Machine Learning: A Probabilistic Perspective

Machine Learning
 A Probabilistic Perspective

Kevin P. Murphy

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu

This book was set in the $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ programming language by the author. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Information

Murphy, Kevin P.

Machine learning : a probabilistic perspective / Kevin P. Murphy. p. cm. - (Adaptive computation and machine learning series)

Includes bibliographical references and index.
ISBN 978-0-262-01802-9 (hardcover : alk. paper)

1. Machine learning. 2. Probabilities. I. Title.

Q325.5.M87 2012
006.3'1—dc23

2012004558
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

This book is dedicated to Alessandro, Michael and Stefano, and to the memory of Gerard Joseph Murphy.

Contents

1 Introduction 1
1.1 Machine learning: what and why? 1
1.1.1 Types of machine learning 2
1.2 Supervised learning 2
1.2.1 Classification 3
1.2.2 Regression 8
1.3 Unsupervised learning 9
1.3.1 Discovering clusters 10
1.3.2 Discovering latent factors 11
1.3.3 Discovering graph structure 12
1.3.4 Matrix completion 14
1.4 Some basic concepts in machine learning 15
1.4.1 Parametric vs non-parametric models 15
1.4.2 A simple non-parametric classifier: K-nearest neighbors 16
1.4.3 The curse of dimensionality 17
1.4.4 Parametric models for classification and regression 18
1.4.5 Linear regression 19
1.4.6 Logistic regression 20
1.4.7 Overfitting 22
1.4.8 Model selection 22
1.4.9 No free lunch theorem 24
2 Probability 25
2.1 Introduction 25
2.2 A brief review of probability theory 26
2.2.1 Discrete random variables 26
2.2.2 Fundamental rules 26
2.2.3 Bayes rule 27
2.2.4 Independence and conditional independence 28
2.2.5 Continuous random variables 30
2.2.6 Quantiles 31
2.2.7 Mean and variance 31
2.3 Some common discrete distributions 32
2.3.1 The binomial and Bernoulli distributions 32
2.3.2 The multinomial and multinoulli distributions 33
2.3.3 The Poisson distribution 35
2.3.4 The empirical distribution 35
2.4 Some common continuous distributions 36
2.4.1 Gaussian (normal) distribution 36
2.4.2 Degenerate pdf 37
2.4.3 The Student t distribution 37
2.4.4 The Laplace distribution 39
2.4.5 The gamma distribution 39
2.4.6 The beta distribution 40
2.4.7 Pareto distribution 41
2.5 Joint probability distributions 42
2.5.1 Covariance and correlation 42
2.5.2 The multivariate Gaussian 44
2.5.3 Multivariate Student t distribution 44
2.5.4 Dirichlet distribution 45
2.6 Transformations of random variables 47
2.6.1 Linear transformations 47
2.6.2 General transformations 48
2.6.3 Central limit theorem 49
2.7 Monte Carlo approximation 50
2.7.1 Example: change of variables, the MC way 51
2.7.2 Example: estimating π by Monte Carlo integration 52
2.7.3 Accuracy of Monte Carlo approximation 52
2.8 Information theory 54
2.8.1 Entropy 54
2.8.2 KL divergence 55
2.8.3 Mutual information 57
3 Generative models for discrete data 63
3.1 Introduction 63
3.2 Bayesian concept learning 63
3.2.1 Likelihood 65
3.2.2 Prior 65
3.2.3 Posterior 66
3.2.4 Posterior predictive distribution 69
3.2.5 A more complex prior 70
3.3 The Beta-Binomial model 70
3.3.1 Likelihood 71
3.3.2 Prior 72
3.3.3 Posterior 73
3.3.4 Posterior predictive distribution 75
3.4 The Dirichlet-multinomial model 76
3.4.1 Likelihood 77
3.4.2 Prior 77
3.4.3 Posterior 77
3.4.4 Posterior predictive 79
3.5 Naive Bayes classifiers 80
3.5.1 Model fitting 81
3.5.2 Using the model for prediction 83
3.5.3 The log-sum-exp trick 84
3.5.4 Feature selection using mutual information 84
3.5.5 Classifying documents using bag of words 85
4 Gaussian models 95
4.1 Introduction 95
4.1.1 Notation 95
4.1.2 Basics 95
4.1.3 MLE for an MVN 97
4.1.4 Maximum entropy derivation of the Gaussian * 99
4.2 Gaussian Discriminant analysis 99
4.2.1 Quadratic discriminant analysis (QDA) 100
4.2.2 Linear discriminant analysis (LDA) 101
4.2.3 Two-class LDA 102
4.2.4 MLE for discriminant analysis 104
4.2.5 Strategies for preventing overfitting 104
4.2.6 Regularized LDA * 105
4.2.7 \quad Diagonal LDA 106
4.2.8 Nearest shrunken centroids classifier * 107
4.3 Inference in jointly Gaussian distributions 108
4.3.1 Statement of the result 109
4.3.2 Examples 109
4.3.3 Proof of the result * 113
4.4 Linear Gaussian systems 116
4.4.1 Statement of the result 117
4.4.2 Examples 117
4.4.3 Proof of the result * 122
4.5 Digression: The Wishart distribution * 123
4.5.1 Inverse Wishart distribution 124
4.5.2 Visualizing the Wishart distribution * 124
4.6 Inferring the parameters of an MVN 124
4.6.1 \quad Posterior distribution of $\boldsymbol{\mu}$ 125
4.6.2 Posterior distribution of $\boldsymbol{\Sigma}$ * 126
4.6.3 Posterior distribution of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ * 129
4.6.4 Sensor fusion with unknown precisions * 133
5 Bayesian statistics 143
5.1 Introduction 143
5.2 Summarizing posterior distributions 143
