Machine Learning: A Probabilistic Perspective

Machine Learning A Probabilistic Perspective

Kevin P. Murphy

The MIT Press Cambridge, Massachusetts London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu

This book was set in the \mathbb{M}_{EX} programming language by the author. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Information

Murphy, Kevin P.
Machine learning : a probabilistic perspective / Kevin P. Murphy.
p. cm. — (Adaptive computation and machine learning series)
Includes bibliographical references and index.
ISBN 978-0-262-01802-9 (hardcover : alk. paper)
1. Machine learning. 2. Probabilities. I. Title.
Q325.5.M87 2012
006.3'1—dc23
2012004558

10 9 8 7 6 5 4 3 2 1

This book is dedicated to Alessandro, Michael and Stefano, and to the memory of Gerard Joseph Murphy.

Contents

1 Introduction

2

1

1.1	Machine	e learning: what and why? 1
	1.1.1	Types of machine learning 2
1.2	Supervis	ed learning 2
	1.2.1	Classification 3
	1.2.2	Regression 8
1.3	Unsuper	vised learning 9
	1.3.1	Discovering clusters 10
	1.3.2	Discovering latent factors 11
	1.3.3	Discovering graph structure 12
	1.3.4	Matrix completion 14
1.4	Some ba	asic concepts in machine learning 15
	1.4.1	Parametric vs non-parametric models 15
	1.4.2	A simple non-parametric classifier: K-nearest neighbors
	1.4.3	The curse of dimensionality 17
	1.4.4	Parametric models for classification and regression 18
	1.4.5	Linear regression 19
	1.4.6	Logistic regression 20
	1.4.7	Overfitting 22
	1.4.8	Model selection 22
	1.4.9	No free lunch theorem 24
Proba	ability	25
2.1	Introduc	tion 25
2.2		review of probability theory 26
	2.2.1	Discrete random variables 26
	2.2.2	Fundamental rules 26
	2.2.3	Bayes rule 27
		, _ -

- 2.2.4 Independence and conditional independence 28
- 2.2.5 Continuous random variables 30
- 2.2.6 Quantiles 31

		2.2.7	Mean and variance 31		
	2.3		common discrete distributions 32		
	2.5	2.3.1	The binomial and Bernoulli distributions 32		
		2.3.1	The multinomial and multinoulli distributions 32		
		2.3.2	The Poisson distribution 35		
		2.3.3			
	2.4		The empirical distribution 35 ommon continuous distributions 36		
	2.4	2.4.1	Gaussian (normal) distribution 36		
		2.4.2	Degenerate pdf 37		
		2.4.3	The Student t distribution 37		
		2.4.4	The Laplace distribution 39		
		2.4.5	The gamma distribution 39		
		2.4.6	The beta distribution 40		
		2.4.7	Pareto distribution 41		
	2.5	Joint pro	obability distributions 42		
		2.5.1	Covariance and correlation 42		
		2.5.2	The multivariate Gaussian 44		
		2.5.3	Multivariate Student t distribution 44		
		2.5.4	Dirichlet distribution 45		
	2.6	Transfor	mations of random variables 47		
		2.6.1	Linear transformations 47		
		2.6.2	General transformations 48		
		2.6.3	Central limit theorem 49		
	2.7		Carlo approximation 50		
		2.7.1	Example: change of variables, the MC way 51		
		2.7.2	Example: estimating π by Monte Carlo integration		
	0.0	2.7.3	Accuracy of Monte Carlo approximation 52		
	2.8		tion theory 54		
		2.8.1	Entropy 54		
		2.8.2 2.8.3	KL divergence 55 Mutual information 57		
		2.0.5	Mutual Information 57		
3	Gene	rative mo	odels for discrete data 63		
	3.1	Introduo	ction 63		
	3.2	Bayesiar	n concept learning 63		
		3.2.1	Likelihood 65		
		3.2.2	Prior 65		
		3.2.3	Posterior 66		
		3.2.4	Posterior predictive distribution 69		
	0.0	3.2.5	A more complex prior 70		
	3.3		a-Binomial model 70		
		3.3.1	Likelihood 71 Drien 72		
		3.3.2	Prior 72 Destavior 72		
		3.3.3 3 3 4	Posterior 73 Posterior predictive distribution 75		
		3.3.4	Posterior predictive distribution 75		

- 3.4 The Dirichlet-multinomial model 76
 - 3.4.1 Likelihood 77
 - 3.4.2 Prior 77
 - 3.4.3 Posterior 77
 - 3.4.4 Posterior predictive 79
- 3.5 Naive Bayes classifiers 80
 - 3.5.1 Model fitting 81
 - 3.5.2 Using the model for prediction 83
 - 3.5.3 The log-sum-exp trick 84
 - 3.5.4 Feature selection using mutual information 84
 - 3.5.5 Classifying documents using bag of words 85

