [Jor99:

Graphical models are a marriage between probability theory and
graph theory. They provide a natural tool for dealing with two prob-
lems that occur throughout applied mathematics and engineering — un-
certainty and complexity — and in particular they are playing an in-
creasingly important role in the design and analysis of machine learning
algorithms. Fundamental to the idea of a graphical model is the notion
of modularity — a complex system is built by combining simpler parts.
Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways
to interface models to data. The graph theoretic side of graphical mod-
els provides both an intuitively appealing interface by which humans
can model highly-interacting sets of variables as well as a data struc-
ture that lends itself naturally to the design of efficient general-purpose
algorithms.

What the field has lacked is a corresponding general purpose software package.
[Bun94, Bun96] was one of the first to argue for the possibility, and need, for such a



general tool. This article describes one attempt to build such a package, called the
Bayes Net Toolbox (BNT). First we will describe some of the issues that arise in the
representation, inference and learning of graphical models. Then we will describe
what approaches existing software packages adopt towards these issues. Finally, we
describe BNT, which overcomes some of the shortcomings of existing packages.

The reader is assumed to already be familiar with the basics of graphical models:
see for example the books [Jen01, CDLS99, Edw00, Jor99].

2 Representation

Graphical models come in two main “flavors”: directed and undirected. It is also
possible to combine directed and undirected graphs. We will discuss each in turn.

2.1 Directed graphical models

Directed acyclic graph (DAG) models, also known as Bayesian or belief networks,
are popular in the AT community, partly because they lend themselves to a causal
interpretation [Pea00], which makes their structure easy to design by hand (as in
an expert system). DAG models are also useful for modelling temporal data and
dynamical systems, because they can encode “the arrow of time”. (Such models are
sometimes called DBNs, or dynamic Bayesian networks.)

DAG models are also popular in the Bayesian statistics community, since param-
eters can be represented explicitly as nodes (random variables), and endowed with
distributions (priors). The resulting graph not only provides a concise specification
of the model, but can also be exploited computationally, e.g., by Gibbs sampling.
This is what the well-known BUGS! package does.

A DAG model which includes decision and utility nodes, as well as chance nodes,
is known as an influence (decision) diagram, and can be used for optimal decision
making.

There is also a kind of graphical model, called a dependency network [HCM™00],
which allows directed cycles. It can be useful for data visualization, but does not
always define a unique joint distribution: see [HCM*00] for details.

2.1.1 Parameterization of directed models

A directed model (both Bayes nets and dependency nets) can be pararameterized
by specifying all the local Conditional Probability Distributions (CPDs), i.e., the
distributions P(X;|Pa;), where X; represents node i and Pa,; are its parents. Most
packages assume all the nodes represent discrete (categorical) random variables,
and further, that the CPDs are multinomials, which can be represented as tables.

Tabular CPDs are simple to represent, learn and use for inference (see Sec-
tion 3.1.1), but have the disadvantage of requiring a number of parameters that is
exponential in the number of parents. Other representations, which only require a
linear number of parameters, have been proposed, including noisy-OR, [Pea88] and
its generalizations [Hen89, Sri93, Die93, MH97], and the logistic (sigmoid) function
[Nea92].

Decision trees [BFGK96] can be used to represent CPDs with a variable (data-
dependent) number of parameters; they are also useful for variable (parent) selection
inside a structure learning algorithm (see Section 4.2). Regression trees are similar,
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but are used when X; is a continuous random variable. Feedforward neural net-
works (multi-layer perceptrons, or MLPs), conditional linear Gaussian (CLG) and
generalized linear models (GLMs) can also be used to model CPDs for continuous
nodes.

For Bayesian modelling, we need a richer variety of CPDs, e.g., Dirichlet priors for
multinomial parameters, Wishart (Gamma) priors for variance/ precision parame-
ters, as well as Gaussian priors for weight matrices. We can also use non-parametric
distributions.

It is easy to let users define exotic CPDs. The difficulties arise when we wish to do
inference on the corresponding model, and/or when we try to learn the parameters
from data. We will discuss these issues below.

2.2 Undirected graphical models

Undirected graphical models, also known as Markov networks, are common in the
physics and computer vision communities. For instance, Ising models and Markov
Random Fields (MRFs) are just grid-structured Markov networks. In the statistics
community, undirected models are often used to model multiway contingency tables,
in which case they are called (hierarchical) log-linear models [Edw00].

2.2.1 Parameterization of undirected models

The parameters of a Markov network are the clique potentials. For instance, in a 2D
grid, these correspond to the edge potentials ¢(x;, x;) for neighboring pixels 4, j. If
all variables are discrete (categorical), these potentials can be represented as tables.
However, as in the DAG case, this may require a large number of parameters: in a
clique of n binary nodes, specifying ¢ requires 2" parameters. Parameter tying (e.g.,
assuming ¢ is the same for all edges in the grid) can amelioriate this problem in
some domains such as image processing. In other domains, such as text processing,
maximum-entropy methods? are popular. In this approach, one defines a potential
on nodes £ = 1, ..., %, using a Gibbs (exponential family) distribution on a set of
features, fi(z),..., fr(x):

k
4(2) = 5 exp (Z ﬁ-(w)) (1)

The domains (support) of the features implicitely define the graph structure. For
example, suppose n = 3, k = 2, f; is a function of z1,z,, and f5 is a function of
Zo,x3; then the graph has 3 nodes, and looks like 27 — x5 — 3.

