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Figure 5.13. Bi-directed Graphs. (a) A bi-directed graph of three variables. (b) An MR model in which bi-directed

edges indicate the dependency structure of variables at each scale conditioned on coarser scales.

Two variables that are not connected with a bi-directed edge are independent of each other. In

Figure 5.13(a), x1 and x2 are dependent, but x1 and x3 are independent of each other.

In our MR model, we may use a bi-directed graph to represent the independence structure

within each scale conditioned on coarser scales as shown in Figure 5.13(b). However, we

use the “w-variable” representation shown in Figure 5.12(b) because of the following reasons:

First, the directed graphical model in Figure 5.12(b) is easier to understand than the mixed

representation in Figure 5.13(b). Second, in SIM models, a conjugate graph representation

leads to a spare covariance matrix, which enables efficient inference and learning algorithms.

Bi-directed graphs do not have such connections, and inference and learning in bi-directed

graphs are in general more challenging than in directed (or undirected) graphs. Third, the

model in Figure 5.12 has connections to the traditional ARMA modeling, which we describe in

the next paragraph.

Autoregressive moving average (ARMA) models are traditional and widely-used methods

for time-series data in signal processing. ARMA models consist of two parts: an autoregressive

(AR) part and a moving-average (MA) part. AR models are defined as follows:

xt =
p∑

i=1

αt,ixt−i + vt, (5.9)

where αt,i’s are coefficients and vt is independent noise. Note that AR models have sparse

Markov structure: xt is independent of xi for i < t − p conditioned on xt−1,xt−2, ...,xt−p.

Figure 5.14(a) shows a graphical model representation of an AR model with p = 1, which is


