
502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Fig. 5. Local substitutions that transform a rooted cycle-free factor graph to
an expression tree for a marginal function at (a) a variable node and (b) a factor
node.

product of the messages. Similarly, the summary operator is ap-
plied to the functions, not necessarily literally to the messages
themselves.
The computation terminates at the root node , where the

marginal function is obtained as the product of all mes-
sages received at .
It is important to note that a message passed on the edge

, either from variable to factor , or vice versa, is a
single-argument function of , the variable associated with the
given edge. This follows since, at every factor node, summary
operations are always performed for the variable associated with
the edge on which the message is passed. Likewise, at a variable
node, all messages are functions of that variable, and so is any
product of these messages.
The message passed on an edge during the operation of the

single- sum-product algorithm can be interpreted as follows. If
is an edge in the tree, where is a variable node

and is a factor node, then the analysis of Appendix A shows
that the message passed on during the operation of the sum-
product algorithm is simply a summary for of the product of
the local functions descending from the vertex that originates
the message.

C. Computing All Marginal Functions
In many circumstances, we may be interested in computing

for more than one value of . Such a computation might
be accomplished by applying the single- algorithm separately
for each desired value of , but this approach is unlikely to
be efficient, since many of the subcomputations performed for
different values of will be the same. Computation of
for all simultaneously can be efficiently accomplished by es-
sentially “overlaying” on a single factor graph all possible in-
stances of the single- algorithm. No particular vertex is taken
as a root vertex, so there is no fixed parent/child relationship
among neighboring vertices. Instead, each neighbor of any
given vertex is at some point regarded as a parent of . The
message passed from to is computed just as in the single-
algorithm, i.e., as if were indeed the parent of and all other
neighbors of were children.
As in the single- algorithm, message passing is initiated at

the leaves. Each vertex remains idle until messages have ar-
rived on all but one of the edges incident on . Just as in the

Fig. 6. A factor-graph fragment, showing the update rules of the sum-product
algorithm.

single- algorithm, once these messages have arrived, is able
to compute a message to be sent on the one remaining edge
to its neighbor (temporarily regarded as the parent), just as in
the single- algorithm, i.e., according to Fig. 5. Let us denote
this temporary parent as vertex . After sending a message to
, vertex returns to the idle state, waiting for a “return mes-

sage” to arrive from . Once this message has arrived, the vertex
is able to compute and send messages to each of its neigh-
bors (other than ), each being regarded, in turn, as a parent.
The algorithm terminates once two messages have been passed
over every edge, one in each direction. At variable node ,
the product of all incoming messages is the marginal function

, just as in the single- algorithm. Since this algorithm op-
erates by computing various sums and products, we refer to it
as the sum-product algorithm.
The sum-product algorithm operates according to the fol-

lowing simple rule:

The message sent from a node on an edge is the
product of the local function at (or the unit function
if is a variable node) with all messages received at
on edges than , summarized for the variable
associated with .

Let denote the message sent from node to node
in the operation of the sum-product algorithm, let

denote the message sent from node to node . Also, let
denote the set of neighbors of a given node in a factor graph.
Then, as illustrated in Fig. 6, the message computations per-
formed by the sum-product algorithm may be expressed as fol-
lows:

(5)

(6)

where is the set of arguments of the function .
The update rule at a variable node takes on the particularly

simple form given by (5) because there is no local function to
include, and the summary for of a product of functions of is


