
Beyond Integrated Development Environments:
Adding Context to Software Development

Gail C. Murphy

Department of Computer Science
University of British Columbia

Vancouver BC Canada

murphy@cs.ubc.ca

Abstract—Software developers create amazing software that
is constantly changing the world in which we live: Navigation
systems make it easy to find hard to find locations, mobile
phones help diagnose health conditions and communication
with almost anyone anywhere is virtually effortless. To create
these amazing systems, software developers use tooling that
is stuck in the past. Integrated development environments
enable tools to work together more seamlessly, but remain
oriented around the static structure (i.e., files, classes, etc.)
of software. This paper proposes that a focus on the study
and implementation of context could enable software tooling
to take a substantial step forward, helping software developers
to work more effectively. We delve into initial ideas of what
context in software development might be and how context
might support creating tools that augment human intelligence,
allowing developers to better focus on the complex problems
they face as they build amazing software.

Keywords-programming, software development environ-
ments, productivity

I. INTRODUCTION

When it comes to software, few things have remained as
much the same as the tools that software developers use.
With these tools, developers create amazing software that
is changing the world in which we live: helping us to find
the location of friends around the world, communicate with
those friends, track our health, and more. For many years,
the state of the practice has been to use tools embedded
within integrated development environments (IDEs).

These IDEs provide a platform on which tools can be
easily built and through which tools can more easily share
information and state. The environments in use today are
oriented around a platform that exposes the static structure of
the software under development. As software developers use
static structure to help manage the complexity of systems,
this orientation has been beneficial.

In this paper, we refer to the information available to tools
to support software development as context. Context enables
tools to be built that alleviate work for a human trying to
perform a task. Consider the content assist tool in the Eclipse

IDE1 that suggests methods that can be called on a variable
based on the variable’s type. This tool accesses structural
information about each available type to save the software
developer the need to look up method names and signatures.
Context can be thought of as a platform that tools can access,
usually through APIs, to get needed information.

The goal of this paper is to motivate the role of context in
software development as a first-class construct that enables
substantial changes in how researchers approach how soft-
ware development is supported and performed. We outline
a possible future in which context plays a major role in
Section II. In this possible future, a developer interacts with a
set of tools provided through a smart assistant. By leveraging
context, the smart assistant can enable the developer to
remain focused on the hard parts of the problems that she
is tasked with solving.

Turning this possible future into reality requires taking
a broader view to the context needed by tools to support
software development activities. In Section III, we outline
five different kinds of context: static software structure,
dynamic system execution, historical artifact changes, devel-
oper activity and team and organization activity. Bringing
these kinds of context together in a unified framework
requires delving into several new research directions around
recognizing, explaining, experimenting with and building
context. We outline these challenges in Section IV.

This paper will frustrate some readers by staying at
the conceptual level. The goal is to reset thinking around
software development tools, leaving questions about defining
and operationalizing context to future detailed investigations.

II. A POSSIBLE FUTURE

Consider a possible future where a rich, evolving context
platform is available that enables the creation of tools that
alleviate mundane detailed work from a software developer.

A software developer named Jessica comes back to her
computer after lunch. An automated assistant (tool) wakes

1www.eclipse.org

up and says (writes or presents) to Jessica: “While you were
away, a severity two defect was assigned to you that cannot
be repaired automatically, you received ten emails from your
team about various aspects of projects status, and one of
those emails requests that you complete the feature you are
working on as soon as possible to enable other work on the
team to proceed. What would you like to focus on? (A)

Jessica says back to the automated assistant: “Please show
me the description of the severity two defect. The IDE
loads the description and Jessica reads through it. Because
she has a pretty good idea of what the underlying problem
causing the defect may be, Jessica says to the automated
assistant: “Load the system configuration causing the defect
and focus on code in the module named something like
ChannelIntegrator (B).

The IDE accesses the right branch of the codebase
and says to Jessica, “I have found a module named
ChannelIntegratorStatic on which the environ-
ment is now focused”. Jessica begins to work with the code
and after some analysis and modifications, asks, “Show me
the running times of each of these two methods”. The system
determines the tests to run that will exercise those methods,
builds the system, deploys the system, gathers the execution
information, correlates it to the static structure and filters to
display the information for the two methods of interest (C).