2.3 Mixed directed/ undirected graphical models

It is possible to combine directed and undirected graphs into what is called a chain
graph [CDLS99]. A common example of this is in image processing, where the hid-
den nodes are connected in an undirected 2D grid, but each hidden node has a child
which contains the observed value of that pixel (see Figure 1). As far as inference is
concerned, the link from hidden pixel to observed pixel can be represented either as
a directed or undirected arc; however, the directed arc representation is preferred
when it comes to learning (see Section 4.1).

2See www-2.cs.cmu.edu/ ~aberger/maxent.html for an excellent collection of tutorials and pa-
pers on maxent.
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Figure 1: A chain graph for image processing. Each shaded node is an observed
pixel, and is caused by its hidden parent (clear); the hidden causes are correlated
with each other, as modelled by a Markov Random Field with pairwise potentials.

The factor graph formalism [KFLO01] is a very general way of using graph struc-
ture to represent global models (not necessarily probabilistic) in terms of local terms,
or factors.

It is possible to inter-convert all of these representations [YFWO1], although
sometimes information is “lost” from the graph structure in the process (this in-
formation will be implicitely represented in the parameters). This can affect the
computational complexity of inference, as well as the intrepretability of the model.

3 Inference

By inference, we mean computing

P(X;|X;) < P(X;,X;,Xp)
k#i,j

where X; represents a set of observed variables, X; represents a set of hidden
variables whose value we are interested in estimating, and X} are the irrelevant
(nuisance) hidden variables. For instance, X; might represent whether a patient has
disease i, and X; might represent the observed symptoms. Or X; might represent
an unknown parameter, and X; all the data.

There are two main kinds of inference: exact and approximate. We will discuss
both below.

3.1 Exact inference

Exact inference (in the sense of having a closed form solution) is only possible in
a very limited set of cases, most notably when all hidden nodes are discrete, or
when all nodes (hidden and observed) have linear Gaussian distributions (in which
case the network is just a sparse parameterization of a joint multivariate Gaussian
[SK89, RGY9]). Expert systems and hidden Markov models (HMMs) fall in the
former category, while factor analysis and Kalman filters fall in the latter.

There are two main kinds of exact inference algorithms: those that only work on
DAG models, and those that work on directed and undirected graphs.



The DAG-only inference algorithms exploit the chain-rule decomposition of the

joint,

P(X)=P(X;)P(X3|X1)P(X3|X1,X2) ...
and essentially “push sums inside products” to marginalize out the irrelevant hid-
den nodes efficiently [LD94, Dec96, AMO0]; this is called the variable elimination
algorithm. The result of the computation is a single marginal, P(X;|X;).

The general inference algorithms are defined in terms of message passing on a
tree. If the original graph has undirected cycles (loops), it must be converted to a so-
called junction tree using triangulation [Kja90] or cutset conditioning [Pea88, PS91].
The tree may be directed or undirected, the messages may be passed in parallel
or sequentially®, and the computation of the messages may or may not involve
a division operation. For instance, Pearl’s algorithm [Pea88] was formulated for
directed trees without division; the Hugin/JLO algorithm [JLO90] was formulated
for undirected trees with division; and belief propagation [YFWO01] was formulated
for undirected networks without division. All of these algorithms are essentially
equivalent.

The advantage of the message passing algorithms arises when one is interested
in computing all marginals simultaneously (which is necessary e.g., for learning):
they use dynamic programming to avoid the redundant computation that would
be involved in calling variable elimination n times, once for each variable. How-
ever, variable elimination is somewhat easier to implement, and enables certain
optimizations which exploit knowledge of the specific query.

3.1.1 Potentials

To implement any inference algorithm that works in terms of sums and products
(e.g., variable elimination or message passing), it is necessary to represent each
local distribution as an object that supports the operations (methods) of summa-
tion/integration, multiplication and optionally division. We will call such an object
a “potential”, which is just a non-negative function of the variables in its domain.

If all the random variables in the domain are discrete, we can represent a potential
as a multidimensional array (a table). If all the random variables in the domain
are jointly Gaussian, we can represent the potential as a multivariate Gaussian: we
simply store the mean, covariance and a scale factor. If some variables are discrete
and some are Gaussian, we can represent the potential as a conditional Gaussian
(CG), which is a table of Gaussians, instead of a table of scalars. Finally, if some
variables are discrete random variables and some are discrete utility variables, we
can represent the potential as a pair of tables; this is useful for influence diagrams.
All of these types of potentials are described in [CDLS99]; see also [Mur98b).

CG potentials can represent finite mixtures of Gaussians. Unfortunately, this
representation is not closed. That is, if we have a potential ¢ with domain (D, C),
where D is a discrete variable with & possible values, and C is a continuous variable,
then >~ p ¢(D, C) is still a mixture of k¥ Gaussians: it hasn’t got any smaller. Hence
repeated applications of sums and products will cause the size of the representation
to blow up. One approximation is to use “weak marginalisation” [Lau92], which
reduces a mixture of Gaussians to a single Gaussian using moment matching. (The
implementation of this in [Lau92] is numerically unstable, and has been improved
in [LJ99].) See also [Min01].

