
Tackling the ever changing
essential

complexities of engineering software

except for images where noted

Gail C. Murphy
University of British Columbia

@gail_murphy
gail_murphy@social.sigsoft.org

1500 BCE

Holzbrücke
Rappersweil-Hurden
(wooden timber)

1300 BCE

600 CE

1200 CE

1998 CE

Arkadiko

Zhaozhou

Wetherby

Akashi Kaikyo

BridgesImages not available
for reuse

1500 BCE

Holzbrücke
Rappersweil-Hurden
(wooden timber)

1300 BCE

600 CE

1200 CE

1998 CE

Arkadiko

Zhaozhou

Wetherby

Akashi Kaikyo

Bridges Software

1948 CE
Manchester Baby

1957 CE Fortran compiler

~1970 CE Unix

1998 CE
Mosaic graphical web browser
(also in 1994 Shor’s algorithm
for quantum computers)

2007 CE iPhone and iOS

Images not available
for reuse

1500 BCE

Holzbrücke
Rappersweil-Hurden
(wooden timber)

1300 BCE

600 CE

1200 CE

1998 CE

Arkadiko

Zhaozhou

Wetherby

Akashi Kaikyo

Bridges

~3500 years

Software

1948 CE
Manchester Baby

1957 CE Fortran compiler

~1970 CE Unix

1998 CE
Mosaic graphical web browser
(also in 1994 Shor’s algorithm
for quantum computers)

2007 CE iPhone and iOS

Images not available
for reuse

1500 BCE

Holzbrücke
Rappersweil-Hurden
(wooden timber)

1300 BCE

600 CE

1200 CE

1998 CE

Arkadiko

Zhaozhou

Wetherby

Akashi Kaikyo

Bridges

~3500 years

Software

1948 CE
Manchester Baby

1957 CE Fortran compiler

~1970 CE Unix

1998 CE
Mosaic graphical web browser
(also in 1994 Shor’s algorithm
for quantum computers)

2007 CE iPhone and iOS
~60 years

Images not available
for reuse

64% of the global population
is connected to the internet

Software runs infrastructure,
disrupts industries,
is changing the nature of
work, and helping to
improve the quality of life

Images not available for reuse

“multi-person multi-version development”

Software engineering involves…

—Brian Randell

Over the last 50+ years, has software engineering
research focused enough on what are…

THE ESSENTIAL COMPLEXITIES* OF
DEVELOPING SOFTWARE?

* per Fred Brooks

]

Too much of our
focus is on the
building blocks

(the “accidental”)
of software

instead of the
whole

Images not available for reuse

complexity
invisibility

conformity

changeability

co
nt

ex
t

accidental

essential

Move from foci on accidental complexities
to more study about the

essential complexities of growing software

Consider more…

holistic, longitudinal and
interdisciplinary study of software in-
situ and at scale…

which has implications for funding and
research assessments

Take-aways

@gail_murphy
gail_murphy@social.sigsoft.org

“No silver
bullet”
recap

Images not available for reuse

“No silver
bullet”
recap

The last
25 years

Images not available for reuse

“No silver
bullet”
recap

The last
25 years

Essential
complexities

in 2023

Images not available for reuse

“No silver
bullet”
recap

The last
25 years

Essential
complexities

in 2023

Research
opportunities

Images not available for reuse

“No silver
bullet”
recap

The last
25 years

Essential
complexities

in 2023

Research
opportunities

Disclaimer

I will do my best to accurately
reflect the work of others,

especially, Frederick P.
Brooks Jr., but any

inaccuracies are due to my
own interpretations

I will raise more questions

than I answer

Images not available for reuse

1968 1986 1995

NATO Software
Engineering
Conference

“No Silver Bullet — Essence and Accident in Software Engineering
Invited Paper

by Frederick P. Brooks Jr.

“No Silver Bullet”
Refined (10 years later)

“But, as we look to the horizon of a decade hence, we see no silver bullet. There is
no single development, in either technology or management technique, which by

itself promises even one order of magnitude improvement in productivity, in
reliability and in simplicity.”

“No Silver Bullet — Essence and Accident in Software Engineering
Invited Paper

by Frederick P. Brooks Jr.

“But, as we look to the horizon of a decade hence, we see no silver bullet. There is
no single development, in either technology or management technique, which by

itself promises even one order of magnitude improvement in productivity, in
reliability and in simplicity.”

1968 1986 1995

NATO Software
Engineering
Conference

“No Silver Bullet”
Refined (10 years later)

Images not available for reuse

“No Silver Bullet — Essence and Accident in Software Engineering
Invited Paper

by Frederick P. Brooks Jr.

“But, as we look to the horizon of a decade hence, we see no silver bullet. There is
no single development, in either technology or management technique, which by

itself promises even one order of magnitude improvement in productivity, in
reliability and in simplicity.”

1968 1986 1995

NATO Software
Engineering
Conference

“No Silver Bullet”
Refined (10 years later)

Frederick P. Brooks Jr.