We use this fragment to illustrate a few points. It is pos-
sible to make this scenario real if we are able to implement,
and provide access to, an evolving notion of context that
enable tools to be developed to help Jessica as she works.
Figure 1 sketches a schema of the context at different points
in the scenario indicated with capital letters above. These
schemas are not complete; they are provided to give a sense
of what information would be needed to create the tools
necessary to support the scenario. For example, at point A
in the scenario, tools would need to be able to access email
and the issue repository and resolve individuals named in
those artifacts with their role to projects and relationships
to Jessica. However, at point B, the context available would
need to relate code to issues. We discuss the evolution of
context in more detail in Section IV.

Table I outlines for each annotated point the work that is
performed by the human versus the tools (noted as the assis-
tant in the table) in the scenario without, and with, context.
The table demonstrates that if context can be supported, the
developer can remain focused on the task at hand with less
of their cognitive effort dedicated to determining how to do
conceptual steps of the development process, such as the
steps required for deployment.

III. KINDS OF CONTEXT

Based on information needed by tools, we describe at
least five different kinds of context that are useful to support
software development. For each kind of context, we provide
a short description and an example of a tool in which the

Automated
Assistant

Email

Issues

Person

Issues

Configs Code

Test

Configs Code

Deploy Configs

A B C

Evolving Contexts

Figure 1. Example of evolving concepts

context is used. We do not claim that these five kinds of
context are comprehensive of all kinds of context useful in
software development. Instead, we aim to spark a discussion
of what other kinds of context do, or should, exist, how we
can create tools that use context effectively, and how we can
architect different kinds of context to be more accessible at
scale within IDEs used in practice.

Static Artifacts. As described in the introduction, state-
of-the-practice IDEs provide static source code artifacts as
context to tools hosted in the environment. Tools that provide
outline views of object-oriented classes or that support
search across a source code base make use of this kind
of context. Tools have also been built to take advantage of
others kinds of static artifact context, such as documentation
(e.g., [1]) or question and answer sites (e.g., [2]).

Historical Information: Researchers have also recog-
nized the benefits of tools that access historical informa-
tion about a system’s static artifacts. For example, for a
current source code change, the ROSE tool uses historical
information about past changes to recommend what other
parts of the system might need to change [3]. Although
many research tools have been proposed that use historical
information, few tools are available to practicing developers.
More consideration of how to provide a suitable set of APIs
to leverage context as historical information may be needed.

Dynamic Execution: Context in the form of dynamic
execution information about a system under development
can also enable tools that ease development activities. As
one example, WhyLine eases debugging by using system
execution information to automatically form questions a
developer may have about the execution of the system [4].
These questions take the form of “why did” or “why didn’t”
something occur to the objects providing the behavior of
the system. A common form of dynamic execution infor-
mation as context in current IDEs is in terms of coverage
information describing whether, and how often, different
parts of the system’s static structure are exercised by tests.
Opportunities exist to further leverage dynamic execution
context in conjunction with historical information, such as

Table I
COMPARISON OF COGNITIVE LOAD FOR DEVELOPER WITH AND WITHOUT CONTEXT

Annotation Without Context With Context
Human Assistant Human Assistant

A Accesses and cognitively processes
multiple email and issues.

N/A Chooses between defect and feature
work

Monitors email and issues, processes
and summarizes priority tasks.

B Determines configuration causing er-
ror, accesses version control for cor-
rect version, searches for code.

N/A Waits for code to appear. Cognitive
focus remains on task.

Determines configuration causing er-
ror, accesses version control for cor-
rect version, searches for code.

C Searches for, and analyzes tests for
appropriateness, configures environ-
ment to show execution results, finds
and runs deploy scripts.

N/A Waits for performance results to ap-
pear. Cognitive focus remains on task.

Searches for, and analyzes tests for
appropriateness, configures environ-
ment to show execution results, finds
and runs deploy scripts.

being able to more easily compare whether the performance
of the system is improving or worsening over time.

Individual Developer Activity: Context does not have
to be only about what humans produce (i.e., static artifacts)
or what happens when the system executes, it can also be
about how humans work to produce the system. For example,
Mylyn builds a degree-of-interest model of the information
a developer works with as part of a task and forms a task
context based on the frequency and recency of access [5].
Task contexts enable developers to be more productive by
making it easy to recall the source code associated with a
given task and by enabling other tools, such as content assist,
to order information based on work performed as part of the
task. Opportunities exist to consider the use of activity over
other kinds of artifacts than source code, such as how a
developer uses historical information. For instance, context
about what branches a developer frequently accesses in a
distributed version system might enable the development of
recommenders for streamlined workflow.