31f messages are passed sequentially, the scheduling usually uses two passes, often called col-
lect/distribute or forwards/backwards [PS91].




Undirected models are already parameterized in terms of potentials on cliques,
so no conversion is necessary. Directed models are parameterized in terms of CPDs,
but we can simply define the potentials as ¢(X;, Pa;) = P(X;|Pa;). However, this
is only possible for some kinds of CPDs: see Section 7.2.1 for details.

The level of abstraction afforded by potentials allows us to reuse the same code for
many models. For instance, by simply replacing discrete potentials with Gaussian
potentials, the same code can be used either to implement the forwards-backwards
algorithm for HMMs or the RTS smoother for linear dynamical systems [Mur98a].

3.2 Approximate inference

Even in the cases where exact inference is mathematically possible, it might not
be computationally feasible: the cost of inference depends on the treewidth W
of the graph (i.e., the size of the maximal clique in the corresponding optimally
triangulated graph). In particular, if all (hidden) nodes are discrete and binary-
valued, inference takes O(2") time. (For jointly Gaussian distributions, inference
always takes at most O(n3), where n is the number of nodes, regardless of W;
however, sometimes (e.g., in image processing applications), n is very large.)

For trees (graphs with no undirected cycles), the treewidth is constant (namely
the maximal fan-in (number of parents) of any node in the graph), and inference
takes O(n) time. However, for other graphs, especially those with repeating struc-
ture, such as grids, the treewidth grows with the number of variables (e.g., in an
n = m X m grid, the treewidth is O(m) = O(y/n)), and exact inference is often
infeasible.

There are at least two reasons why one might need approximate inference: ei-
ther because computing the exact solution would take too long, or because there
is no closed-form (analytic) solution. (Exact inference is known to be NP-hard
in general.) The former kind of complexity arises from certain kinds of graph
structures, the latter from certain kinds of distributions. (In general, almost all
distributions on continuous random variables yield intractable posteriors, the fully
observed conjugate-exponential case being a notable exception.) Below we list some
techniques that can be used to tackle both kinds of intractability.

e Sampling (Monte Carlo) methods. The simplest kind is importance sampling
[CDO00], where we draw random samples z from the prior P(X), the (uncon-
ditional) distribution on the hidden variables, and then weight the samples by
their likelihood, P(y|z), where y is the evidence. A (sometimes) more efficient
approach in high dimensions is called Monte Carlo Markov Chain (MCMC),
which allows us to draw samples from the posterior, P(X|y), even when we
can’t compute the normalizing constant, [ P(y|z)P(z). MCMC includes as
special cases Gibbs sampling and the Metropolis-Hasting algorithm (see e.g.,
[Nea93, GRS96, Mac98]). MCMC is the dominant method for approximate
inference in the Bayesian statistics community.

e Variational methods. The simplest example is the mean-field approximation,
which exploits the law of large numbers to approximate large sums of ran-
dom variables by their means. In particular, we essentially decouple all the
nodes, and introduce a new parameter, called a variational parameter, for
each node, and iteratively update these parameters so as to minimize the
cross-entropy (KL distance) between the approximate and true probability
distributions. Updating the variational parameters becomes a proxy for in-
ference. The mean-field approximation produces a lower bound on the like-



lihood. More sophisticated methods are possible, which give tighter lower
(and upper) bounds. See [JGJS98] for a tutorial. Recently this technique has
been extended to do approximate Bayesian inference, using a technique called
Variational Bayes [GB0O0].

e Belief propagation (BP). This entails applying the message passing algorithm
to the original graph, even if it has loops (undirected cycles). Originally
this was believed to be unsound, but the outstanding empirical success of
turbocodes [BGT93], which have been shown to be using the BP algorithm
[MMC98], led to a lot of theoretical analysis, which has shown how BP is
closely related to variational methods [YFWO01, SO01]. Recently this tech-
nique has been extended to do approximate Bayesian inference, using a tech-
nique called Expectation Propagation [Min01].

4 Learning

There are two main kinds of learning: parameter learning (also called model fitting)
and structure learning (also called model selection). We will discuss each in turn.

4.1 Parameter learning

If we adopt a Bayesian approach, parameters are treated just like any other random
variable, and hence learning is the same as inference. If we adopt a frequentist
approach, the goal of learning is to find a point estimate of the parameters, either
maximum likelihood (ML) or maximum a posteriori (MAP).

The learning problem is much harder when we have partial observability, i.e.,
missing values and/or hidden (latent) variables in the model. In this case, the
exact parameter posterior is generally multimodal, so we must settle for finding a
locally optimal solution. We start by considering the fully observed case, where we
can compute the global optimum.

4.1.1 Fully observed case

If the model is a DAG, the CPDs can be estimated independently of each other
(the problem is said to fully decompose). If the CPDs are in the exponential family
(e.g., Gaussians or tables), we can compute the ML estimates in closed form. (If
we use conjugate priors, we can also compute the MAP estimate in closed form.)
For more complex CPDs (e.g., trees, GLMs or neural networks), local hill-climbing
methods may be necessary.