4 Gaussian models 95

- 4.1 Introduction 95
 - 4.1.1 Notation 95
 - 4.1.2 Basics 95
 - 4.1.3 MLE for an MVN 97
 - 4.1.4 Maximum entropy derivation of the Gaussian * 99
- 4.2 Gaussian Discriminant analysis 99
 - 4.2.1 Quadratic discriminant analysis (QDA) 100
 - 4.2.2 Linear discriminant analysis (LDA) 101
 - 4.2.3 Two-class LDA 102
 - 4.2.4 MLE for discriminant analysis 104
 - 4.2.5 Strategies for preventing overfitting 104
 - 4.2.6 Regularized LDA * 105
 - 4.2.7 Diagonal LDA 106
 - 4.2.8 Nearest shrunken centroids classifier * 107
- 4.3 Inference in jointly Gaussian distributions 108
 - 4.3.1 Statement of the result 109
 - 4.3.2 Examples 109
 - 4.3.3 Proof of the result * 113
- 4.4 Linear Gaussian systems 116
 - 4.4.1 Statement of the result 117
 - 4.4.2 Examples 117
 - 4.4.3 Proof of the result * 122
- 4.5 Digression: The Wishart distribution * 123
 - 4.5.1 Inverse Wishart distribution 124
 - 4.5.2 Visualizing the Wishart distribution * 124
- 4.6 Inferring the parameters of an MVN 124
 - 4.6.1 Posterior distribution of μ 125
 - 4.6.2 Posterior distribution of Σ * 126
 - 4.6.3 Posterior distribution of μ and Σ * 129
 - 4.6.4 Sensor fusion with unknown precisions * 133
- 5 Bayesian statistics 143

5.1 Introduction 143 5.2 Summarizing posterior distributions 143 5.2.1MAP estimation 143 5.2.2 Credible intervals 146 5.2.3 Inference for a difference in proportions 148 5.3 Bayesian model selection 150 5.3.1 Bayesian Occam's razor 150 5.3.2 Computing the marginal likelihood (evidence) 152 5.3.3 Bayes factors 157 Jeffreys-Lindley paradox * 5.3.4 158 5.4 Priors 159 5.4.1Uninformative priors 159 5.4.2 Jeffreys priors * 160 5.4.3 **Robust** priors 162 Mixtures of conjugate priors 5.4.4 162 5.5 **Hierarchical Bayes** 165 5.5.1Example: modeling related cancer rates 165 **Empirical Bayes** 166 5.6 5.6.1 Example: Beta-Binomial model 167 5.6.2 Example: Gaussian-Gaussian model 167 5.7 Bayesian decision theory 170 5.7.1 Bayes estimators for common loss functions 171 5.7.2 The false positive vs false negative tradeoff 174 5.7.3 More general action spaces 178 5.7.4 179 Sequential decision theory Frequentist statistics 183 6 183 6.1 Introduction Sampling distribution of an estimator 6.2 183 6.2.1 Bootstrap 184 6.2.2 Large sample theory for the MLE * 185 6.2.3 Connection with Bayesian statistics * 186 Frequentist decision theory 6.3 187 188 6.3.1 Bayes risk 6.3.2 Minimax risk 189 6.3.3 Admissible estimators 190 6.4 Desirable properties of estimators 193 6.4.1 Consistent estimators 193 6.4.2 Unbiased estimators 193 6.4.3 194 Minimum variance estimators 6.4.4 The bias-variance tradeoff 195 6.5 Empirical risk minimization 197 6.5.1 Regularized risk minimization 198 6.5.2 Structural risk minimization 199 6.5.3 Estimating the risk using cross validation 199

- 6.5.4 Upper bounding the risk using statistical learning theory * 202
- 6.5.5 Surrogate loss functions 203
- 6.6 Pathologies of frequentist statistics * 204
 - 6.6.1 Counter-intuitive behavior of confidence intervals 205
 - 6.6.2 p-values considered harmful * 206
 - 6.6.3 The likelihood principle 207
 - 6.6.4 Why isn't everyone a Bayesian? 208

7 Linear regression 211

- 7.1 Introduction 211
- 7.2 Model specification 211
- 7.3 Maximum likelihood estimation (least squares) 211
 - 7.3.1 Derivation of the MLE 213
 - 7.3.2 Geometric interpretation 214
 - 7.3.3 Convexity 215
- 7.4 Robust linear regression * 217
- 7.5 Ridge regression 219
 - 7.5.1 Basic idea 219
 - 7.5.2 Numerically stable computation * 221
 - 7.5.3 Connection with PCA * 222
 - 7.5.4 Regularization effects of big data 224
- 7.6 Bayesian linear regression 225
 - 7.6.1 Computing the posterior 226
 - 7.6.2 Computing the posterior predictive 227
 - 7.6.3 Bayesian inference when σ^2 is unknown * 228
 - 7.6.4 EB for linear regression (evidence procedure) 232

8 Logistic regression 239

- 8.1 Introduction 239
- 8.2 Model specification 239
- 8.3 Model fitting 239
 - 8.3.1 MLE 240
 - 8.3.2 Steepest descent 241
 - 8.3.3 Newton's method 243
 - 8.3.4 Iteratively reweighted least squares (IRLS) 244
 - 8.3.5 Quasi-Newton (variable metric) methods 245
 - 8.3.6 ℓ_2 regularization 246
 - 8.3.7 Multi-class logistic regression 246
- 8.4 Bayesian logistic regression 248
 - 8.4.1 Gaussian/ Laplace approximation in general 248
 - 8.4.2 Derivation of the BIC 249
 - 8.4.3 Gaussian approximation for logistic regression 249
 - 8.4.4 Approximating the posterior predictive 251
 - 8.4.5 Residual analysis (outlier detection) * 254
- 8.5 Online learning and stochastic optimization 255

