Exact Bayesian structure learning from uncertain interventions
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Abstract

We show how to extend the dynamic program-
ming algorithm of Koivisto [KS04, Koi06],
which computes the exact posterior marginal
edge probabilitiep(G;; = 1|D) of a DAG G
given dataD, to the case where the data is ob-
tained by interventions (experiments). In partic-
ular, we consider the case where the targets of
the interventions are a priori unknown. We show
that it is possible to learn the targets of interven-
tion at the same time as learning the causal struc-
ture. We apply our exact technique to a biolog-
ical data set that had previously been analyzed
using MCMC [SPP 05, EW06].
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interventions are “stochastic”, meaning that they induce
a distribution over states rather than a specific state
[KHNAO4]. A further relaxation is to assume that the ef-
fect of an intervention does not render the node indepen-
dent of its parents, but simply changes the parameters of
the local distribution; this has been called a “mechanism
change” [TPO1b, TP01a] or “parametric change” [EGS06].
For many situations, this is a more realistic model than per-
fect interventions, since it is often impossible to forceiva
ables into specific states.

In this paper, we propose a further relaxation of the notion
of intervention, and consider the case where the targets of
intervention are uncertain. This extension is motivated by
problems in molecular biology, where the effects of various
chemicals that are added are not precisely known. In par-
ticular, each chemical may affect a hidden variable, which
can in turn affect multiple observed variables, often in un-
known ways. We model this by adding the intervention

The use of Bayesian networks to represent causal modef®des to the graph, and then performing structure learning
has become increasingly popular [Pea00, SGS00]. In pain this extended, two-layered graph.

ticular, there is much interest in learning the structure o
these models from data. Given observational data, it is onl
possible to identify the structure up to Markov equivalence
For example, the three modefs—Y -7, XY« ~Z, and

XY —Z all encode the same conditional independenc
statementX L Z|Y. To distinguish between such models,

we need interventional (experimental) data [EGSO05].

f

Our contributions are three-fold. First, we show how to

¥ombine models of intervention — perfect, imperfect and

uncertain — with a recently proposed algorithm for effi-
ciently determining the exact posterior probabilitiestod t

yedges in a graph [KS04, Koi06]. Second, we show em-

pirically that it is possible to infer the true causal graph
structure, even when the targets of interventions are uncer

Most previous work has focused on the case of “perfecttain, provided the interventions are able to affect enough
interventions, in which it is assumed that an interventionnodes. Third, we apply our exact methodology to a biologi-

sets a single variable to a specific state (as in a randontal dataset that had previously been analyzed using MCMC
ized experiment). This is the basis of Pearl’s “do-calctulus [SPP"05, EWO06].

(as in the verb “to do”) [Pea00]. A perfect intervention

essentially “cuts off” the influence of the parents to the in-5  Models of intervention

tervened node, and can be modeled as a structural change

by performing "graph surgery” (removing incoming edgesWe will first describe our probability model under the as-

from the intervened node). Although some real-world . ) . .
. . . . sumption that there are no interventions. Then we will de-
interventions can be modeled in this way (such as gené_ . ; . .
. ; o .Scribe ways to model the many kinds of interventions that

knockouts), most interventions are not so precise in thei . . L
ave been proposed in the literature, culminating in our

effects. model of uncertain interventions. This will serve to situ-
One possible relaxation of this model is to assume thaate our model in the context of previous work.



2.1 Nointerventions
Xé,
For the intervention-free case, we will assume that the l
conditional probability distribution (CPD) of each node in [P —— X'+ R"
the graph is given by(X;|Xs,,0,G) = fi(Xi|Xa,,0:), N n
whereG; are the parents ofin G, 0; arei's parameters, 07 0}
and f;() is some probability density function (e.g., multi- f f
nomial or linear Gaussian). For the parameter pr{6tG), af o i

we will make the usual assumptions of global and local in-
dependence, and parameter modularity (see [HGC95] foFigure 1: Model of mechanism changeX is nodes in case
details). We will further assume that eagf¥;) is conju- n, X&, are its parents.I; acts like a switching variable: If
gate tof;, which allows for closed form computation of the /i = 1 (representing an intervention), theéfy uses theo param-
marginal likelihoodp(X N |G) = [ p(X V|G, 0)p(0)df, etersd); If I = 0, thenX; uses the parametet§. o /' are
where N is the number of data cases. For example, forl€ hyper-parameters. We can optionally add another swade