If the model is undirected, the ML estimates of the clique potentials can be
estimated in closed form iff the graph is triangulated (decomposable) and the po-
tentials are tabular (fully parameterized). If the graph is not triangulated, but the
potentials are still tabular, we can use Iterative Proportional Fitting (IPF). Finally,
if the potentials are represented in terms of features (no matter what the graph
structure), we must use the generalized iterative scaling (GIS) algorithm [DR72],
which requires that the features sum to a constant, or the improved iterative scaling
(IIS) algorithm [PPL97], which makes no assumptions about the features. Usually
one uses Monte Carlo sampling to compute the expectations needed by these scal-
ing algorithms, but if the graph implied by the features has small treewidth, one
can use exact inference, which is much faster [BJ01]. Alternatively, one could use
deterministic approximation schemes such as belief propagation [TWO01].



4.1.2 Partially observed case

If there are missing values or latent variables, we can use the EM algorithm to find a
locally optimal ML/MAP estimate [Lau95]. The E step requires calling an inference
routine (exact or approximate) to compute the expected sufficient statistics, and
the M step is similar to the fully observed case. (If the M step only takes a step in
the right direction of parameter space, instead of finding the optimum, it is called
the generalized EM algorithm. One can also imagine doing a “partial E step”
[NH98].) Other methods for handling partial observability, such as “bound and
collapse” [RS97] or gradient-based methods [BKRK97], are of course possible. The
advantages of EM compared to gradient methods are its simplicity, its lack of step
size parameters, and the fact that it deals with constraints automatically. It can be
combined with gradient methods for increased speed [JJ93].

4.2 Structure learning

If we adopt a Bayesian approach, structure learning means returning a posterior
distribution over all possible graphs, or at least computing the expected value of
functions (e.g., which indicate the presence of certain features, such as edges) with
respect to this distribution. If we adopt a non-Bayesian approach, structure learning
means finding the single “best” model. “Best” can either mean the one that satisfies
all (and only) the conditional independencies observed in the data (the constraint-
based approach), or one that maximizes some scoring function, such as penalized
likelihood (e.g., MDL/BIC) or marginal likelihood.

To find the best scoring model, we must in principle search through the space
of all models (since the space is discrete, we cannot use gradient methods). For
Bayes nets, the model may either be a DAG or a PDAG (partially directed acyclic
graph), which represents a whole class of Markov equivalent DAGs. Given obser-
vational data alone, it is not possible to distinguish between members of the same
equivalence class. However, it is simple to modify the scoring function to exploit
interventional data: simply don’t update the parameters of nodes that have been
set by intervention [CY99]. This enables one to learn causal models from data,
which is useful in such domains as bioinformatics.

An alternative to searching in graph/edge space is to search in feature space,
and then use the Gibbs-exponential distribution (Equation 1) to define the model
[PPL97, BJO1]. Features provide a much “finer granularity” than edges, and often
lead to models that perform better in terms of density estimation or predictive
power. However, they cannot be interpreted causally.

Structure learning is a very large subject: see e.g., [HGC94, Bun96, Mur01] for
more details.

5 Software issues

Aside from the various theoretical issues we have discussed above, there are various
practical issues which make a big difference to the success of a software package.
We mention a few below.

e Is the package free? A lot of packages are free for academic use only. Some
commerical packages have free versions, which are restricted in various ways,
e.g., they limit the model size.

e Is source code available? What language is it written in?



e Is the system easy to extend? For instance, can one add new kinds of CPDs
or inference algorithms?

e Is an API available? Without an API (application program interface), the
package cannot be integrated into other applications, i.e., it must be used as
a standalone program.

e Is a GUI available? What systems does it run on? e.g., Java should run on
any computer, but many GUIs only work with Microsoft Windows.

6 Comparison of existing software packages

In Figure 6, we review all of the existing software packages that we are aware of (as
of September 2001) with respect to some of the issues we have mentioned above.
What is not mentioned in this table (due to lack of space) is that nearly all of these
packages using exact inference, either junction tree, variable elimination, or Pearl’s
algorithm. (Many of them are also limited to discrete random variables.) This sev-
erly restricts their applicability. Some packages (e.g., BUGS, CABeN and Hydra)
use sampling, which is more flexible. Unfortunately, these sampling-based programs
fail to exploit tractable substructure (Rao-Blackwellization), and are therefore usu-
ally too slow for really big problems in domains such as speech, vision and text.

As we will see in the next section, one of the strengths of BNT is the wide range
of inference algorithms, both exact and approximate, that it makes available to the
user. This enables one to use the same package for many different kinds of model.
Furthermore, any of these inference algorithms can be “plugged in” to the learning
algorithms in a modular way.

7 Design of BNT

We now discuss the design of BNT with respect to the above desiderata.

7.1 Representation

BNT was originally only designed for Bayes nets (DAG models) — hence the name.
It was recently extended to handle influence diagrams. A Bayes net is represented as
a structure, which contains the graph (represented as an adjacency matrix), as well
as the CPDs (represented as a list of objects), and a few other pieces of information.
(For DBNSs, we store the intra-slice topology and the inter-slice topology.)

