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Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods
for data analysis continues to grow. The goal of machine learning is to develop methods that
can automatically detect patterns in data, and then to use the uncovered patterns to predict
future data or other outcomes of interest. Machine learning is thus closely related to the fields
of statistics and data mining, but di�ers slightly in terms of its emphasis and terminology. This
book provides a detailed introduction to the field, and includes worked examples drawn from
application domains such as biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in
computer science, statistics, electrical engineering, econometrics, or any one else who has the
appropriate mathematical background. Specifically, the reader is assumed to already be familiar
with basic multivariate calculus, probability, linear algebra, and computer programming. Prior
exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to
use the tools of probability theory, which has been the mainstay of statistics and engineering for
centuries. Probability theory can be applied to any problem involving uncertainty. In machine
learning, uncertainty comes in many forms: what is the best prediction (or decision) given some
data? what is the best model given some data? what measurement should I perform next? etc.
The systematic application of probabilistic reasoning to all inferential problems, including

inferring parameters of statistical models, is sometimes called a Bayesian approach. However,
this term tends to elicit very strong reactions (either positive or negative, depending on who
you ask), so we prefer the more neutral term “probabilistic approach”. Besides, we will often
use techniques such as maximum likelihood estimation, which are not Bayesian methods, but
certainly fall within the probabilistic paradigm.
Rather than describing a cookbook of di�erent heuristic methods, this book stresses a princi-

pled model-based approach to machine learning. For any given model, a variety of algorithms
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can often be applied. Conversely, any given algorithm can often be applied to a variety of
models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy
and good engineering.
We will often use the language of graphical models to specify our models in a concise and

intuitive way. In addition to aiding comprehension, the graph structure aids in developing
e�cient algorithms, as we will see. However, this book is not primarily about graphical models;
it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software
package called PMTK, which stands for probabilistic modeling toolkit. This is freely available
from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the
one used in this version of the book). There are also a variety of supporting files, written by
other people, available at pmtksupport.googlecode.com.
MATLAB is a high-level, interactive scripting language ideally suited to numerical computation

and data visualization, and can be purchased from www.mathworks.com. (Additional toolboxes,
such as the Statistics toolbox, can be purchased, too; we have tried to minimize our dependence
on this toolbox, but it is nevertheless very useful to have.) There is also a free version of Matlab
called Octave, available at http://www.gnu.org/software/octave/, which supports most
of the functionality of MATLAB (see the PMTK website for a comparison).
PMTK was used to generate many of the figures in this book; the source code for these figures

is included on the PMTK website, allowing the reader to easily see the e�ects of changing the
data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit.
In order to find the corresponding file, you can use two methods: within Matlab you can type
which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab
but want to read the source code anyway, you can use your favorite search engine, which should
return the corresponding file from the pmtk3.googlecode.com website.
Details on how to use PMTK can be found on the PMTK website, which will be udpated over

time. Details on the underlying theory behind these methods can be found in this book.
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