Images not available for reuse

Complexity Conformity

Brook’s Essential Complexities (1986)

No two parts are alike
Many parts needed

Software most conformable
Complexity from conforming

Images not available for reuse

Changeability Invisibility

Software is constantly subject
to change and is infinitely
changeable

“Software is invisible
and unvisualizable”

Brook’s Essential Complexities (1986)

Environments
and

Tools

Verification

Object-
Orientation

AI

Reuse Brook’s
Essential
Complexities
Remain
(1995)

Improvements
have addressed
accidental
(incidental)
complexities

Images not available for reuse

“No silver
bullet”
recap

The last
25 years

Essential
complexities

in 2023

Research
opportunities

Images not available for reuse

03
02

01

04

Open source

Cloud

Automation

Generation

Some notable advances in the last 25 years

01 Open Source

Software Supply Chain 2022*

Ecosystem Total
Projects

Annual
Request
Volume

Avg.
Versions

per Project

Java
(Maven)

492k 675B 19

JavaScript
(npm)

2.06M 2.1T 14

* From sonatype, 8th annual State of the Software Supply Chain

Open source enables significant
reuse, easing initial development

But, use of open source is not
zero cost…

 Java application ~ 148 dependencies
 Java project - 10 updates per year

… means application developers
are tracking ~1500 dependency changes
per year per project

01 Open Source

Software Supply Chain 2022*

Ecosystem Total
Projects

Annual
Request
Volume

Avg.
Versions

per Project

Java
(Maven)

492k 675B 19

JavaScript
(npm)

2.06M 2.1T 14

* From sonatype, 8th annual State of the Software Supply Chain

Open source enables significant
reuse, easing initial development

But, use of open source is not
zero cost…

 Java application ~ 148 dependencies
 Java project - 10 updates per year

… means application developers
are tracking ~1500 dependency changes
per year per project

01 Open Source

Software Supply Chain 2022*

Ecosystem Total
Projects

Annual
Request
Volume

Avg.
Versions

per Project

Java
(Maven)

492k 675B 19

JavaScript
(npm)

2.06M 2.1T 14

* From sonatype, 8th annual State of the Software Supply Chain

Open source enables significant
reuse, easing initial development

But, use of open source is not
zero cost…

 Java application ~ 148 dependencies
 Java project - 10 updates per year

… means application developers
are tracking ~1500 dependency changes
per year per project

01 Open Source

Software Supply Chain 2022*

Ecosystem Total
Projects

Annual
Request
Volume

Avg.
Versions

per Project

Java
(Maven)

492k 675B 19

JavaScript
(npm)

2.06M 2.1T 14

* From sonatype, 8th annual State of the Software Supply Chain

Open source enables significant
reuse, easing initial development

But, use of open source is not
zero cost…

 Java application ~ 148 dependencies
 Java project - 10 updates per year

… means application developers
are tracking ~1500 dependency changes
per year per project

01 Open Source

Software Supply Chain 2022*

Ecosystem Total
Projects

Annual
Request
Volume

Avg.
Versions

per Project

Java
(Maven)

492k 675B 19

JavaScript
(npm)

2.06M 2.1T 14

* From sonatype, 8th annual State of the Software Supply Chain

Open source enables significant
reuse, easing initial development

But, use of open source is not
zero cost…

 Java application ~ 148 dependencies
 Java project - 10 updates per year

… means application developers
are tracking ~1500 dependency changes
per year per project

 Open source reduces some development costs,
but incurs evolution costs

and as a result doesn’t immediately provide an order

of magnitude improvement

We’ll revisit some costs later in the talk

Cloud02

1995 2023

HR
Company A

HR Company B

HR
Company

C

Unique on-premise
systems of similar functionality

HR
System

HR
System

HR
System

Config

Company A Company B Company C

Same system with different
configurations and instances

for each company

Config Config

Cloud02

1995 2023

HR
Company A

HR Company B

HR
Company

C

Unique on-premise
systems of similar functionality

HR
System

HR
System

HR
System

Config

Company A Company B Company C

Same system with different
configurations and instances

for each company

Config Config

 Use of the cloud has reduced development costs
of similar systems

Organizations no longer need to build, but
significant adoption and configuration costs

We’ll revisit some costs later in the talk

Automation03

Bots (Examples)

Mergedroid Automatically merge
conflictive pull requests

Dependabot Create pull requests to
keep dependencies
up-to-date

Danger Automate team’s code
review conventions

DevOps

Picture from: https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

Automation03

Bots (Examples)

Mergedroid Automatically merge
conflictive pull requests

Dependabot Create pull requests to
keep dependencies
up-to-date

Danger Automate team’s code
review conventions

DevOps

Picture from: https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

 Automation, in its many forms, has helped reduce
friction in development and has helped speed up the

release of software to users

Automation alone doesn’t help determine
what system to build, how to design the system, etc.

Generation04

Generation04

The generation possibilities with large language models
for code, design, documentation, etc. are intriguing.