BNT supports a variety of CPD types, each of which is its own class: see Figure 3.
(It does not yet support Bayesian models, so the parameters are “hidden” inside
each CPD object.) Each class is required to implement a set of methods, depending
on which inference and learning algorithms are to be used. This will be explained
below.

7.2 Inference

One of the biggest strengths of BNT is that it offers a variety of inference algorithms,
each of which makes different tradeoffs between accuracy, generality, simplicity,
speed, etc. Some of the algorithms (e.g., brute force enumeration of a joint) are
designed for pedagogical/ debugging purposes only. In some cases, BNT offers
multiple implementations of the same algorithm (e.g., a Matlab version and a C



Name Src API Cts GUI ¢ G ~ U UG Free
Analytica N N Y w N N N Y N R
Bassist C++ Y Y N Y N Y N N Y
Bayda Java - Y Y Y N N N N Y
BayesBuilder N N N Y N N Y N N R
B. Discoverer N N D Y Y Y N N N R
B-course N N D Y Y Y N N N Y
Bayonnet Java - Y Y Y N N N N Y
BN power constr. N W N Y Y CI N N N Y
BN Toolbox Matlab - Y N Y Y Y Y N Y
BN Toolkit VBasic - N Y N Y N N N Y
BucketElim C++ - N N N N N N N Y
BUGS N N Y w Y N Y N N Y
Business Nav. 5 N N D Y Y Y N N N R
CABeN C Y N N N N Y N N Y
CoCo+Xlisp C/lisp - N Y Y CI N N Only Y
Clspace Java N N Y N N N N N Y
Ergo N N N Y N N N N N R
FLoUE/BIFtoN Java - N N N N N N N Y
GDAGsim C - Only N N N Y N N Y
GMRFsim C - Only N N N Y N Only Y
GeNIe/SMILE N WU N w N N Y Y N Y
Hydra Java - Y N Y N Y N Y Y
Hugin Expert N Y Y w Y CI Y Y Y R
Ideal Lisp - N Y N N N Y N Y
Java Bayes Java - N Y N N N Y N Y
MIM N N Y Y Y Y N N Y R
MSBNx N Y N w N N N Y N R
Netica N WUM Y w Y N Y Y N R
Pulcinella Lisp - N Y N N N N N Y
RISO Java - Y Y N N N N N Y
Tetrad N N Y N Y CI N N Y Y
‘Web Weaver Java - N Y N N N Y N Y
WinMine N N Y Y Y Y N N Y R
XBAIES 2.0 N N N Y Y N N Y Y Y

Figure 2: Comparison of some software packages for graphical models. The columns have the
following meanings. Src: is source code available? API: is an application program interface
available, or must the program be used as a standalone blackbox? (- = source is included, so
no API is needed; W=Windows, U=Unix, M=Mac) Cts: does the package support continuous
random variables (D means it discretizes them). GUI: does the package have a GUI? 6: does the
package learn parameters? G: does the package learn structure? (N = no, Y = uses search and
score, CI = uses conditional independence tests) ~: does the package support sampling? U: does
the package support utility/action nodes (i.e., decision diagrams)? UG: does the package support
undirected graphs? Free: is the package freely available? (Y=yes, N=no, R=restricted, which
means this is a commerical product, but is free for non-commercial use, and/or the free version
has limited functionality). See www.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html for an online
version of this table, complete with URLs and additional information.
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generic

N

discrete gaussian root

tabular softmax noisyor mlp
deterministic
boolean

Figure 3: Class hierarchy of the CPDs supported by BNT. A root node is one
which has no parameters — it represents an observed exogenous input, and is used
to define conditional density models. MLP stands for multilayer perceptron (i.e.,
feedforward neural network). Currently this can only be used for classification (i.e.,
discrete nodes), but could easily be extended to regression (i.e., continuous nodes).
Softmax is essentially a special case of an MLP with no hidden layers. We use netlab
to implement learning for both MLPs and softmax. Strictly speaking, deterministic
and Boolean CPDs are not implemented as subtypes of the tabular CPD class —
their constructors actually create tabular CPD objects. Thus they merely provide
some “syntactic sugar” to the tabular CPD class.

version). All engines have the same API, and hence can be easily interchanged.
(For instance, any of them can be used in the E step of EM.)

Each algorithm is represented as an “inference engine” object. The inference
engines differ in many ways, including

e Works for all topologies or makes restrictions?
e Works for all CPD types or makes restrictions?
e Exact or approximate inference?

In terms of topology, most engines handle any kind of DAG. The exceptions are
as follows: belprop_fg does belief propagation on factor graphs (FG), pearl only
works on polytrees, and quickscore only works on BN20 models such as QMR.

In terms of CPD types: sampling algorithms can essentially handle any kind of
node (distribution); algorithms that use sum-products (e.g., variable elimination,
junction tree and belief propagation) must convert the CPD to a potential, which
imposes some restrictions: see Section 7.2.1.

Finally, most algorithms are designed to give the exact answer. The exceptions
are belief propagation (which is only exact if applied to trees and in some other
cases) and sampling (which is only “exact” in the limit of an infinite number of
samples).

The situation is summarized in Figure 4.