5.2.1 MAP estimation 143
5.2.2 Credible intervals 146
5.2.3 Inference for a difference in proportions 148
5.3 Bayesian model selection 150
5.3.1 Bayesian Occam's razor 150
5.3.2 Computing the marginal likelihood (evidence) 152
5.3.3 Bayes factors 157
5.3.4 Jeffreys-Lindley paradox * 158
5.4 Priors 159
5.4.1 Uninformative priors 159
5.4.2 Jeffreys priors * 160
5.4.3 Robust priors 162
5.4.4 Mixtures of conjugate priors 162
5.5 Hierarchical Bayes 165
5.5.1 Example: modeling related cancer rates 165
5.6 Empirical Bayes 166
5.6.1 Example: Beta-Binomial model 167
5.6.2 Example: Gaussian-Gaussian model 167
5.7 Bayesian decision theory 170
5.7.1 Bayes estimators for common loss functions 171
5.7.2 The false positive vs false negative tradeoff 174
5.7.3 More general action spaces 178
5.7.4 Sequential decision theory 179
6 Frequentist statistics 183
6.1 Introduction 183
6.2 Sampling distribution of an estimator 183
6.2.1 Bootstrap 184
6.2.2 Large sample theory for the MLE * 185
6.2.3 Connection with Bayesian statistics * 186
6.3 Frequentist decision theory 187
6.3.1 Bayes risk 188
6.3.2 Minimax risk 189
6.3.3 Admissible estimators 190
6.4 Desirable properties of estimators 193
6.4.1 Consistent estimators 193
6.4.2 Unbiased estimators 193
6.4.3 Minimum variance estimators 194
6.4.4 The bias-variance tradeoff 195
6.5 Empirical risk minimization 197
6.5.1 Regularized risk minimization 198
6.5.2 Structural risk minimization 199
6.5.3 Estimating the risk using cross validation 199
6.5.4 Upper bounding the risk using statistical learning theory * 202
6.5.5 Surrogate loss functions 203
6.6 Pathologies of frequentist statistics * 204
6.6.1 Counter-intuitive behavior of confidence intervals 205
6.6.2 p-values considered harmful * 206
6.6.3 The likelihood principle 207
6.6.4 Why isn't everyone a Bayesian? 208
7 Linear regression 211
7.1 Introduction 211
7.2 Model specification 211
7.3 Maximum likelihood estimation (least squares) 211
7.3.1 Derivation of the MLE 213
7.3.2 Geometric interpretation 214
7.3.3 Convexity 215
7.4 Robust linear regression * 217
7.5 Ridge regression 219
7.5.1 Basic idea 219
7.5.2 Numerically stable computation * 221
7.5.3 Connection with PCA * 222
7.5.4 Regularization effects of big data 224
7.6 Bayesian linear regression 225
7.6.1 Computing the posterior 226
7.6.2 Computing the posterior predictive 227
7.6.3 Bayesian inference when σ^{2} is unknown * 228
7.6.4 EB for linear regression (evidence procedure) 232
8 Logistic regression 239
8.1 Introduction 239
8.2 Model specification 239
8.3 Model fitting 239
8.3.1 MLE 240
8.3.2 Steepest descent 241
8.3.3 Newton's method 243
8.3.4 Iteratively reweighted least squares (IRLS) 244
8.3.5 Quasi-Newton (variable metric) methods 245
8.3.6 $\quad \ell_{2}$ regularization 246
8.3.7 Multi-class logistic regression 246
8.4 Bayesian logistic regression 248
8.4.1 Gaussian/ Laplace approximation in general 248
8.4.2 Derivation of the BIC 249
8.4.3 Gaussian approximation for logistic regression 249
8.4.4 Approximating the posterior predictive 251
8.4.5 Residual analysis (outlier detection) * 254
8.5 Online learning and stochastic optimization 255
8.5.1 Online learning and regret minimization 255
8.5.2 Stochastic optimization and risk minimization 256
8.5.3 The LMS algorithm 259
8.5.4 The perceptron algorithm 259
8.5.5 A Bayesian view 260
8.6 Generative vs discriminative classifiers 261
8.6.1 Pros and cons of each approach 261
8.6.2 Dealing with missing data 262
8.6.3 Fisher's linear discriminant analysis (FLDA) * 265
9 Generalized linear models and the exponential family 273
9.1 Introduction 273
9.2 The exponential family 273
9.2.1 Definition 274
9.2.2 Examples 274
9.2.3 Log partition function 276
9.2.4 MLE for the exponential family 278
9.2.5 Bayes for the exponential family * 279
9.2.6 Maximum entropy derivation of the exponential family * 281
9.3 Generalized linear models (GLMs) 282
9.3.1 Basics 282
9.3.2 ML and MAP estimation 284
9.3.3 Bayesian inference 285
9.4 Probit regression 285
9.4.1 ML/ MAP estimation using gradient-based optimization 286
9.4.2 Latent variable interpretation 286
9.4.3 Ordinal probit regression * 287
9.4.4 Multinomial probit models * 287
9.5 Multi-task learning and mixed effect GLMs * 289
9.5.1 Basic model 289
9.5.2 Example: semi-parametric GLMMs for medical data 290
9.5.3 Example: discrete choice modeling 290
9.5.4 Other kinds of prior 291
9.5.5 Computational issues 291
10 Directed graphical models (Bayes nets) 293
10.1 Introduction 293
10.1.1 Chain rule 293
10.1.2 Conditional independence 294
10.1.3 Graphical models 294
10.1.4 Graph terminology 295
10.1.5 Directed graphical models 296
10.2 Examples 297
10.2.1 Naive Bayes classifiers 297
10.2.2 Markov and hidden Markov models 298
10.2.3 Medical diagnosis 299
10.2.4 Genetic linkage analysis 301
10.2.5 Directed Gaussian graphical models * 304
10.3 Inference 305
10.4 Learning 306
10.4.1 Plate notation 306
10.4.2 Learning from complete data 308