. . .. . L . R7', which can be used to model the degree of effectiveness of the
multinomial-Dirichlet, the marginal likelihood for a fatgi ;. tervention (see text for details).
(a node and its parents) is given by [HGC95]

LN LN N N I = 0, when we use the “normal” parameters. Specifi-
pla; g ) = /HP |2, 05)]p(6:)db; cally, we setp(X:|Xc,,Ii = 0,0,G) = fi(X:|Xc,,0°)
andp(Xi|XGmIi =1, 9 G) - fZ(X |XGL7 z) (NOte
_ H H p(a10,)|p(6:;)d0s; that the assumption that the functional forfndoes not

change is made without loss of generality, sifigean en-

code within it the specific type of function.) Tian and Pearl
o I [TPO1b, TPO1a] refer to this as a “mechanism change”: see

= H/ wa Dir(8i;.|cij.)dbi; Figure 1. A special case of this is a perfect intervention,

in whichp(X;|X¢,,I; = 1,0,9) = I[(X; = xf). To sim-
B H F(aij) lq—[ I(aiji + Nijr) p_lify notatiqn, we assume every node has itslown interven-
- I( ) T(ajn) tion node; if a nodé is not intervenable, we simply clamp
I = 0foralln.

nTe *j

whereN;;, = Eff (2} = k,xg, = j) are the counts, When we have interventional data, we modify the local
and N;; = >, Nyjix. (I(e) is the indicator function in  marginal likelihood formula by partitioning the data into
whichI(e) = 1 if evente is true andl (e) = 0 otherwise.) those cases in whick; was passively observed, and those
Also, ;i are the pseudo counts (Dirichlet hyper param-in which X; was set by intervention:

eters),ai; = Y, ayjk, i IS the number of discrete states

for X;, andg; is the number of states foX¢,. We will p(x 1N|x LN le = / H p(zlza,, 0 )] (62)dp?
usually use the BDeu priat;;;, = 1/¢;m; [HGC95]. (An R 17 =0

analogous formula can be derived for the normal-Gamma

case [GHO02].) The marginal likelihood of all the nodes is X / I »G}lac,.61)]p0})do}
then given byp(XV|G) = Hlep(X}:N|Xé:fv), where =1

d is the number of nodes. In the case of perfect interventions, this second factdr eva

uates to 1, so we can simply drop cases in which rieazs
set by intervention from the computation of the marginal
If we perform a perfect intervention on nodén data case lIkelihood of that node [CY99)].

n, then we setX" = a7, wherez; is the desired "tar- e can also model the case where the interventions are
get state” for node (assumed to be fixed and known). ynreliable, by introducing a latent indicatdt”, where

2.2 Perfect interventions

We modify the CPD for this case to h&X;|X¢.,0) =  Rr — 1 means the intervention succeeded, a@jd = 0
I(Xi = z7). We see thal; is effectively “cut off” from  meansit failed. In this casg(X;| X¢,, 6, I, = 1) becomes
its parentsXg, . a mixture model. The prior mixture weightR, = 1) is

. . the “effectiveness” of the intervention [KHNAO4].
2.3 Imperfect interventions

Another way to model imperfect interventions is as “soft”
A simple way to model interventions is to introduce inter- interventions, in which an intervention just increases the
vention nodes, that act like “switching parents”:Ijf = likelihood that a node enters its target stafe Markowetz
1, then we have performed an intervention on nede et al. [MGRO05] suggest using the same model of
casen and we use a different set of parameters than ifo(X;| X¢,, i, 0, G) as before, but now the parametéfs



andd! havedependenhyper-parameters. In particular, for m
the multinomial-Dirichlet casef)/" ~ Dir(ay/"), they a
assume the determinis_ti_c re_Iatial}}, = a?j, +w; &, vyhere xr—xp | 1p
j indexes states (conditioning casesyef, t = z is the \ /
target value for node ¢; = (0,...,0,1,0,...,0) witha 1 / g

in the t'th position, andw; is the strength of the interven- / 3/\ n

tion. Asw;— o0, this becomes a perfect intervention. 7 —
2.4 Uncertain interventions It 721/\312 7812 2 7812