7.2.1 Potentials

To implement any inference algorithm that works in terms of sums and products
(e.g., variable elimination or message passing), it is necessary to represent each CPD
P(X;|Pa;) as a potential, as discussed in Section 3.1.1. BNT supports four kinds
of potentials, each of which is its own class: discrete dpot, Gaussian (represented

11



Engine Exact? CPD types Topology

belprop approx D,G,CG DAG
belprop_£fg approx D,G,CG FG
cond_gauss exact CG DAG
enumerative exact D DAG
gaussian exact G DAG
global_joint exact D,G,CG DAG
jtree exact D,G,CG DAG
jtree_C exact D DAG
likelihood_weighting approx any DAG
loopy_pearl approx D DAG
pearl exact D polytree
quickscore exact noisy-or BN20
var_elim exact D,G,CG DAG

Figure 4: Inference engines for static models supported by BNT. D means all hidden
nodes must be discrete; G means all hidden nodes must have linear-Gaussian CPDs;
CG means all hidden nodes must have conditional linear Gaussian CPDs. For details
of the algorithms, please consult the online documentation.

either in moment form, mpot, or canonical form, cpot), conditional Gaussian cgpot,
and utility upot.

If X; and Pa; are both discrete, we can enumerate all their values and represent
¢(X;,Pa;) as a Conditional Probability Table. (This is what the BNT function
CPD_to_CPT does.) However, this might destroy any special structure in the CPD.
For instance, if P(X;|Pa;) is a noisy-OR distribution, requiring only ¥ = |Pa;| pa-
rameters, the resulting CPT has O(2*) entries. This will not affect the sample
complexity (i.e., number of training cases needed to learn), but will affect the com-
putational complexity (i.e., amount of time needed to do inference). One way to
avoid this is to explicitly (i.e., graphically) represent the conditional independence
assumptions made by the noisy-OR distribution [RD98].

If P(X;|Pa;) is a conditional linear Gaussian distribution, we can represent
¢(X;,Pa;) as a CG potential. In general, however, such mixed discrete/continuous
distributions cannot be represented as potentials. For example, if X; is discrete
but Pa; is continuous, the CPD (e.g., logistic or softmax) cannot be represented
as a CG potential. However, if Pa; is observed to have value u, we can evaluate
P(X; = j|Pa; = u) as a function of j, and represent the result as a table. (This
is what the BNT function CPD_to_table does.) This suggests that we should con-
vert CPDs to potentials after we have seen the evidence, an idea first proposed in
[Mur99]. This is the approach adopted by BNT, which lets it apply exact algorithms
to a much greater range of models (e.g., mixtures of experts, input-output HMMs)
than most other software packages. (Unfortunately this technique cannot be used
for the stable CG algorithm of [LJ99].)

Another advantage of the BNT approach to handling evidence is as follows. When
a discrete variable is observed, it can only take on one possible value — namely,
the observed value.* Rather than representing the potential as a sparse table with
many zeroes, we can simply allocate the observed variable a dimension of size 1;

4This also has implications for the optimal triangulation, which is why BNT lets you specify
which nodes will be observed before the evidence arrives.
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the resulting table will be much smaller, and hence faster to manipulate. This is
much simpler than approaches such as zero compression [JA90, HD96].

7.2.2 Belief propagation

Belief propagation (BP) can be implemented by converting all CPDs to potentials
as above, and then using the standard sum-product operations [KFL01, YFWO01].
This is simple, but slow. There are two reasons it is slow: practical and theoretical.
The practical reason is that the overhead of manipulating objects in Matlab is quite
high, and this becomes a real problem with BP, since it is an iterative algorithm.
The theoretical reason is that any structure in the CPDs is lost, as mentioned above.
Hence some CPDs (notably noisy-OR) implement special purpose methods for com-
puting the messages needed by BP (these methods are called compute_lambda_msg
and compute_pi). Currently this is only exploited by loopy_pearl_inf_engine.

7.2.3 Sampling

To implement likelihood weighting (importance sampling), we need a way of sam-
pling from P(X;|Pa}), where the * means the parents are observed. A generic
way to do this is to convert the partially observed CPD to a potential (see Sec-
tion 7.2.1) and sample from ¢(X;). Individual CPD classes may implement more
efficient methods.

To implement Gibbs sampling, we need a way of sampling from the Markov
blanket of each node:

P(X;|M}) = P(X;[Pa;) [[ P(X;[Pa})
j€Children(z)

This is not yet implemented, partly because it would be very slow in Matlab, and
partly because the BUGS system already does such a good job of this. (One plan
for the future is to add an interface between BNT and BUGS.)

7.3 Learning

BNT supports both parameter and structure learning, but currently only for DAG
models.