10.4.3 Learning with missing and/or latent variables 309
10.5 Conditional independence properties of DGMs 310
10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties) 310
10.5.2 Other Markov properties of DGMs 313
10.5.3 Markov blanket and full conditionals 313
10.6 Influence (decision) diagrams * 314
11 Mixture models and the EM algorithm 321
11.1 Latent variable models 321
11.2 Mixture models 321
11.2.1 Mixtures of Gaussians 323
11.2.2 Mixture of multinoullis 324
11.2.3 Using mixture models for clustering 324
11.2.4 Mixtures of experts 326
11.3 Parameter estimation for mixture models 329
11.3.1 Unidentifiability 330
11.3.2 Computing a MAP estimate is non-convex 331
11.4 The EM algorithm 332
11.4.1 Basic idea 333
11.4.2 EM for GMMs 334
11.4.3 EM for mixture of experts 341
11.4.4 EM for DGMs with hidden variables 342
11.4.5 EM for the Student distribution * 343
11.4.6 EM for probit regression * 346
11.4.7 Theoretical basis for EM * 347
11.4.8 EM variants * 349
11.5 Model selection for latent variable models 351
11.5.1 Model selection for probabilistic models 352
11.5.2 Model selection for non-probabilistic methods 352
11.6 Fitting models with missing data 354
11.6.1 EM for the MLE of an MVN with missing data 355
12 Latent linear models 363
12.1 Factor analysis 363
12.1.1 FA is a low rank parameterization of an MVN 363
12.1.2 Inference of the latent factors 364
12.1.3 Unidentifiability 365
12.1.4 Mixtures of factor analysers 367
12.1.5 EM for factor analysis models 368
12.1.6 Fitting FA models with missing data 369
12.2 Principal components analysis (PCA) 369
12.2.1 Classical PCA: statement of the theorem 369
12.2.2 Proof * 371
12.2.3 Singular value decomposition (SVD) 374
12.2.4 Probabilistic PCA 377
12.2.5 EM algorithm for PCA 378
12.3 Choosing the number of latent dimensions 380
12.3.1 Model selection for FA/ PPCA 380
12.3.2 Model selection for PCA 381
12.4 PCA for categorical data 384
12.5 PCA for paired and multi-view data 386
12.5.1 Supervised PCA (latent factor regression) 387
12.5.2 Partial least squares 388
12.5.3 Canonical correlation analysis 389
12.6 Independent Component Analysis (ICA) 389
12.6.1 Maximum likelihood estimation 392
12.6.2 The FastICA algorithm 393
12.6.3 Using EM 396
12.6.4 Other estimation principles * 397
13 Sparse linear models 403
13.1 Introduction 403
13.2 Bayesian variable selection 404
13.2.1 The spike and slab model 406
13.2.2 From the Bernoulli-Gaussian model to ℓ_{0} regularization 407
13.2.3 Algorithms 408
13.3 $\quad \ell_{1}$ regularization: basics 411
13.3.1 Why does ℓ_{1} regularization yield sparse solutions? 412
13.3.2 Optimality conditions for lasso 413
13.3.3 Comparison of least squares, lasso, ridge and subset selection 417
13.3.4 Regularization path 418
13.3.5 Model selection 421
13.3.6 Bayesian inference for linear models with Laplace priors 422
13.4 $\quad \ell_{1}$ regularization: algorithms 423
13.4.1 Coordinate descent 423
13.4.2 LARS and other homotopy methods 423
13.4.3 Proximal and gradient projection methods 424
13.4.4 EM for lasso 429
$13.5 \quad \ell_{1}$ regularization: extensions 431
13.5.1 Group Lasso 431
13.5.2 Fused lasso 436
13.5.3 Elastic net (ridge and lasso combined) 437
13.6 Non-convex regularizers 439
13.6.1 Bridge regression 440
13.6.2 Hierarchical adaptive lasso 440
13.6.3 Other hierarchical priors 444
13.7 Automatic relevance determination (ARD)/ sparse Bayesian learning (SBL) 445
13.7.1 ARD for linear regression 445
13.7.2 Whence sparsity? 447
13.7.3 Connection to MAP estimation 447
13.7.4 Algorithms for ARD * 448
13.7.5 ARD for logistic regression 450
13.8 Sparse coding * 450
13.8.1 Learning a sparse coding dictionary 451
13.8.2 Results of dictionary learning from image patches 452
13.8.3 Compressed sensing 454
13.8.4 Image inpainting and denoising 454
14 Kernels 461
14.1 Introduction 461
14.2 Kernel functions 461
14.2.1 RBF kernels 462
14.2.2 Kernels for comparing documents 462
14.2.3 Mercer (positive definite) kernels 463
14.2.4 Linear kernels 464
14.2.5 Matern kernels 464
14.2.6 String kernels 465
14.2.7 Pyramid match kernels 466
14.2.8 Kernels derived from probabilistic generative models 467
14.3 Using kernels inside GLMs 468
14.3.1 Kernel machines 468
14.3.2 LlVMs, RVMs, and other sparse kernel machines 469
14.4 The kernel trick 470
14.4.1 Kernelized nearest neighbor classification 471
14.4.2 Kernelized K-medoids clustering 471
14.4.3 Kernelized ridge regression 474
14.4.4 Kernel PCA 475
14.5 Support vector machines (SVMs) 478
14.5.1 SVMs for regression 479
14.5.2 SVMs for classification 480
14.5.3 Choosing C 486
14.5.4 Summary of key points 486
14.5.5 A probabilistic interpretation of SVMs 487
14.6 Comparison of discriminative kernel methods 487
14.7 Kernels for building generative models 489
14.7.1 Smoothing kernels 489
14.7.2 Kernel density estimation (KDE) 490
14.7.3 From KDE to KNN 492
14.7.4 Kernel regression 492