		8.5.1	Online learning and regret minimization 255
		8.5.2	Stochastic optimization and risk minimization 256
		8.5.3	The LMS algorithm 259
		8.5.4	The perceptron algorithm 259
		8.5.5	A Bayesian view 260
	8.6		ive vs discriminative classifiers 261
		8.6.1	Pros and cons of each approach 261
		8.6.2	Dealing with missing data 262
		8.6.3	Fisher's linear discriminant analysis (FLDA) * 265
9	Gene	ralized li	inear models and the exponential family 273
	9.1	Introduo	
	9.2		onential family 273
	0.2	9.2.1	Definition 274
		9.2.2	Examples 274
		9.2.3	Log partition function 276
		9.2.4	MLE for the exponential family 278
		9.2.5	Bayes for the exponential family * 279
		9.2.6	Maximum entropy derivation of the exponential family * 281
	9.3		ized linear models (GLMs) 282
		9.3.1	Basics 282
		9.3.2	ML and MAP estimation 284
		9.3.3	Bayesian inference 285
	9.4		egression 285
		9.4.1	ML/ MAP estimation using gradient-based optimization 286
		9.4.2	Latent variable interpretation 286
		9.4.3	Ordinal probit regression * 287
		9.4.4	Multinomial probit models * 287
	9.5	Multi-ta	sk learning and mixed effect GLMs * 289
		9.5.1	Basic model 289
		9.5.2	Example: semi-parametric GLMMs for medical data 290
		9.5.3	Example: discrete choice modeling 290
		9.5.4	Other kinds of prior 291
		9.5.5	Computational issues 291
10	Direc	ted grap	hical models (Bayes nets) 293
	10.1	Introduc	ction 293
		10.1.1	Chain rule 293
		10.1.2	Conditional independence 294
		10.1.3	Graphical models 294
		10.1.4	Graph terminology 295
		10.1.5	Directed graphical models 296
	10.2	Example	
		10.2.1	Naive Bayes classifiers 297
		10.2.2	Markov and hidden Markov models 298

		10.2.3 10.2.4	Medical diagnosis 299 Genetic linkage analysis * 301
		10.2.4	Genetic linkage analysis * 301 Directed Gaussian graphical models * 304
	10.3	10.3 Inference 305	
	10.5		
	10.4	10.4.1	Plate notation 306
		10.4.1	Learning from complete data 308
		10.4.3	Learning with missing and/or latent variables 309
	10.5		nal independence properties of DGMs 310
	10.5	10.5.1	d-separation and the Bayes Ball algorithm (global Markov
		10.5.1	properties) 310
		10.5.2	Other Markov properties of DGMs 313
		10.5.3	Markov blanket and full conditionals 313
	10.6		e (decision) diagrams * 314
11			ls and the EM algorithm 321
	11.1		ariable models 321
	11.1	Mixture	
	11.2	11.2.1	Mixtures of Gaussians 323
		11.2.1	Mixture of multinoullis 324
		11.2.2	Using mixture models for clustering 324
		11.2.3	Mixtures of experts 326
	11.3		er estimation for mixture models 329
	11.5	11.3.1	Unidentifiability 330
		11.3.2	Computing a MAP estimate is non-convex 331
	11.4		algorithm 332
	11, 1	11.4.1	Basic idea 333
		11.4.2	EM for GMMs 334
		11.4.3	EM for mixture of experts 341
		11.4.4	EM for DGMs with hidden variables 342
		11.4.5	EM for the Student distribution * 343
		11.4.6	EM for probit regression * 346
		11.4.7	Theoretical basis for EM * 347
		11.4.8	EM variants * 349
	11.5	Model se	election for latent variable models 351
		11.5.1	Model selection for probabilistic models 352
		11.5.2	Model selection for non-probabilistic methods 352
	11.6	Fitting n	nodels with missing data 354
		11.6.1	EM for the MLE of an MVN with missing data 355
12	Laten	t linear i	models 363
	12.1	Factor and	nalysis 363
		12.1.1	FA is a low rank parameterization of an MVN 363
		12.1.2	Inference of the latent factors 364
		12.1.3	Unidentifiability 365

		12.1.4	Mixtures of factor analysers 367
		12.1.5	EM for factor analysis models 368
		12.1.6	Fitting FA models with missing data 369
	12.2	Principal	components analysis (PCA) 369
		12.2.1	Classical PCA: statement of the theorem 369
		12.2.2	Proof * 371
		12.2.3	Singular value decomposition (SVD) 374
			Probabilistic PCA 377
		12.2.5	EM algorithm for PCA 378
	12.3	-	g the number of latent dimensions 380
		12.3.1	Model selection for FA/ PPCA 380
	10.4	12.3.2	Model selection for PCA 381
	12.4 12.5		categorical data 384 paired and multi-view data 386
	12.3	12.5.1	Supervised PCA (latent factor regression) 387
		12.5.1	Partial least squares 388
		12.5.3	Canonical correlation analysis 389
	12.6		lent Component Analysis (ICA) 389
		12.6.1	Maximum likelihood estimation 392
		12.6.2	The FastICA algorithm 393
		12.6.3	Using EM 396
		12.6.4	Other estimation principles * 397
13	Spars	se linear n	nodels 403
	13.1	_	
	13.2		variable selection 404
		13.2.1	The spike and slab model 406
		13.2.2	From the Bernoulli-Gaussian model to ℓ_0 regularization 407
		13.2.3	Algorithms 408
	13.3	ℓ_1 regula	rization: basics 411
		13.3.1	Why does ℓ_1 regularization yield sparse solutions? 412
		13.3.2	Optimality conditions for lasso 413
		13.3.3	Comparison of least squares, lasso, ridge and subset selection 417
		13.3.4	Regularization path 418
		13.3.5	Model selection 421
	13.4	13.3.6	Bayesian inference for linear models with Laplace priors422rization: algorithms423
	13.4	13.4.1	Coordinate descent 423
		13.4.2	LARS and other homotopy methods 423
		13.4.3	Proximal and gradient projection methods 424
		13.4.4	EM for lasso 429
	13.5		rization: extensions 431
		13.5.1	Group Lasso 431
		13.5.2	Fused lasso 436
		13.5.3	Elastic net (ridge and lasso combined) 437