7.3.1 Parameter learning

The parameter estimation routines in BNT can be classified into 4 types, depending
on whether the goal is to compute a full (Bayesian) posterior over the parameters
or just a point estimate (e.g., Maximum Likelihood or Maximum A Posteriori),
and whether all the variables are fully observed or there is missing data/ hidden
variables (partial observability). The routines are listed below.

| Full Partial
Point learn_params learn_params_em
Bayes | bayes_update_params not yet supported

Currently only the tabular_CPD class supports Bayesian updating (which is use-
ful, amongst other things, for sequential/on-line learning) using Dirichlet priors.
Also, the MAP estimate can only be computed for tabular CPDs. (Priors are
especially important for multinomials to avoid problems with sparse data.)
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7.3.2 Structure learning

The structure learning routines in BNT can be classified into 4 types, analogously
to the parameter learning case. Algorithms that have not yet been implemented
are indicated in parentheses. The notation will be explained below.

| Full Partial
Point | K2, IC/PC, (MI), (hill climb) (structural EM), (hill climb + )
Bayes MCMC (MCMC + S)

By S, we mean an approximation to the Bayesian scoring function, such as those
mentioned in [CH97]. The structural EM algorithm is described in [Fri97, Fri98].
The K2 algorithm [CH92] assumes a total ordering of the nodes is given. In principle
one can search over this ordering [FKO00]; this is more efficient than searching in the
(much larger) space of graphs.

Unlike all the others, the IC/PC algorithm [SGS01] is a constraint-based algo-
rithm that does not need to do search: it starts with a fully connected graph, and
then removes edges as determined by conditional independence tests applied to the
data; directions (arrows) are then added to the arcs up to Markov equivalence. The
disadvantage of independence tests such as x? is the need to specify a signifance
threshold; this can be avoided by using a Bayesian criterion [MTO01]. Alternatively,
one can use a mutual information (MI) criterion [CBL97, MT99]. Both options are
supported by BNT.

7.4 Software issues

We now summarize some other relevant attributes of BNT.
e Free? Yes (GNU GPL license).
e Source code available? Yes (Matlab and some C).

e Easy to extend? Yes. Adding new CPDs or inference engines is as simple as
creating a new class.

APT available? Yes. Matlab can be called from a variety of other languages.

GUTI available? Coming soon (see Section 8.3).

8 Past, present and future of BNT
8.1 Past

BNT was started while I was a summer intern at Compaq (formerly DEC) Cam-
bridge Research Labs (CRL) in 1997. I was working with Jim Rehg, who wanted
to apply Bayes nets to computer vision problems. At the time there were very few
software packages available, and none had all the features that we needed, such
as learning and the ability to handle continuous random variables and dynamical
systems.

The CRL system was written in C++ and was very limited. In fact, it could
not handle learning, continuous random variables, or dynamical systems! When I
returned to Berkeley I decided to rewrite the whole system in Matlab.
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8.1.1 Why Matlab?

I chose Matlab because of the ease with which it can handle Gaussian random
variables (e.g., the Kalman filter can be implemented in about 10 lines!). This
proved to be a very good decision: although Matlab is often perceived as merely
a package for numerical linear algebra and data visualization, with the release of
version 5 in the mid ’90s, Matlab became a fully-fledged programming language,
with flexible data-structures such as cell arrays and objects. (This is what prevents
BNT from running on Octave, an open-source version of Matlab 4 which lacks such
features.)
We can identify various pros and cons of Matlab. On the positive side,

e Matlab is a scripting language, which makes it very suitable for rapid proto-
typing. In addition, it provides a good debugger and profiler.

e Matlab has excellent numerical algorithms (e.g., SVD).
e Matlab has excellent data visualization/ plotting routines.

e Matlab has many other excellent toolboxes (neural nets, optimization, etc.).
For instance, BNT uses netlab® to learn MLP and softmax CPDs.

e Matlab code is high level and easy to read.

e Matlab is widely used in education (at least in engineering departments).

On the negative side,

e Matlab is slow (it is an untyped interpreted language), and the compiler is
not very effective.

e The Matlab object system is much less advanced than that of, say, Java or
C++.

e The commercial Matlab license costs thousands of dollars (although the stu-
dent edition is only $100 in the US).

e Matlab has no pointers. In particular, it only supports pass by value or pass
by constant reference, so passing large arguments to functions can result in a
lot of copying (e.g., if a function updates a single pixel in an image, the whole
image must be copied in and out of the function!).

A comparison between Matlab and other interactive scientific languages, such as
Mathematica, Splus and Gauss, is available online.5

8.2 Present

BNT has proved to be very popular: the web site has an average of 500 hits a
week, and it is widely used throughout the world for teaching and research, in
fields ranging from statistics to biology, from economics to mechanical engineering.
Rockwell has even developed a commercial product’ around it.

Suww .ncrg.aston.ac.uk/netlab

Suww.cs. berkeley.edu~murphyk/Bayes/compare.html
"IPARP: see www.killmine.com/prod01i.htm.
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8.2.1 BNT and Intel

In the summer of 2001, while I was an intern, Intel decided to use BNT to jump-
start their new research project into graphical models, being led by Gary Bradski.
In the short term, their goal is to use graphical models for applications, such as data
mining, (audio-visual) speech recognition and low level vision. In the medium term,
their goal is to create an open-source graphical models library (optimized for Intel
architectures) that will stimulate commercial interest in the application of graphical
models. And in the long term, their goal is to identify how future microprocessor
architecture design should be changed so as to enable large-scale applications of
graphical models.

In terms of data mining, Intel has a team of 3 people in China who will add a
variety of structure learning algorithms (see Section 7.3.2) to BNT. Intel also has a
team of 3 people in the USA who are developing data visualization tools. The goal
is to apply these tools to data from Intel’s factories.