Finally we come to our proposed model for representingrigure 2: An example of “fat hand” interventions. Intervention 1
interventions with uncertain targets, as well as uncertairaffects nodes 2 and 3, intervention 2 affects node 3. Thenra
effects. We no longer assume a one to one correspondentgss for node 3 aré;, (k, £), wherely =, I = j, X2 = k and
between intervention noddsand “regular’ nodes;. In- X3 = L.

stead, we assume that each intervention nideay have

multiple regular children. (Such interventions are some- A A
times said to be due to a “fat hand”, which “touches” many ¢ c 8’ c 8 ¢ 8 X
variables at once.) If a regular node has multiple interven- o e 0T bt
tion parents, we create a new parameter vector for each pos- @) ®) © @
sible combination of intervention parents: see Figure 2 for AN A8
an example. \ ' \ ’ \ OB A
D E D E D E: D E
We are interested in learning the connections from the in- © 0 © ®

tervention nodes to the regular nodes, as well as between

the regular nodes. We do not allow connections betweefigure 3: Top left: the “cancer network”, from [FMR98]. (a-d)
the intervention nodes, or from the regular nodes back t@g‘i] Zﬂﬁg‘o‘(’hfﬁsul‘r’l?irg{qu(g'%)e% ﬁeﬁﬂﬁfgﬁ lijr?tz%eirt]ic;gr:l
the intervention nodes, since we assume the mterventloéélseol on [TPO1b].

nodes are exogeneous and fixed.

To explain how we modify the marginal likelihood func-

tion, we need some more notation. Lét;. be the regular parents forB. Given enough interventions a#, we can
parents of nodé, andl, be the intervention parents. Let Uniquely identify the graph, since we can identify the arcs
0! be the parameters for nodeiven that its intervention Out of A Dy intervention, the arcs into D since it is a v-

parents have state Then the marginal likelihood for a Structure, and thé’—E arc since it is compelled. In gen-
family becomes eral, given a set of interventions and observational data,

N LN N we can identify a graph up to intervention equivalence (see
p(z; " zg, 1)) [TPO1a] for a precise definition).

o e N In Section 4.1, we will experimentally study the question
- H/ H p(ailag,, 0;) | p(0;)do; of whether one can still learn the true structure from un-
¢ nilg, =t certain interventions (i.e., when the targets of interimt
are a priori unknown), and if so, how much more data one
25 Thepower of interventions needs compared to the case where the intervention targets
are known.

The ability to recover the true causal structure (assum-

ing no latent variables) using perfect and imperfect in-3 Algorithmsfor structure learning

terventions has already been demonstrated both theoret-

ically [EGS05, EGS06, TPOla, TPO1b] and empirically The Bayesian approach to structure learning avoids many
[CY99, MS03, TPOla, TPO1b]. Specifically, each inter- of the conceptual problems that arise when trying to com-
vention determines the direction of the edges between theine the results of potentially inconsistent conditiomale-
intervened nodes and its neighbors; this in turn may resul@endency tests performed on different (“mutated”) models

in the direction of other edges being “compelled” [Chi95]. [Ebe06]. In addition, it is particularly appropriate whéret
o sample sizes are small, but “soft” prior knowledge is avail-

For example, in Figure 3, we see that there are 4 graphgy|e a5 in many molecular biology experiments.

that are Markov equivalent to the true structure; given ob-

servational data alone, this is all we can infer. HoweverHowever, we are left with a computational problem. Com-

given enough interventions (perfect or imperfect)®rwe putingdthe full posterior is intractable, since there are
2

can eliminate the fourth graph (d), since it has the wrong?(d!2( )) DAGs (directed acyclic graphs) od nodes