- 13.6 Non-convex regularizers 439
 - 13.6.1 Bridge regression 440
 - 13.6.2 Hierarchical adaptive lasso 440
 - 13.6.3 Other hierarchical priors 444
- 13.7 Automatic relevance determination (ARD)/ sparse Bayesian learning (SBL) 445
 - 13.7.1 ARD for linear regression 445
 - 13.7.2 Whence sparsity? 447
 - 13.7.3 Connection to MAP estimation 447
 - 13.7.4 Algorithms for ARD * 448
 - 13.7.5 ARD for logistic regression 450
- 13.8 Sparse coding * 450
 - 13.8.1 Learning a sparse coding dictionary 451
 - 13.8.2 Results of dictionary learning from image patches 452
 - 13.8.3 Compressed sensing 454
 - 13.8.4 Image inpainting and denoising 454

14 Kernels 461

- 14.1 Introduction 461
- 14.2 Kernel functions 461
 - 14.2.1 RBF kernels 462
 - 14.2.2 Kernels for comparing documents 462
 - 14.2.3 Mercer (positive definite) kernels 463
 - 14.2.4 Linear kernels 464
 - 14.2.5 Matern kernels 464
 - 14.2.6 String kernels 465
 - 14.2.7 Pyramid match kernels 466
 - 14.2.8 Kernels derived from probabilistic generative models 467
- 14.3 Using kernels inside GLMs 468
 - 14.3.1 Kernel machines 468
 - 14.3.2 LIVMs, RVMs, and other sparse kernel machines 469
- 14.4 The kernel trick 470
 - 14.4.1 Kernelized nearest neighbor classification 471
 - 14.4.2 Kernelized K-medoids clustering 471
 - 14.4.3 Kernelized ridge regression 474
 - 14.4.4 Kernel PCA 475
- 14.5 Support vector machines (SVMs) 478
 - 14.5.1 SVMs for regression 479
 - 14.5.2 SVMs for classification 480
 - 14.5.3 Choosing C 486
 - 14.5.4 Summary of key points 486
 - 14.5.5 A probabilistic interpretation of SVMs 487
- 14.6 Comparison of discriminative kernel methods 487
- 14.7 Kernels for building generative models 489
 - 14.7.1 Smoothing kernels 489
 - 14.7.2 Kernel density estimation (KDE) 490

15	Gaussian proc	esses 497	
	14.7.5	Locally weighted regression	
	14.7.4	Kernel regression 492	
	14.7.3	From KDE to KNN 492	

15.1 Introduction 497

- 15.2 GPs for regression 498
 - 15.2.1 Predictions using noise-free observations 499

494

- 15.2.2 Predictions using noisy observations 500
- 15.2.3 Effect of the kernel parameters 501
- 15.2.4 Estimating the kernel parameters 503
- 15.2.5 Computational and numerical issues * 506
- 15.2.6 Semi-parametric GPs * 506
- 15.3 GPs meet GLMs 507
 - 15.3.1 Binary classification 507
 - 15.3.2 Multi-class classification 510
 - 15.3.3 GPs for Poisson regression 513
- 15.4 Connection with other methods 514
 - 15.4.1 Linear models compared to GPs 514
 - 15.4.2 Linear smoothers compared to GPs 515
 - 15.4.3 SVMs compared to GPs 516
 - 15.4.4 LIVM and RVMs compared to GPs 516
 - 15.4.5 Neural networks compared to GPs 517
 - 15.4.6 Smoothing splines compared to GPs * 518
 - 15.4.7 RKHS methods compared to GPs * 520
- 15.5 GP latent variable model 522
- 15.6 Approximation methods for large datasets 524

16 Adaptive basis function models 525

- 16.1 Introduction 525
- 16.2 Classification and regression trees (CART) 526
 - 16.2.1 Basics 526
 - 16.2.2 Growing a tree 528
 - 16.2.3 Pruning a tree 531
 - 16.2.4 Pros and cons of trees 532
 - 16.2.5 Random forests 533
 - 16.2.6 CART compared to hierarchical mixture of experts * 533
- 16.3 Generalized additive models 534
 - 16.3.1 Backfitting 534
 - 16.3.2 Computational efficiency 535
 - 16.3.3 Multivariate adaptive regression splines (MARS) 535
- 16.4 Boosting
 - 16.4.1 Forward stagewise additive modeling 537
 - 16.4.2 L2boosting 540

536

16.4.3 AdaBoost 540

	16.4.4	LogitBoost 542
	16.4.5	Boosting as functional gradient descent 542
	16.4.6	Sparse boosting 544
	16.4.7	Multivariate adaptive regression trees (MART) 544
	16.4.8	Why does boosting work so well? 545
	16.4.9	A Bayesian view 545
16.5	Feedforw	vard neural networks (multilayer perceptrons) 546
	16.5.1	Convolutional neural networks 547
	16.5.2	Other kinds of neural networks 550
	16.5.3	A brief history of the field 551
	16.5.4	The backpropagation algorithm 552
	16.5.5	Identifiability 554
	16.5.6	Regularization 554
	16.5.7	Bayesian inference * 558
16.6	Ensembl	e learning 562
	16.6.1	Stacking 562
	16.6.2	Error-correcting output codes 563
	16.6.3	Ensemble learning is not equivalent to Bayes model averaging 563
16.7	Experim	ental comparison 564
	16.7.1	Low-dimensional features 564
	16.7.2	High-dimensional features 565
16.8	Interpret	ing black-box models 567
Mark	ov and h	idden Markov Models 571
17.1	Introduc	tion 571
17.2	Markov 1	models 571
	17.2.1	Transition matrix 571
	17.2.2	Application: Language modeling 573
	17.2.3	Stationary distribution of a Markov chain * 578
	17.2.4	Application: Google's PageRank algorithm for web page ranking * 582
17.3	Hidden I	Markov models 585
	17.3.1	Applications of HMMs 586
17.4	Inference	e in HMMs 588
	17.4.1	Types of inference problems for temporal models 588
	17.4.2	The forwards algorithm 591
	17.4.3	The forwards-backwards algorithm 592
	17.4.4	The Viterbi algorithm 594
	17.4.5	Forwards filtering, backwards sampling 598
17.5		for HMMs 599
	17.5.1	Training with fully observed data 599
	17.5.2	EM for HMMs (the Baum-Welch algorithm) 600
	17.5.3	Bayesian methods for "fitting" HMMs * 602
	17.5.4	Discriminative training 602
		0
17.6	17.5.5	Model selection 603 zations of HMMs 603