14.7.5 Locally weighted regression 494
15 Gaussian processes 497
15.1 Introduction 497
15.2 GPs for regression 498
15.2.1 Predictions using noise-free observations 499
15.2.2 Predictions using noisy observations 500
15.2.3 Effect of the kernel parameters 501
15.2.4 Estimating the kernel parameters 503
15.2.5 Computational and numerical issues * 506
15.2.6 Semi-parametric GPs * 506
15.3 GPs meet GLMs 507
15.3.1 Binary classification 507
15.3.2 Multi-class classification 510
15.3.3 GPs for Poisson regression 513
15.4 Connection with other methods 514
15.4.1 Linear models compared to GPs 514
15.4.2 Linear smoothers compared to GPs 515
15.4.3 SVMs compared to GPs 516
15.4.4 LlVM and RVMs compared to GPs 516
15.4.5 Neural networks compared to GPs 517
15.4.6 Smoothing splines compared to GPs * 518
15.4.7 RKHS methods compared to GPs * 520
15.5 GP latent variable model 522
15.6 Approximation methods for large datasets 524
16 Adaptive basis function models 525
16.1 Introduction 525
16.2 Classification and regression trees (CART) 526
16.2.1 Basics 526
16.2.2 Growing a tree 528
16.2.3 Pruning a tree 531
16.2.4 Pros and cons of trees 532
16.2.5 Random forests 533
16.2.6 CART compared to hierarchical mixture of experts * 533
16.3 Generalized additive models 534
16.3.1 Backfitting 534
16.3.2 Computational efficiency 535
16.3.3 Multivariate adaptive regression splines (MARS) 535
16.4 Boosting 536
16.4.1 Forward stagewise additive modeling 537
16.4.2 L2boosting 540
16.4.3 AdaBoost 540
16.4.4 LogitBoost 542
16.4.5 Boosting as functional gradient descent 542
16.4.6 Sparse boosting 544
16.4.7 Multivariate adaptive regression trees (MART) 544
16.4.8 Why does boosting work so well? 545
16.4.9 A Bayesian view 545
16.5 Feedforward neural networks (multilayer perceptrons) 546
16.5.1 Convolutional neural networks 547
16.5.2 Other kinds of neural networks 550
16.5.3 A brief history of the field 551
16.5.4 The backpropagation algorithm 552
16.5.5 Identifiability 554
16.5.6 Regularization 554
16.5.7 Bayesian inference * 558
16.6 Ensemble learning 562
16.6.1 Stacking 562
16.6.2 Error-correcting output codes 563
16.6.3 Ensemble learning is not equivalent to Bayes model averaging 563
16.7 Experimental comparison 564
16.7.1 Low-dimensional features 564
16.7.2 High-dimensional features 565
16.8 Interpreting black-box models 567
17 Markov and hidden Markov Models 571
17.1 Introduction 571
17.2 Markov models 571
17.2.1 Transition matrix 571
17.2.2 Application: Language modeling 573
17.2.3 Stationary distribution of a Markov chain * 578
17.2.4 Application: Google's PageRank algorithm for web page ranking * 582
17.3 Hidden Markov models 585
17.3.1 Applications of HMMs 586
17.4 Inference in HMMs 588
17.4.1 Types of inference problems for temporal models 588
17.4.2 The forwards algorithm 591
17.4.3 The forwards-backwards algorithm 592
17.4.4 The Viterbi algorithm 594
17.4.5 Forwards filtering, backwards sampling 598
17.5 Learning for HMMs 599
17.5.1 Training with fully observed data 599
17.5.2 EM for HMMs (the Baum-Welch algorithm) 600
17.5.3 Bayesian methods for "fitting" HMMs * 602
17.5.4 Discriminative training 602
17.5.5 Model selection 603
17.6 Generalizations of HMMs 603
17.6.1 Variable duration (semi-Markov) HMMs 604
17.6.2 Hierarchical HMMs 606
17.6.3 Input-output HMMs 607
17.6.4 Auto-regressive and buried HMMs 608
17.6.5 Factorial HMM 609
17.6.6 Coupled HMM and the influence model 610
17.6.7 Dynamic Bayesian networks (DBNs) 610
18 State space models 613
18.1 Introduction 613
18.2 Applications of SSMs 614
18.2.1 SSMs for object tracking 614
18.2.2 Robotic SLAM 615
18.2.3 Online parameter learning using recursive least squares 618
18.2.4 SSM for time series forecasting * 619
18.3 Inference in LG-SSM 622
18.3.1 The Kalman filtering algorithm 622
18.3.2 The Kalman smoothing algorithm 625
18.4 Learning for LG-SSM 628
18.4.1 Identifiability and numerical stability 628
18.4.2 Training with fully observed data 628
18.4.3 EM for LG-SSM 629
18.4.4 Subspace methods 629
18.4.5 Bayesian methods for "fitting" LG-SSMs 629
18.5 Approximate online inference for non-linear, non-Gaussian SSMs 629
18.5.1 Extended Kalman filter (EKF) 630
18.5.2 Unscented Kalman filter (UKF) 632
18.5.3 Assumed density filtering (ADF) 634
18.6 Hybrid discrete/ continuous SSMs 637
18.6.1 Inference 638
18.6.2 Application: Data association and multi target tracking 640
18.6.3 Application: fault diagnosis 641
18.6.4 Application: econometric forecasting 641
19 Undirected graphical models (Markov random fields) 643
19.1 Introduction 643
19.2 Conditional independence properties of UGMs 643
19.2.1 Key properties 643
19.2.2 An undirected alternative to d-separation 645
19.2.3 Comparing directed and undirected graphical models 646
19.3 Parameterization of MRFs 647
19.3.1 The Hammersley-Clifford theorem 647
19.3.2 Representing potential functions 649
19.4 Examples of MRFs 650
19.4.1 Ising model 650
19.4.2 Hopfield networks 651