In terms of an open-source library, in Fall 2001 Intel will assemble a team of
about 5 people in Russia who may work on adding C extensions to BNT, e.g.,
fast implementations of loopy belief propagation on MRFs for image processing
applications. (BNT is currently about 38,000 lines of code, of which 8000 are
comments.) The ultimate goal is to have an open-source library that it is entirely
written in C/C++. This will be callable from Matlab and perhaps other scripting
languages such as R8. (Intel already has some similar experience with OpenCV?,
Intel’s open-source computer vision library, which was also mostly developed in
Russia.)

8.2.2 BNT and OpenBayes

In January 2001, Richard Dybowski founded the OpenBayes egroup!® to discuss
the creation of an open-source Bayes net library. Since that time, the group has
had much lively discussion, but nothing concrete has come of it.

Richard does not consider BNT truly open-source because it relies on Matlab,
which is not free. However, the BNT code itself is freely available (currently under
the GNU Library General Public License), and various people have contributed to
it; I would like to mention their contributions here. Pierpaolo Brutti is integrating
glmlab!! into BNT, to allow GLM CPDs. Taylan Cemgil contributed some simple
graph visualization routines. Wei Hu (Intel China) implemented a C version of the
junction tree algorithm. Shan Huang (Intel China) is adding stable CG inference.
Tamar Kushnir implemented the IC* structure-learning algorithm. Ilya Shpitser
has implemented graph triangulation in C. Yair Weiss contributed several routines
relating to loopy belief propagation. Ron Zohar added code to compute the most
probable explanation. In addition, numerous people have helped to find bugs, and
Philippe LeRay translated the documentation into French.

8.3 Future

Currently I receive code contributions by email, and integrate them by hand, but
this will clearly not scale up to handle many people simultaneously working on

8
9

WWW.r-project.org
wuw.intel.com/research/mrl/research/opencv/
10See groups.yahoo.com/group/openbayes and
www.cs.berkeley.edu/~murphyk/OpenBayes/index.html.
11w . sci. usq.edu.au/staff/dunn/glmlab/glmlab.html
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the project. Hence I plan to move BNT to sourceforge, or some other open-source
development environment.

I have a fairly long wish-list for features I would like to see added to BNT, which
can be divided into 3 broad categories: new functionality, speedups, and I/O issues.
The major additional functionality I would like to see includes

Add tree-structured CPDs.

Add support for Bayesian modeling, i.e., parameters can be explicitely repre-
sented as nodes.

Add support for online inference and learning. (The current DBN support is
designed for offline/batch processing.)

Implement more approximate inference algorithms, such as expectation prop-
agation [Min01] and variational Bayes [GB0O].

Add support for non-DAG graphical models, e.g., dependency nets, MRF's
and feature-based (maxent) models. Each such model type will be its own
class, and will have its own methods for inference and learning, as discussed
in Section 7.1. The resulting program will be called GMT (Graphical Models
Toolbox) to emphasize its generality, and the fact that it will not be completely
backwards compatible with BNT.

In terms of I/O, I would like to see

An interface to BUGS'? and Hydra'?, which implement Gibbs sampling and
Metropolis Hastings respectively.

A file parser which can handle the proposed XML file format.'* Ken Shan
has implemented a web-based program to translate a BIF file to a sequence
of calls to the BNT APIL.!5

A program that lets users create graphs interactively. Hao Wang has imple-
mented a prototype in Matlab, which Kui Xu is currently extending (both
people work for Intel China).

A program that automatically lays out graphs in a way that makes them look
pretty (e.g., by minimizing line crossings). This is essential for interpreting the
results of structure learning. This could be implemented using GraphViz'®,
an open-source graph visualization package. Bob Davies (Intel California) has
developed a prototype using Tom Sawyer!?, a commercial version of GraphViz.
His prototype lets the user interactively edit the results of the layout process,
and hence it essentially supercedes Wang’s Matlab program mentioned above.

A program that lets users visualize and edit CPDs. This is particularly useful
for tree-structured CPDs.

12
13

www.mrc-bsu.cam.ac.uk/bugs/
www.biostat.washington.edu/~warnes/Hydra

14See www.cs.berkeley.edu/~murphyk/OpenBayes/file_formats.html for a list of the various
file formats that are commonly used or that have been proposed.

15
16
17

www.digitas.harvard.edu/~ken/bif2bnt
www.research.att.com/sw/tools/graphviz/
www . tomsawyer.com
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e A GUI that ties together the graph/CPD editor/visualizer and the Matlab
backend, which does the inference and learning.

In terms of speed, the current major bottleneck is related to the creation and
manipulation of potentials (see Sections 3.1.1 and 7.2.1). (This functionality is
needed for any sum-product type inference algorithm, such as belief propagation
and junction tree.) It is fairly simple to improve on the current implementation,
even in Matlab, but ultimately a lot of the code will need to be translated to
C/C++. We are looking into automatic code generation technology (c.f., NASA’s
AutoBayes project [FS01]). The goal is code that is fast enough to apply to large-
scale applications, such as real-time computer vision.
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