- 17.6.1 Variable duration (semi-Markov) HMMs 604
- 17.6.2 Hierarchical HMMs 606
- 17.6.3 Input-output HMMs 607
- 17.6.4 Auto-regressive and buried HMMs 608
- 17.6.5 Factorial HMM 609
- 17.6.6 Coupled HMM and the influence model 610
- 17.6.7 Dynamic Bayesian networks (DBNs) 610

18 State space models 613

- 18.1 Introduction 613
- 18.2 Applications of SSMs 614
 - 18.2.1 SSMs for object tracking 614
 - 18.2.2 Robotic SLAM 615
 - 18.2.3 Online parameter learning using recursive least squares 618
 - 18.2.4 SSM for time series forecasting * 619
- 18.3 Inference in LG-SSM 622
 - 18.3.1 The Kalman filtering algorithm 622
 - 18.3.2 The Kalman smoothing algorithm 625
- 18.4 Learning for LG-SSM 628
 - 18.4.1 Identifiability and numerical stability 628
 - 18.4.2 Training with fully observed data 628
 - 18.4.3 EM for LG-SSM 629
 - 18.4.4 Subspace methods 629
 - 18.4.5 Bayesian methods for "fitting" LG-SSMs 629
- 18.5 Approximate online inference for non-linear, non-Gaussian SSMs 629
 - 18.5.1 Extended Kalman filter (EKF) 630
 - 18.5.2 Unscented Kalman filter (UKF) 632
 - 18.5.3 Assumed density filtering (ADF) 634
- 18.6 Hybrid discrete/ continuous SSMs 637
 - 18.6.1 Inference 638
 - 18.6.2 Application: Data association and multi target tracking 640
 - 18.6.3 Application: fault diagnosis 641
 - 18.6.4 Application: econometric forecasting 641

19 Undirected graphical models (Markov random fields) 643

- 19.1 Introduction 643
- 19.2 Conditional independence properties of UGMs 643
 - 19.2.1 Key properties 643
 - 19.2.2 An undirected alternative to d-separation 645
 - 19.2.3 Comparing directed and undirected graphical models 646
- 19.3 Parameterization of MRFs 647
 - 19.3.1 The Hammersley-Clifford theorem 647
 - 19.3.2 Representing potential functions 649
- 19.4 Examples of MRFs 650
 - 19.4.1 Ising model 650

		19.4.2	Hopfield networks 651
		19.4.3	Potts model 653
		19.4.4	Gaussian MRFs 654
		19.4.5	Markov logic networks * 656
	19.5	Learning	658
		19.5.1	Training maxent models using gradient methods 658
		19.5.2	Training partially observed maxent models 659
		19.5.3	Approximate methods for computing the MLEs of MRFs 660
		19.5.4	Pseudo likelihood 660
		19.5.5	Stochastic Maximum Likelihood 662
		19.5.6	Feature induction for maxent models * 662
		19.5.7	Iterative proportional fitting (IPF) * 664
	19.6	Condition	nal random fields (CRFs) 666
		19.6.1	Chain-structured CRFs, MEMMs and the label-bias problem 666
	19.7	Applicati	ons of CRFs 668
		19.7.1	Handwriting recognition 668
		19.7.2	Noun phrase chunking 669
		19.7.3	Named entity recognition 670
		19.7.4	CRFs for protein side-chain prediction 671
		19.7.5	Stereo vision 671
	19.8	CRF train	0
	19.9	Max mar	rgin methods for structured output classifiers * 674
20	Exact	inference	e for graphical models 677
	20.1	Introduct	tion 677
	20.2	Belief pro	opagation for trees 677
		20.2.1	Serial protocol 677
		20.2.2	Parallel protocol 679
		20.2.3	Gaussian BP * 680
		20.2.4	Other BP variants * 682
	20.3	The varia	able elimination algorithm 684
		20.3.1	The generalized distributive law * 687
		20.3.2	Computational complexity of VE 687
		20.3.3	A weakness of VE 690
	20.4	The junc	tion tree algorithm * 690
		20.4.1	Creating a junction tree 690
		20.4.2	Message passing on a junction tree 692
		20.4.3	Computational complexity of JTA 695
		20.4.4	JTA generalizations * 696
	20.5	Computa	ational intractability of exact inference in the worst case 696
		20.5.1	Approximate inference 697
21	Varia	tional in	ference 701
		- 1	