19.4.3 Potts model 653
19.4.4 Gaussian MRFs 654
19.4.5 Markov logic networks * 656
19.5 Learning 658
19.5.1 Training maxent models using gradient methods 658
19.5.2 Training partially observed maxent models 659
19.5.3 Approximate methods for computing the MLEs of MRFs 660
19.5.4 Pseudo likelihood 660
19.5.5 Stochastic Maximum Likelihood 662
19.5.6 Feature induction for maxent models * 662
19.5.7 Iterative proportional fitting (IPF) * 664
19.6 Conditional random fields (CRFs) 666
19.6.1 Chain-structured CRFs, MEMMs and the label-bias problem 666
19.7 Applications of CRFs 668
19.7.1 Handwriting recognition 668
19.7.2 Noun phrase chunking 669
19.7.3 Named entity recognition 670
19.7.4 CRFs for protein side-chain prediction 671
19.7.5 Stereo vision 671
19.8 CRF training 673
19.9 Max margin methods for structured output classifiers * 674
20 Exact inference for graphical models 677
20.1 Introduction 677
20.2 Belief propagation for trees 677
20.2.1 Serial protocol 677
20.2.2 Parallel protocol 679
20.2.3 Gaussian BP * 680
20.2.4 Other BP variants * 682
20.3 The variable elimination algorithm 684
20.3.1 The generalized distributive law * 687
20.3.2 Computational complexity of VE 687
20.3.3 A weakness of VE 690
20.4 The junction tree algorithm * 690
20.4.1 Creating a junction tree 690
20.4.2 Message passing on a junction tree 692
20.4.3 Computational complexity of JTA 695
20.4.4 JTA generalizations * 696
20.5 Computational intractability of exact inference in the worst case 696
20.5.1 Approximate inference 697
21 Variational inference 701
21.1 Introduction 701
21.2 Variational inference 702
21.2.1 Forward or reverse KL? * 703
21.3 The mean field method 705
21.3.1 Derivation of the mean field update equations 706
21.3.2 Example: Mean field for the Ising model 707
21.4 Structured mean field * 709
21.4.1 Example: factorial HMM 709
21.5 Variational Bayes 711
21.5.1 Example: VB for a univariate Gaussian 712
21.5.2 Example: VB for linear regression 716
21.6 Variational Bayes EM 718
21.6.1 Example: VBEM for mixtures of Gaussians * 720
21.7 Variational message passing and VIBES 725
21.8 Local variational bounds 726
21.8.1 Motivating applications 726
21.8.2 Bohning's quadratic bound to the log-sum-exp function 727
21.8.3 Bounds for the sigmoid function 729
21.8.4 Other bounds and approximations to the log-sum-exp function * 732
21.8.5 Variational inference based on upper bounds 733
22 More variational inference 737
22.1 Introduction 737
22.2 Loopy belief propagation: algorithmic issues 737
22.2.1 A brief history 737
22.2.2 LBP on pairwise models 738
22.2.3 LBP on a factor graph 739
22.2.4 Convergence 741
22.2.5 Other speedup tricks for $B P$ 744
22.2.6 Accuracy of LBP 746
22.3 Loopy belief propagation: theoretical issues * 746
22.3.1 UGMs represented in exponential family form 746
22.3.2 The marginal polytope 747
22.3.3 Exact inference as a variational optimization problem 748
22.3.4 Mean field as a variational optimization problem 749
22.3.5 LBP as a variational optimization problem 749
22.3.6 Loopy BP vs mean field 753
22.4 Extensions of belief propagation * 753
22.4.1 Generalized belief propagation 753
22.4.2 Convex belief propagation 755
22.5 Expectation propagation 757
22.6 MAP state estimation 758
22.6.1 Linear programming relaxation 758
22.6.2 Max-product belief propagation 759
22.6.3 Dual decomposition 760
22.6.4 Submodularity 763
22.6.5 Graphcuts 763
23 Monte Carlo inference 767
23.1 Introduction 767
23.2 Sampling from standard distributions 767
23.2.1 Using the cdf 767
23.2.2 Sampling from a Gaussian (Box-Muller method) 769
23.3 Rejection sampling 769
23.3.1 Basic idea 769
23.3.2 Example 770
23.3.3 Application to Bayesian statistics 771
23.3.4 Adaptive rejection sampling 771
23.3.5 Rejection sampling in high dimensions 772
23.4 Importance sampling 772
23.4.1 Basic idea 772
23.4.2 Handling unnormalized distributions 773
23.4.3 Importance sampling for a DGM: Likelihood weighting 774
23.4.4 Sampling importance resampling (SIR) 774
23.5 Particle filtering 775
23.5.1 Sequential importance sampling 776
23.5.2 The degeneracy problem 777
23.5.3 The resampling step 777
23.5.4 The proposal distribution 779
23.5.5 Application: Robot localization 780
23.5.6 Application: Visual object tracking 780
23.5.7 Application: time series forecasting 783
23.6 Rao-Blackwellised particle filtering (RBPF) 783
23.6.1 RBPF for switching LG-SSMs 783
23.6.2 Application: Tracking a maneuvering target 784
23.6.3 Application: Fast SLAM 786
24 Markov Chain Monte Carlo (MCMC) inference 789
24.1 Introduction 789
24.2 Gibbs sampling 790
24.2.1 Basic idea 790
24.2.2 Example: Gibbs sampling for the Ising model 790
24.2.3 Example: Gibbs sampling for inferring the parameters of a GMM 792
24.2.4 Collapsed Gibbs sampling * 793
24.2.5 Gibbs sampling for hierarchical GLMs 795
24.2.6 BUGS and JAGS 798
24.2.7 The Imputation Posterior (IP) algorithm 799
24.2.8 Blocking Gibbs sampling 799