Will they significantly reduce effort of building
and deploying systems or will we just build

more complex systems?

03
02

01

04

Open source

Cloud

Automation

Generation

Some notable advances and ESSENTIAL COMPLEXITIES

MAYBE?
UNLIKELY?

UNLIKELY?
UNLIKELY?

“No silver
bullet”
recap

The last
25 years

Essential
complexities

in 2023

Research
opportunities

Images not available for reuse

*

growing* using

soft ware

* Brooks 1995 Images not available for reuse

*

Expanding consideration of
complexities from…

growing* usingto also

soft ware

* Brooks 1995 Images not available for reuse

Images not available for reuse

CONTEXT MATTERS

Images not available for reuse

Clip from Prelinger Archives
(San Francisco)

Tacoma Narrows
Bridge (1940)

Context Matters

Clip from Prelinger Archives
(San Francisco)

Tacoma Narrows
Bridge (1940)

Context Matters

Completely network web.

12,850
 # marketing promotion

Completely network web.

6,200
Completely network web.

1,100

Completely network collaborative web services via user-centric initiatives. Quickly promote

sticky testing procedures before unique process improvements.Creative Minimal
that combine design

and technology.

Consider the BUILD context

Top 10% of most popular open source projects
(2021 download volumes) had the most security
vulnerabilities

6 out of 7 project vulnerabilities are a result of
transitive dependencies

Software supply chains are
becoming longer and
dependencies can be dangerous

Images not available for reuse

HR
System

Config

Company A

HR
System

Company B

HR
System

Company C

Consider the DEPLOYMENT
Context

Configuration files can significantly
alter the behaviour of a
cloud-deployed system

How do developers reason about,
explain, grow, verify, etc. such
systems once they are configured
and in use?

Config

Config

Consider the SOCIETAL Context

Embedding of AI techniques in software systems …

… introduces questions of fairness, non-determinism, … when the systems are in use

… makes various tasks of developing the software more challenging [Wan 2019]
Images not available for reuse

Consider the SOCIETAL Context

“Fixed” Data
(Deterministic)

Data-driven
(Non-deterministic)

Images not available for reuse

Consider the SOCIETAL Context

“Fixed” Data
(Deterministic)

Data-driven
(Non-deterministic)

Images not available for reuse

Consider the SOCIETAL Context

“Fixed” Data
(Deterministic)

Data-driven
(Non-deterministic)

ML vs. non-ML perspectives on development [Wan 2019] …

Images not available for reuse

BUILD, DEPLOYMENT, SOCIETAL

Are these new essential complexities?

Images not available for reuse

“No silver
bullet”
recap

The last
25 years

Essential
complexities

in 2023

Research
opportunities

Images not available for reuse

Need to consider
whole software
systems not just
the parts

And the impact
of the parts on
the whole

Images not available for reuse

HR
System

Config

Company A

What is the emergent behaviour for
the HR system once configured?

How can functional testing be efficiently
scaled across the entire configuration?

(e.g., behavioural completeness)

How can a development team assure bounds
of functionality in light of configurations?

(e.g., behavioural consistency)

For example … considering the whole

For example … considering the
impact of parts on the whole

How to estimate the costs of relying upon a
software component, especially considering its

transitive components?

How to efficiently update components as necessary
(e.g., security updates)?

How to enhance components with checkable
guarantees?

Images not available for reuse

For example … considering the
impact of parts on the whole

Are there design paradigms or patterns that can
insulate more kinds of changes to parts of a system

(e.g., beyond interface changes)?

Are there designs that are evolve

more gracefully with changes in the
environment in which the system must run?

Images not available for reuse

?
How can we move software engineering research

towards these questions?

More study of longitudinal
development

More study of deployed
systems at scale

More integration of research

results to solve bigger
problems

Academic community
(and funding agencies)

need to accept
different forms of

impact as excellent
research (e.g., long-term
case studies, integrative

results)

Society needs to see value
in studying systems at scale

Thank You
To the many talented students (undergraduate and

graduate), post-doctoral fellows and colleagues that I
have been fortunate to work with

To NSERC for long-term funding

To my co-founders and colleagues at Tasktop
Technologies for an amazing journey full of learnings

And the conference organizers for this invitation

Software development has essential
complexities

When viewed over time include
contextual (build, deployment, use) essential

complexities
Images not available for reuse

40%

In addition to continuing focused technology
development and laboratory study, we need to study

more systems in-situ and at scale to better
understand and address essential complexities

Need to re-consider our academic and funding
criteria and assessments

Images not available for reuse

complexity
invisibility

conformity

changeability

co
nt

ex
t

accidental

essential

Move from foci on accidental complexities
to more study about the

essential complexities of growing software

Consider more…

holistic, longitudinal and
interdisciplinary study of software
in-situ and at scale…

which has implications for funding and
research assessments

Take-aways

@gail_murphy
gail_murphy@social.sigsoft.org