- 21.1 Introduction 701
- 21.2 Variational inference 702

		21.2.1	Forward or reverse KL? * 703
	21.3	The mea	n field method 705
		21.3.1	Derivation of the mean field update equations 706
		21.3.2	Example: Mean field for the Ising model 707
	21.4	Structure	ed mean field * 709
		21.4.1	Example: factorial HMM 709
	21.5	Variation	al Bayes 711
		21.5.1	Example: VB for a univariate Gaussian 712
		21.5.2	Example: VB for linear regression 716
	21.6	Variation	al Bayes EM 718
		21.6.1	Example: VBEM for mixtures of Gaussians * 720
	21.7		al message passing and VIBES 725
	21.8	Local var	riational bounds 726
		21.8.1	Motivating applications 726
		21.8.2	Bohning's quadratic bound to the log-sum-exp function 727
		21.8.3	Bounds for the sigmoid function 729
		21.8.4	Other bounds and approximations to the log-sum-exp function * 732
		21.8.5	Variational inference based on upper bounds 733
22	More	variation	al inference 737
	22.1	Introduc	-
	22.2		elief propagation: algorithmic issues 737
		22.2.1	A brief history 737
		22.2.2	LBP on pairwise models 738
		22.2.3	LBP on a factor graph 739
		22.2.4	Convergence 741
		22.2.5	Other speedup tricks for BP 744
		22.2.6	Accuracy of LBP 746
	22.3	Loopy be	elief propagation: theoretical issues * 746
		22.3.1	UGMs represented in exponential family form 746
		22.3.2	The marginal polytope 747
		22.3.3	Exact inference as a variational optimization problem 748
		22.3.4	Mean field as a variational optimization problem 749
		22.3.5	LBP as a variational optimization problem 749
		22.3.6	Loopy BP vs mean field 753
	22.4	Extension	ns of belief propagation * 753
		22.4.1	Generalized belief propagation 753
		22.4.2	Convex belief propagation 755
	22.5	-	ion propagation 757
	22.6		te estimation 758
		22.6.1	Linear programming relaxation 758
		22.6.2	Max-product belief propagation 759
		22.6.3	Dual decomposition 760
		22.6.4	Submodularity 763
		22.6.5	Graphcuts 763

23 Monte Carlo inference 767 23.1 Introduction 767 23.2 Sampling from standard distributions 767 23.2.1 Using the cdf 767 23.2.2 Sampling from a Gaussian (Box-Muller method) 769 **Rejection sampling** 23.3 769 Basic idea 769 23.3.1 23.3.2 Example 770 23.3.3 Application to Bayesian statistics 771 23.3.4 Adaptive rejection sampling 771 Rejection sampling in high dimensions 23.3.5 772 Importance sampling 23.4 772 23.4.1 Basic idea 772 23.4.2 Handling unnormalized distributions 773 23.4.3 Importance sampling for a DGM: Likelihood weighting 774 Sampling importance resampling (SIR) 23.4.4 774 23.5 Particle filtering 775 23.5.1Sequential importance sampling 776 23.5.2 The degeneracy problem 777 23.5.3 The resampling step 777 The proposal distribution 779 23.5.4 Application: Robot localization 23.5.5 780 Application: Visual object tracking 23.5.6 780 Application: time series forecasting 23.5.7 783 23.6 Rao-Blackwellised particle filtering (RBPF) 783 RBPF for switching LG-SSMs 23.6.1 783 Application: Tracking a maneuvering target 23.6.2 784 23.6.3 Application: Fast SLAM 786 24 Markov Chain Monte Carlo (MCMC) inference 789 24.1 Introduction 789 24.2 790 Gibbs sampling Basic idea 790 24.2.1 24.2.2 Example: Gibbs sampling for the Ising model 790 24.2.3 Example: Gibbs sampling for inferring the parameters of a GMM 24.2.4 Collapsed Gibbs sampling * 793 24.2.5 Gibbs sampling for hierarchical GLMs 795 BUGS and IAGS 24.2.6 798 24.2.7 The Imputation Posterior (IP) algorithm 799 Blocking Gibbs sampling 24.2.8 799 Metropolis Hastings algorithm 24.3 800 Basic idea 800 24.3.1 Gibbs sampling is a special case of MH 24.3.2 802 Proposal distributions 24.3.3 802