24.3 Metropolis Hastings algorithm 800
24.3.1 Basic idea 800
24.3.2 Gibbs sampling is a special case of MH 802
24.3.3 Proposal distributions 802
24.3.4 Adaptive MCMC 805
24.3.5 Initialization and mode hopping 805
24.3.6 Why MH works * 806
24.3.7 Reversible jump (trans-dimensional) MCMC * 807
24.4 Speed and accuracy of MCMC 807
24.4.1 The burn-in phase 807
24.4.2 Mixing rates of Markov chains * 809
24.4.3 Practical convergence diagnostics 810
24.4.4 Accuracy of MCMC 812
24.4.5 How many chains? 814
24.5 Auxiliary variable MCMC 815
24.5.1 Auxiliary variable sampling for logistic regression 815
24.5.2 Slice sampling 816
24.5.3 Swendsen Wang 818
24.5.4 Hybrid/ Hamiltonian MCMC * 820
24.6 Simulated annealing 820
24.7 Approximating the marginal likelihood 822
24.7.1 The candidate method 823
24.7.2 Harmonic mean estimate 823
24.7.3 Annealed importance sampling 823
25 Clustering 827
25.1 Introduction 827
25.1.1 Measuring (dis)similarity 827
25.1.2 Evaluating the output of clustering methods * 828
25.2 Dirichlet process mixture models 831
25.2.1 From finite to infinite mixture models 831
25.2.2 The Dirichlet process 834
25.2.3 Applying Dirichlet processes to mixture modeling 837
25.2.4 Fitting a DP mixture model 838
25.3 Affinity propagation 839
25.4 Spectral clustering 842
25.4.1 Graph Laplacian 843
25.4.2 Normalized graph Laplacian 844
25.4.3 Example 845
25.5 Hierarchical clustering 845
25.5.1 Agglomerative clustering 847
25.5.2 Divisive clustering 850
25.5.3 Choosing the number of clusters 851
25.5.4 Bayesian hierarchical clustering 851
25.6 Clustering datapoints and features 853
25.6.1 Biclustering 855
25.6.2 Multi-view clustering 855
26 Graphical model structure learning 859
26.1 Introduction 859
26.2 Quick and dirty ways to learn graph structure 860
26.2.1 Relevance networks 860
26.2.2 Dependency networks 861
26.3 Learning tree structures 862
26.3.1 Directed or undirected tree? 863
26.3.2 Chow-Liu algorithm for finding the ML tree structure 864
26.3.3 Finding the MAP forest 864
26.3.4 Mixtures of trees 866
26.4 Learning DAG structures 866
26.4.1 Exact structural inference 866
26.4.2 Scaling up to larger graphs 872
26.5 Learning DAG structure with latent variables 874
26.5.1 Approximating the marginal likelihood when we have missing data 874
26.5.2 Structural EM 877
26.5.3 Discovering hidden variables 877
26.5.4 Case study: Google's Rephil 880
26.5.5 Structural equation models * 881
26.6 Learning causal DAGs 883
26.6.1 Causal interpretation of DAGs 883
26.6.2 Using causal DAGs to resolve Simpson's paradox 884
26.6.3 Learning causal DAG structures 887
26.7 Learning undirected Gaussian graphical models 890
26.7.1 MLE for a GRF 890
26.7.2 Graphical lasso 891
26.7.3 Bayesian inference for GRF structure 893
26.7.4 Handling non-Gaussian data * 895
26.8 Learning undirected discrete graphical models 895
26.8.1 Graphical lasso for MRFs/ CRFs 895
26.8.2 Thin junction trees 896
27 Latent variable models for discrete data 899
27.1 Introduction 899
27.2 Distributed state LVMs for discrete data 900
27.2.1 Mixture models 900
27.2.2 Exponential family PCA 901
27.2.3 LDA and mPCA 902
27.2.4 GaP model and non-negative matrix factorization 903
27.3 Latent Dirichlet allocation (LDA) 904
27.3.1 Basics 904
27.3.2 Unsupervised discovery of topics 907
27.3.3 Quantitatively evaluating LDA as a language model 907
27.3.4 Fitting using (collapsed) Gibbs sampling 909
27.3.5 Example 910
27.3.6 Fitting using batch variational inference 911
27.3.7 Fitting using online variational inference 913
27.3.8 Determining the number of topics 914
27.4 Extensions of LDA 915
27.4.1 Correlated topic model 915
27.4.2 Dynamic topic model 916
27.4.3 LDA-HMM 917
27.4.4 Supervised LDA 919
27.5 LVMs for graph-structured data 924
27.5.1 Stochastic block model 925
27.5.2 Mixed membership stochastic block model 927
27.5.3 Relational topic model 929
27.6 LVMs for relational data 930
27.6.1 Infinite relational model 931
27.6.2 Probabilistic matrix factorization for collaborative filtering 933
27.7 Restricted Boltzmann machines (RBMs) 937
27.7.1 Varieties of RBMs 939
27.7.2 Learning RBMs 941
27.7.3 Applications of RBMs 945
28 Deep learning 949
28.1 Introduction 949
28.2 Deep generative models 950
28.2.1 Deep sigmoid networks 950
28.2.2 Deep Boltzmann machines 951
28.2.3 Deep belief networks 952
28.3 Training deep networks 953
28.3.1 Greedy layer-wise learning of DBNs 953
28.3.2 Fitting deep neural nets 955
28.3.3 Fitting deep auto-encoders 955
28.3.4 Stacked denoising auto-encoders 956
28.4 Applications of deep networks 956
28.4.1 Handwritten digit classification using DBNs 956
28.4.2 Data visualization using deep auto-encoders 958
28.4.3 Information retrieval using deep autoencoders (semantic hashing) 958
28.4.4 Learning audio features using ld convolutional DBNs 959
28.4.5 Learning image features using 2d convolutional DBNs 960
28.5 Discussion 961
Bibliography 963
Index to code 993
Index to keywords 997

Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods for data analysis continues to grow. The goal of machine learning is to develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Machine learning is thus closely related to the fields of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This book provides a detailed introduction to the field, and includes worked examples drawn from application domains such as biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in computer science, statistics, electrical engineering, econometrics, or any one else who has the appropriate mathematical background. Specifically, the reader is assumed to already be familiar with basic multivariate calculus, probability, linear algebra, and computer programming. Prior exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to use the tools of probability theory, which has been the mainstay of statistics and engineering for centuries. Probability theory can be applied to any problem involving uncertainty. In machine learning, uncertainty comes in many forms: what is the best prediction (or decision) given some data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including inferring parameters of statistical models, is sometimes called a Bayesian approach. However, this term tends to elicit very strong reactions (either positive or negative, depending on who you ask), so we prefer the more neutral term "probabilistic approach". Besides, we will often use techniques such as maximum likelihood estimation, which are not Bayesian methods, but certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a principled model-based approach to machine learning. For any given model, a variety of algorithms
can often be applied. Conversely, any given algorithm can often be applied to a variety of models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy and good engineering.

We will often use the language of graphical models to specify our models in a concise and intuitive way. In addition to aiding comprehension, the graph structure aids in developing efficient algorithms, as we will see. However, this book is not primarily about graphical models; it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software package called PMTK, which stands for probabilistic modeling toolkit. This is freely available from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the one used in this version of the book). There are also a variety of supporting files, written by other people, available at pmtksupport.googlecode.com.