[Rob73]! So all one can realistically hope to do is to thought of as probabilities, but rather as potential fuorcti
compute the posterior probability of certain features ef th or factors, which jointly define the prior over orderings and
graph using Bayesian model averaging: graphs as follows

p(fID) =Y p(GID)f(G) 4
“ p(=<,G) = % 1 4(U:)pi(G:) x I(<,G consistent
where f(G) = 1if graph G has the feature (e.g., an edge i=1
fromi to j), andf(G) = 0 otherwise. (In the small sample
regime, the posterior over models often has many modesyhere the last term checks thatis consistent with<, and
so it would be unwise to pick any single model, assumingthat < is a total order (and hencg is acyclic). Z is a nor-
one’s goal is scientific discovery.) malization constant which will cancel out when computing

Standard MCMC methods for sampling from the posteriof?0Sterior features. By marginalizing over, we induce a
(see e.g., [MY95]) are very slow and do not mix well, due PHior over graphg(G). The induced prior is highly non

to the size of the search space and the “peakiness” of tHaniform, but favors sparse graphs, since parent sets tat ar
posterior landscape. A significant advance was made b§ma|ler are consistent with more orderings and therefore
Friedman and Koller [FK03], who suggested sampling ovefn0re probable.

the space of node orderings, which “only” has si2@l!).  The reason the prior is defined in this indirect way is that
Koivisto and Sood [KS04, Koi06] made another significantthe dynamic programming algorithm relies on the fact that
advance, by showing that one can compute the exact postgre can compute the score for certain parent sets without
rior probabilities of all edges using dynamic programmingknowing what the order of those parents are; hence we
in O(d2%) time, essentially by summing over all node or- can re-use that score for all orderings of the parents. See
derings instead of sampling them. While still exponential[k S04, FK03, EW06] for a more detailed discussion of the
in d, this is significantly better tha®(d!2?") (recall from  relationship between priors on orders and graphs.

Stirling’s approximation that! = O((d/e)?)), and allows

exact analysis of models with up to abaut 20 variables. 32 Likelihoods

The Koivisto algorithm is rather complex, and we do not

have space to explain it here. For the purposes of this paFhe final inputs to the algorithm are the local conditional
per, it suffices to know that the input to the algorithm is amarginal likelihoodsp(z}"|z£ YN, 1Y), which must be
prior over node orderingg (U;), a prior over possible par- computed for every nodéand every possible parent set
ent setsp;(G;), and a local marginal likelihood function G; (up to sizek). There arg({) = O(d*) such terms. The
for every node and every possible parent géK;|Xs,).  cost of computing each term depends on the form of the lo-
We discuss each of these in turn below. We then discussal CPDsf; and the priorp(6;). We have already given

extensions to the algorithm to handle interventions. the formula for the multinomial-Dirichlet case. It takes
O(N) time to compute the sufficient statistics (counts)
3.1 Priors Nijr, whereN is the number of training cases. We have

_ - found that 95% of the overall algorithm time is spent com-
A node ordering< may be specified by the vector puting these terms, even for relatively small (~ 5000)

(Ut,...,Ua), whereU = {j : j < i} are the set of gatasets. Fortunately, one can use AD-trees [ML98] to
nodes that preceed Following [KS04], we will assume a  gpeed this up.

uniform prior over orderingsy; (U;) o 1.