24.3.4 Adaptive MCMC 805

	24.4	24.4.1 24.4.2 24.4.3 24.4.4	Initialization and mode hopping 805 Why MH works * 806 Reversible jump (trans-dimensional) MCMC * 807 ad accuracy of MCMC 807 The burn-in phase 807 Mixing rates of Markov chains * 809 Practical convergence diagnostics 810 Accuracy of MCMC 812
	24.5	24.4.5 Auxiliarv	How many chains? 814 variable MCMC * 815
		24.5.1	Auxiliary variable sampling for logistic regression 815
		24.5.2	Slice sampling 816
		24.5.3	Swendsen Wang 818
		24.5.4	Hybrid/ Hamiltonian MCMC * 820
	24.6		d annealing 820
	24.7		nating the marginal likelihood 822
		24.7.1	The candidate method 823
		24.7.2	Harmonic mean estimate 823
		24.7.3	Annealed importance sampling 823
25	Cluste	ering	827
	25.1	Introduc	tion 827
		25.1.1	Measuring (dis)similarity 827
		20.1.1	
		25.1.2	Evaluating the output of clustering methods * 828
	25.2	25.1.2 Dirichlet	Evaluating the output of clustering methods * 828 process mixture models 831
	25.2	25.1.2 Dirichlet 25.2.1	Evaluating the output of clustering methods *828process mixture models831From finite to infinite mixture models831
	25.2	25.1.2 Dirichlet 25.2.1 25.2.2	Evaluating the output of clustering methods *828process mixture models831From finite to infinite mixture models831The Dirichlet process834
	25.2	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3	Evaluating the output of clustering methods *828process mixture models831From finite to infinite mixture models831The Dirichlet process834Applying Dirichlet processes to mixture modeling837
		25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4	Evaluating the output of clustering methods *828process mixture models831From finite to infinite mixture models831The Dirichlet process834Applying Dirichlet processes to mixture modeling837Fitting a DP mixture model838
	25.3	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839
		25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral	Evaluating the output of clustering methods *828process mixture models831From finite to infinite mixture models831The Dirichlet process834Applying Dirichlet processes to mixture modeling837Fitting a DP mixture model838propagation839clustering842
	25.3	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1	Evaluating the output of clustering methods *828process mixture models831From finite to infinite mixture models831The Dirichlet process834Applying Dirichlet processes to mixture modeling837Fitting a DP mixture model838propagation839clustering842Graph Laplacian843
	25.3	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844
	25.3	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2 25.4.3	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845
	25.3 25.4	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2 25.4.3	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845
	25.3 25.4	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2 25.4.3 Hierarchi	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845
	25.3 25.4	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2 25.4.3 Hierarchi 25.5.1 25.5.2 25.5.3	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845 Agglomerative clustering 847
	25.3 25.4	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p 25.4.1 25.4.2 25.4.3 Hierarch 25.5.1 25.5.2 25.5.3 25.5.4	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845 Agglomerative clustering 847 Divisive clustering 850 Choosing the number of clusters 851 Bayesian hierarchical clustering 851
	25.3 25.4	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2 25.4.3 Hierarchi 25.5.1 25.5.2 25.5.3 25.5.4 Clusterin	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845 Agglomerative clustering 847 Divisive clustering 850 Choosing the number of clusters 851 Bayesian hierarchical clustering 853
	25.3 25.4 25.5	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p 25.4.1 25.4.1 25.4.2 25.4.3 Hierarchi 25.5.1 25.5.2 25.5.3 25.5.4 Clusterin 25.6.1	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845 Agglomerative clustering 847 Divisive clustering 850 Choosing the number of clusters 851 Bayesian hierarchical clustering 853 Biclustering 855
	25.3 25.4 25.5	25.1.2 Dirichlet 25.2.1 25.2.2 25.2.3 25.2.4 Affinity p Spectral 25.4.1 25.4.2 25.4.3 Hierarchi 25.5.1 25.5.2 25.5.3 25.5.4 Clusterin	Evaluating the output of clustering methods * 828 process mixture models 831 From finite to infinite mixture models 831 The Dirichlet process 834 Applying Dirichlet processes to mixture modeling 837 Fitting a DP mixture model 838 propagation 839 clustering 842 Graph Laplacian 843 Normalized graph Laplacian 844 Example 845 ical clustering 845 Agglomerative clustering 847 Divisive clustering 850 Choosing the number of clusters 851 Bayesian hierarchical clustering 853

26.1 Introduction 859

	26.2	Quick an	d dirty ways to learn graph structure 860
	20.2	26.2.1	Relevance networks 860
		26.2.2	Dependency networks 861
	26.3		tree structures 862
	20.0	26.3.1	Directed or undirected tree? 863
		26.3.2	Chow-Liu algorithm for finding the ML tree structure 864
		26.3.3	Finding the MAP forest 864
		26.3.4	Mixtures of trees 866
	26.4		DAG structures 866
	2011	26.4.1	Exact structural inference 866
		26.4.2	Scaling up to larger graphs 872
	26.5		DAG structure with latent variables 874
	-010	26.5.1	Approximating the marginal likelihood when we have missing data 874
		26.5.2	Structural EM 877
		26.5.3	Discovering hidden variables 877
		26.5.4	Case study: Google's Rephil 880
		26.5.5	Structural equation models * 881
	26.6		causal DAGs 883
		26.6.1	Causal interpretation of DAGs 883
		26.6.2	Using causal DAGs to resolve Simpson's paradox 884
		26.6.3	Learning causal DAG structures 887
	26.7	Learning	undirected Gaussian graphical models 890
		26.7.1	MLE for a GRF 890
		26.7.2	Graphical lasso 891
		26.7.3	Bayesian inference for GRF structure 893
		26.7.4	Handling non-Gaussian data * 895
	26.8	Learning	undirected discrete graphical models 895
		26.8.1	Graphical lasso for MRFs/ CRFs 895
		26.8.2	Thin junction trees 896
07	T -4	4	and the discussion data and a second
21			e models for discrete data 899
	27.1	Introduct	
	27.2		ed state LVMs for discrete data 900
		27.2.1	Mixture models 900
		27.2.2	Exponential family PCA 901
		27.2.3	LDA and mPCA 902
	07.0	27.2.4	GaP model and non-negative matrix factorization 903
	27.3		irichlet allocation (LDA) 904
		27.3.1	Basics 904
		27.3.2	Unsupervised discovery of topics 907
		27.3.3	Quantitatively evaluating LDA as a language model 907
		27.3.4 27.3.5	Fitting using (collapsed) Gibbs sampling 909 Example 910
		27.3.6	Fitting using batch variational inference 911
		27.3.7	Fitting using online variational inference 913

27.3.8	Determining	g the number of top	oics 914
Extensio	ons of LDA	915	

- 27.4 Extensions of LDA 915 27.4.1 Correlated topic model
 - 27.4.1 Correlated topic model 91527.4.2 Dynamic topic model 916
 - 27.4.2 Dynamic topic moder 27.4.3 LDA-HMM 917
 - 27.4.5 LDA-HIVINI 917
 - 27.4.4 Supervised LDA 919
- 27.5 LVMs for graph-structured data 924
 - 27.5.1 Stochastic block model 925
 - 27.5.2 Mixed membership stochastic block model 927
 - 27.5.3 Relational topic model 929
- 27.6 LVMs for relational data 930
 - 27.6.1 Infinite relational model 931
 - 27.6.2 Probabilistic matrix factorization for collaborative filtering 933
- 27.7 Restricted Boltzmann machines (RBMs) 937
 - 27.7.1 Varieties of RBMs 939
 - 27.7.2 Learning RBMs 941
 - 27.7.3 Applications of RBMs 945

