
8 Introduction to Dual Decomposition for Inference

x1 x2

x3 x4

θf(x1, x2)

θh(x2, x4)

θk(x3, x4)

θg(x1, x3)

x1

δf2(x2)

δf1(x1)

δk4(x4)δk3(x3)

δg1(x1)
+

− −

− −δf1(x1)

δg3(x3)
δg1(x1)

−
− δh2(x2)

δh4(x4)
−
−

+ x3

δg3(x3)

δk3(x3)
x4 +

δk4(x4)

δh4(x4)

+x2

δf2(x2)

δh2(x2)

θf(x1, x2)

θh(x2, x4)

θk(x3, x4)

θg(x1, x3)

x3 x4

x4

x2

x2x1

x1

x3

Figure 1.2: Illustration of the the dual decomposition objective. Left: The
original pairwise model consisting of four factors. Right: The maximization
problems corresponding to the objective L(δ). Each blue ellipse contains the
factor to be maximized over. In all figures the singleton terms θi(xi) are set
to zero for simplicity.

pairwise model.
We will introduce algorithms that minimize the approximate objective

L(δ) using local updates. Each iteration of the algorithms repeatedly finds
a maximizing assignment for the subproblems individually, using these to
update the dual variables that glue the subproblems together. We describe
two classes of algorithms, one based on a subgradient method (see Section
1.4) and another based on block coordinate descent (see Section 1.5). These
dual algorithms are simple and widely applicable to combinatorial problems
in machine learning such as finding MAP assignments of graphical models.

1.3.1 Derivation of Dual

In what follows we show how the dual optimization in Eq. 1.2 is derived
from the original MAP problem in Eq. 1.1. We first slightly reformulate
the problem by duplicating the xi variables, once for each factor, and then
enforce that these are equal. Let xfi denote the copy of xi used by factor f .
Also, denote by xf

f = {xfi }i∈f the set of variables used by factor f , and by

xF = {xf
f}f∈F the set of all variable copies. This is illustrated graphically

in Fig. 1.3. Then, our reformulated – but equivalent – optimization problem