A parent set may be specified by the veatorC V', where 3.3 Layering
V is the set of nodes. Note that this is an unordered set;
the ordering of the elements is specified By Follow- In the case where we include the intervention nodes in the

ing [KS04], we setp;(G;) (fgj)_l' if |G;| < k, and graph, we use a two layered graph structMe; X UI.’
pi(G;) = 0 otherwise, wheré is a fan-in bound for each where X’ are the regular nodes atidare the intervention
node. (By setting: = d — 1, we can eliminate the fan-in Nodes. The prior ensures there are no edges betweén the
restriction.) nodes, and no edges frolback toZ. Letd; = |Z| be the
number of intervention nodes, adgd = |X'| be the num-
Of course,G; andU; are not independent, since we re- per of regular nodes. The time complexity of Koivisto's
quireG; C U;. Henceq;(U;) andp;(G;) should not be  aigorithm in this case i€)(d2?x + d*+*1C(N)), where
The exact formula is given by the following recurrence equa—d = dr+dx, andC(N) is the cost of computing each local
tion: r(d) — Z;i:l(_l)ﬂrl(tj)zi(d—i)r(d —%). This gives ma_lrgmal I|kel|hqod term. N_otg that Iay_erlng is cruc_lal for
r(2) = 3, r(3) = 25, r(4) = 543, r(5) = 29,281, r(6) = efficiently handling uncertain interventions, otherwike t
3,781,503, 7(7) = 1.1 x 10°, etc. algorithm would takeD(d2?) instead ofO(d2%x).



4 Expe’lmental results %‘ Ground Truth N =20 N =50 N =500 N = 2000
O% AABCDE H=631 H=5.40 H=1.86 H=149
We first present some results on synthetic data generated % ¢
from a Bayes net of known structure, and then present re- g °
sults on a real biological data set. ©
ABCDE H=5.65 H=1.16
© A
4.1 Syntheticdata g -
&R
In this section, we experimentally study the question of . ascoer  H=-6s3 H=558 H=173 H=173
whether one can still learn the true structure, even when  § §
the targets of intervention are a priori unknown, and if so, § b
how much more data one needs compared to the case where = "
the intervention targets are knownWe assessed this us- ABCDE  H=4am H=253 H=045 H=009
ing the following experimental protocol. We considered s
the graph structure in Figure 3, and then generated random 5
multinomial CPDs by sampling from a Dirichlet distribu- ‘
ABCDE I* H=6.06 H=3.62 H=0.76 H=0.38

tion with hyper-parameters chosen by the method described

in [CM02]. This ensures that there are reasonably strong - . .
dependencies between the nodes. (We used binary nodes

for simplicity.) We then generated data using forwards

sampling; the first 2000 casd3, were from the original 0 02 04 06 08 1
model, the second 2000 cades from a “mutated” model,
in which we performed a perfect intervention either.4n
or B, forcing it to the “off” state in each case.

Uncertain A Perfect A

Figure 4: Results of structure learning on the cancer network
(Figure 3). Left column: ground truth. Subsequent columns:
posterior edge probabilities G;; = 1| D) for increasing sample
Next we tried to learn back the structure using varying sam%zﬁstfr:f : Wf;ere da}r:(hrefd dtenoées 1t.0 and daCr;K bll)ue gen?test, 0.0.
ple sizes ofN € {100,500,2000}. Specifically we used Is the entropy of the factored posterif;; p(Gi;| D). See tex

. . . for details. This figure is best viewed in colour.
N observational samples andl interventional samples,
D = (DN, DIN). We ran the algorithm using dafa

i ingly vague prior knowledge: (1) usin . . . . .
and under increasingly vague p ge: (1) g\Nhen using perfect interventions, but it too reduces with

the perfect interventions model; (2) using the softinterve sample size. Eventually the posterior converges to a delta
tions modet; (3) using the imperfect (mechanism change) P Lo y the pos 9 .
function on the intervention equivalence class. We obtain

model; and (4) using the uncertain interventions model. In_. " . .
similar results with other experiments on random graphs.

the latter case, we also learned the children of the intervenThiS suggests that our proposed mechanism is easily able

tion node. As a control, we also tried just using observa- - .
. LN to learn causal structure even from uncertain intervestion
tional data,D = Dy,