28 Deep learning 949

- 28.1 Introduction 949
- 28.2 Deep generative models 950
 - 28.2.1 Deep sigmoid networks 950
 - 28.2.2 Deep Boltzmann machines 951
 - 28.2.3 Deep belief networks 952
- 28.3 Training deep networks 953
 - 28.3.1 Greedy layer-wise learning of DBNs 953
 - 28.3.2 Fitting deep neural nets 955
 - 28.3.3 Fitting deep auto-encoders 955
 - 28.3.4 Stacked denoising auto-encoders 956
- 28.4 Applications of deep networks 956
 - 28.4.1 Handwritten digit classification using DBNs 956
 - 28.4.2 Data visualization using deep auto-encoders 958
 - 28.4.3 Information retrieval using deep autoencoders (semantic hashing) 958
 - 28.4.4 Learning audio features using 1d convolutional DBNs 959
 - 28.4.5 Learning image features using 2d convolutional DBNs 960
- 28.5 Discussion 961

Bibliography 963

- Index to code 993
- Index to keywords 997

Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods for data analysis continues to grow. The goal of machine learning is to develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Machine learning is thus closely related to the fields of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This book provides a detailed introduction to the field, and includes worked examples drawn from application domains such as biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in computer science, statistics, electrical engineering, econometrics, or any one else who has the appropriate mathematical background. Specifically, the reader is assumed to already be familiar with basic multivariate calculus, probability, linear algebra, and computer programming. Prior exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to use the tools of probability theory, which has been the mainstay of statistics and engineering for centuries. Probability theory can be applied to any problem involving uncertainty. In machine learning, uncertainty comes in many forms: what is the best prediction (or decision) given some data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including inferring parameters of statistical models, is sometimes called a Bayesian approach. However, this term tends to elicit very strong reactions (either positive or negative, depending on who you ask), so we prefer the more neutral term "probabilistic approach". Besides, we will often use techniques such as maximum likelihood estimation, which are not Bayesian methods, but certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a principled model-based approach to machine learning. For any given model, a variety of algorithms can often be applied. Conversely, any given algorithm can often be applied to a variety of models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy and good engineering.

We will often use the language of graphical models to specify our models in a concise and intuitive way. In addition to aiding comprehension, the graph structure aids in developing efficient algorithms, as we will see. However, this book is not primarily about graphical models; it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software package called **PMTK**, which stands for probabilistic modeling toolkit. This is freely available from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the one used in this version of the book). There are also a variety of supporting files, written by other people, available at pmtksupport.googlecode.com.

MATLAB is a high-level, interactive scripting language ideally suited to numerical computation and data visualization, and can be purchased from www.mathworks.com. (Additional toolboxes, such as the Statistics toolbox, can be purchased, too; we have tried to minimize our dependence on this toolbox, but it is nevertheless very useful to have.) There is also a free version of Matlab called **Octave**, available at http://www.gnu.org/software/octave/, which supports most of the functionality of MATLAB (see the PMTK website for a comparison).

PMTK was used to generate many of the figures in this book; the source code for these figures is included on the PMTK website, allowing the reader to easily see the effects of changing the data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit. In order to find the corresponding file, you can use two methods: within Matlab you can type which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab but want to read the source code anyway, you can use your favorite search engine, which should return the corresponding file from the pmtk3.googlecode.com website.

Details on how to *use* PMTK can be found on the PMTK website, which will be udpated over time. Details on the *underlying theory* behind these methods can be found in this book.

Acknowledgments

A book this large is obviously a team effort. I would especially like to thank the following people: my wife Margaret, for keeping the home fires burning as I toiled away in my office for the last six years; Matt Dunham, who created many of the figures in this book, and who wrote much of the code in PMTK; Baback Moghaddam, who gave extremely detailed feedback on every page of an earlier draft of the book; Chris Williams, who also gave very detailed feedback; Cody Severinski and Wei-Lwun Lu, who assisted with figures; generations of UBC students, who gave helpful comments on earlier drafts; Daphne Koller, Nir Friedman, and Chris Manning, for letting me use their latex style files; Stanford University, Google Research and Skyline College for hosting me during part of my sabbatical; and various Canadian funding agencies (NSERC, CRC and CIFAR) who have supported me financially over the years.

In addition, I would like to thank the following people for giving me helpful feedback on parts of the book, and/or for sharing figures, code, exercises or even (in some cases) text: David

Blei, Hannes Bretschneider, Greg Corrado, Arnaud Doucet, Mario Figueiredo, Nando de Freitas, Mark Girolami, Gabriel Goh, Tom Griffiths, Katherine Heller, Geoff Hinton, Aapo Hyvarinen, Tommi Jaakkola, Mike Jordan, Charles Kemp, Emtiyaz Khan, Bonnie Kirkpatrick, Daphne Koller, Zico Kolter, Honglak Lee, Julien Mairal, Tom Minka, Ian Nabney, Carl Rassmussen, Ryan Rifkin, Ruslan Salakhutdinov, Mark Schmidt, Erik Sudderth, Josh Tenenbaum, Kai Yu, Martin Wainwright, Yair Weiss.

Kevin Murphy Palo Alto, California March 2012