MATLAB is a high-level, interactive scripting language ideally suited to numerical computation and data visualization, and can be purchased from www.mathworks.com. (Additional toolboxes, such as the Statistics toolbox, can be purchased, too; we have tried to minimize our dependence on this toolbox, but it is nevertheless very useful to have.) There is also a free version of Matlab called Octave, available at http://www.gnu.org/software/octave/, which supports most of the functionality of MATLAB (see the PMTK website for a comparison).

PMTK was used to generate many of the figures in this book; the source code for these figures is included on the PMTK website, allowing the reader to easily see the effects of changing the data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit. In order to find the corresponding file, you can use two methods: within Matlab you can type which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab but want to read the source code anyway, you can use your favorite search engine, which should return the corresponding file from the pmtk3.googlecode.com website.

Details on how to use PMTK can be found on the PMTK website, which will be udpated over time. Details on the underlying theory behind these methods can be found in this book.

Acknowledgments

A book this large is obviously a team effort. I would especially like to thank the following people: my wife Margaret, for keeping the home fires burning as I toiled away in my office for the last six years; Matt Dunham, who created many of the figures in this book, and who wrote much of the code in PMTK; Baback Moghaddam, who gave extremely detailed feedback on every page of an earlier draft of the book; Chris Williams, who also gave very detailed feedback; Cody Severinski and Wei-Lwun Lu, who assisted with figures; generations of UBC students, who gave helpful comments on earlier drafts; Daphne Koller, Nir Friedman, and Chris Manning, for letting me use their latex style files; Stanford University, Google Research and Skyline College for hosting me during part of my sabbatical; and various Canadian funding agencies (NSERC, CRC and CIFAR) who have supported me financially over the years.

In addition, I would like to thank the following people for giving me helpful feedback on parts of the book, and/or for sharing figures, code, exercises or even (in some cases) text: David

Blei, Hannes Bretschneider, Greg Corrado, Arnaud Doucet, Mario Figueiredo, Nando de Freitas, Mark Girolami, Gabriel Goh, Tom Griffiths, Katherine Heller, Geoff Hinton, Aapo Hyvarinen, Tommi Jaakkola, Mike Jordan, Charles Kemp, Emtiyaz Khan, Bonnie Kirkpatrick, Daphne Koller, Zico Kolter, Honglak Lee, Julien Mairal, Tom Minka, Ian Nabney, Carl Rassmussen, Ryan Rifkin, Ruslan Salakhutdinov, Mark Schmidt, Erik Sudderth, Josh Tenenbaum, Kai Yu, Martin Wainwright, Yair Weiss.

Kevin Murphy
Palo Alto, California
March 2012