Our results are shown in Figure 4. We see that with ob4.2 Biological data

servational data alone, we are only able to recover the v-

structureB— D+, with the directions of the other arcs We now apply our methodology to a real biological data
being uncertain (e.gP(C—FE) =~ 0.75.) With perfectin-  set, which had previously been analyzed using MCMC
terventions onB, we can additionally recover tha— B by Sachs et al [SPFD5] (who used multiple restart simu-
arc, and with perfect interventions ofy we can recover lated annealing in the space of DAGs), and Ellis and Wong
the graph uniquely, consistent with the theoretical result [EWO06] (who used equi-energy sampling in the space of
in Section 2.5. With imperfect and soft interventions, we node orderings). The purpose of our experiment is to de-
need somewhat more data, but results are otherwise vetgrmine the exact posterior over edges, and hence to assess
similar to the perfect case, and are omitted due to lack othe quality of the MCMC techniques, and also to learn the
space. With uncertain interventions, we see that the ereffects of the interventions that were performed.

tropy of the posterior on the regular edges is higher thanl’he dataset consists of 11 protein concentration levels mea
sured under 6 different interventions, plus 3 unperturbed

) S L : . . measurements. The proteins in question constitute part of
focal variables” (which we are calling uncertain targetsnér- . .
vention) in the context of constraint based learning meshodt  the signaling network of human T-cells, and therefore play

do not present any algorithms for identifying focal vareblWe  a vital role in the immune system. See Figure 6(a) for a de-
are not aware of any other papers that address this question.  piction of the commonly accepted “ground truth” network,
$[MGRO5] do not discuss how to set the pushing strength including hidden nodes.

We set it equal t@.5N, so that the data does not overwhelm the _
hyper-parametet; .. The data in question were gathered using a technique called

2Tian and Pearl [TP01a] briefly mention the case of “unknown



ing networks”, as found by 500 restarts of simulated an-

nealing, whereas our method averages over all graphs, and

= == hence may detect support for many more edges. (Note that
? ainh - gveraging over many sparse, but different, graphs cantresul

weers  IN @ dense set of marginal edge probabilities.) Also, the two

methods use different graph prigr&=), and hence cannot

be directly compared.

Psitech

Data Point

uo126
In the second experiment, we added the intervention nodes
to the graph and learned their children, rather than pre-
specifying them. The results are shown in Figure 6(d). We
successfuly identified the known targets of all but one of
raf meki2 ploy pip2 pip3 ek akt  pka  pkc  p38 ok the 6 interventions. (We missed the G06967pkc edge.)
Observed Biomolecule However, we also found that the interventions have multi-
ple children, even though they were designed to target spe-
Figure 5: Discretized biological data from [SPR5]. Columns  Cific proteins. Upon further investigation, we found that
are the 11 measured proteins, rows are the 9 experimental coach intervention typically affected a node and some of its
ditions, 3 of which are “general stimulation” rather tharesific immediate neighbors. For example, from the ground truth
e S o e o o e ey, g o TWork n Figure 6(a), we see hat Pitect (desinted
cated by an E (for excitation) or | (for inhibition). This figuis in that fl_gure) is known to inhibit plp?; in our learned ngt-
best viewed in colour. work (Figure 6(d)), we see that Psitect connects to pip2,
but also to plcy, which is a neighbor of pip2. This is bi-
ologically plausible, since some of these interventions ac
flow cytometry, which can record phosphorylation levelstally work by altering hidden variables, which can there-
of individual cells. This has two advantages compared td°'® cause changes in several neighboring visible vasable

other measurement techniques: first, it avoids the informa'S0: although we missed the G06967 pkc edge, the
tion loss commonly incurred by averaging over ensembleé’ther children of G06967 (plcy, pka, mek12, erk and p38)

of cells; second, it creates relatively large sample simes ( S€M t0 be strongly affected by G06967 when looking at
haveN = 5400 data points in total, 600 per condition). ~ the datain Figure 5.

VVVe also tried analysing the continuous data using linear-
aGaussian Bayes nets [GHO0Z2]. Following [EW06], we took
a log transform of each variable and then standardized
them. Our results (omitted due to lack of space) are sim-
ilar to [EWO06], but our graph is much denser, suggesting
We tried two different analyses. In the first version, we asthat their MCMC scheme failed to visit sufficiently many
sumed that the targets of intervention were known, and wenodes. (Although once again our results are not directly
modeled these using perfect interventions (as did Sachs gbmparable due to the different prior.) The graphs inferred
al). The results are shown in Figure 6(c). These should besing the Gaussian and multinomial models have much in
compared with the results of the MCMC analysis of Sachscommon, but they also differ in many of the details. A dis-
et al, which are shown in Figure 6(b), and the ground truthcussion of which model is more appropriate is beyond the
network, which is shown in Figure 6(a). scope of this paper.

The raw data was discretized into 3 states, representing lo
medium and high activity. We obtained this discretized dat
directly from Sachs: see Figure 5 for a visualization. This
constituted the input to our algorithm.

While there is substantial agreement between the threr is difficult to rigorously assess the quality of our result
models, there are also many differences. For exampleyhen there is no ground truth. (The biological model in
the ground truth shows no edge from jnk to p38, or fromFigure 6(a) is unlikely to be the “true” model that generated
mek12 to jnk, yet both inference methods detect such aghe data in Figure 5. Also, it contains hidden variables, so
edge. This may be due to the presence of various hiddeig not directly comparable to what we are learning.) The
variables. Looking at the data in Figure 5, mek12 and jnkapproach taken by Ellis et al [EW06] was to compare the
seem quite highly correlated, although this is obviously no predictive log-likelihood in a cross-validation framewor
enough evidence to suggest there should be an edge bgnfortunately we cannot use this approach, since we do not
tween them (as shown in [SPB5], nearly all of the vari-  infer complete graphs, only marginal edge probabilities.
ables are significantly pairwise correlated!).

There are also several edges in our model that seem to BE3 Running time

absent in the MCMC analysis of Sachs et al. (denoted by

dashed edges). This is possibly because Sachs et al orfipr the 3-state biological data, with= 11 nodes (using
perform model averaging over a “compendia of high scorperfect interventions) and/ = 5400, our Matlab imple-
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Figure 6: Models of the biological data. (a) A partial model of the Trpathway, as currently accepted by biologists. The snuaihd
circles with numbers represent various interventionse(gre activators, red = inhibitors). Source: [SRIB]. (b) Edges with marginal
probability above 0.5 as estimated by [SRB]. (c) Edges with marginal probability above 0.5 as estimay us, assuming known
perfect interventions. Dashed edges are ones that arengifssim the union of (a) and (b). These are either false pesitior edges that
Sachs et al missed. (d) Edges with marginal probability alib® as estimated by us, assuming uncertain, imperfecvantgons, and

a fan-in bound of = 2. The intervention nodes are in red, and edges from the ieiéion nodes are light gray. Dashed edges are ones
that are missing from the union of (a) and (b). This figure istlvéewed in colour.



mentation only took 30 secondsFor the case where we
learned the effects of interventions (do= 17), it took
about 30 minutes (using a fan-in boundkof 2).

[EW06]

[FKO3]

5 Summary and future work
[FMR98]

We have shown how to extend the dynamic programming
algorithm of Koivisto [KS04, Koi06], which computes the
exact posterior marginal edge probabilitjgs>,; = 1|D)

of a DAG G given dataD, to the case where the data is ob-
tained by interventions whose effects are a priori unknown.
We believe this algorithm has many potential applications, [HGC95]
and we illustrated one in this paper.

[GHO2]

The main bottleneck to tackling larger problems is the
space and time limit o©(d2?), which limits us to about

d = 20. However, one can exploit the layering idea to ex-
tend this to much larger graphs. (See [MKTGO06] for some
ideas on how to partition nodes into groups/ layers in an un-
supervised way.) Layering should also enable the learning
of dynamic Bayes nets (DBNs) [FMR98].

[KHNAO4]

[K0i06]

[KS04]

Another issue that deserves more attention is the non-[MGROS]
uniform prior p(G) that Koivisto's algorithm implictly

uses. It would be useful if one could use an arbitrary[MKTGO6]
prior on graphs. Finally, it would be interesting to ex-
tend the ideas in this paper to the active learning case
[Mur01, TKO1], where one has to decide which interven-
tions to perform.
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