Team and Organization Activity: Software development
is not typically a sole endeavor, instead many complex
software systems involve multiple teams working together
either within, or across, organizations. Increasingly, industry
is focusing on end-to-end management of how software
is produced across multiple teams and tools as a value
stream [6]. Treating the activities across a value stream
as context would enable correlation of downstream effects
with upstream choices and would open new opportunities
for feedback to be provided to developers as development
is undertaken. As a recently emerging kind of context, this
kind of context is largely untapped to date.

IV. EVOLVING DYNAMIC CONTEXT

The consideration of context as a first-class construct
opens up new opportunities to take a substantial step forward
in providing tools for developers that enable the developer
to use their cognitive abilities to attack the problems only a
human can address. To get to where context can vary in an
IDE beyond static software structure, many questions require
research.

We need to be able to recognize what context is, the forms
it takes and to be able to better define and implement it. The

ubiquitous computing community has been treating context
as a first-class system for almost twenty years. In the ubiq-
uitous computing community, context refers to “information
that is part of an application’s operating environment and
that can be sensed by the application” [7, p.434] and toolkits
have been defined to provide access to context, not unlike
how IDEs ease access to static artifact structure as context.
However, given the kinds of context for software engineering
already identified (Section III), the definition of context in
software engineering will need to be broader than in ubiqui-
tous computing. Here is one start at a definition: context in
software information is information about the system under
development and the environment and process in which the
system is being developed. Future work should consider how
context should be defined for software engineering (e.g.,
the APIs needed) so that researchers can begin to explicitly
consider it in their work.

Even without a specific definition of context on which
everyone agrees, researchers can begin to explore the idea
of context by considering the concept of context and ex-
plaining how their work relates to the concept. For instance,
imagine a recommender tool that suggests which developer
in an organization should be assigned to a particular defect
(i.e., [8]). For such an approach, an explicit explanation
of the context in which the approach is intended to work
could clarify for other researchers, and for those interested in
adopting the approach in practice, the environment expected
for the approach. To illustrate this point, consider such a
recommender: the input of the recommender is a database
of resolved defects with information about who solved the
defect, the parts of the system the defect is related to and so
on; the output is recommendations about whom should be
assigned to work on a newly arrived defect. For this recom-
mender, the context is information about which developers
in the organization are available to be assigned a defect.
This information is not required and is thus not an input:
a recommendation can be provided without this context,
however the likelihood of invalid recommendations—say for
a developer on holidays or who has left the organization—
rises. The context provides a backdrop to improve the tool.

Once recognized and explained, researchers could be-

gin to more systematically experiment with the effects of
context for different tools and scenarios. For instance, for
a recommender that suggested which command might be
executed next by a software developer in an IDE, Gasparic
and colleagues considered whether different aspects of the
operating environment of the recommender [9], such as the
developer and what they were doing, affected the accuracy
of the recommender. This experimentation with context
is similar to feature sensitivity in machine learning, but
places a focus on considering features related to the system
and the environment in which it is being developed. An
understanding of what elements of context affect different
tools can lead to more robust tools for deployment in practice
and a better determination of what context needs to be
supported to enable tool development.

Research is also needed in how to build the concept of
context. With many different kinds of context, is there a
need to define an overall ontology of context? How do we
architect IDEs of the future to effectively gather and expose
context to tools? How can provided context be sensitive to
the task and activities of the developer? For instance, must
all kinds of context be gathered and exposed when needed or
can the gathering of context be triggered by certain actions?

V. RELATED EFFORTS

There have been efforts in software engineering that inves-
tigate similar notions of context. As mentioned above, Gas-
paric and colleagues efforts to explore context are outlined
above. Bradley and colleagues have considered a context
model for supporting conversational developer assistants that
consider the context elements needed to support workflow
involving a distributed version control system that start to
support the assistant concept outlined above [10]. While
these efforts explore context explicitly within a particular
instance, they do not call out the need to consider context
as a first-class construct, which is the purpose of this paper.

Others have also been exploring what is next beyond the
current state-of-the-practice IDEs. Code Bubbles redefines
the interface of the IDE around editable fragments [11].
Multiple bubbles can be visible at once, helping developers
to see and interact with working sets important to the
tasks they are performing. Light Table takes code bubbles
another step forward by integrating executions of the system
under development into the IDE to allow interrogation.2 An
explicit consideration of the different kinds of context in
light of these approaches may yield new opportunities for
tools to help developers.

VI. SUMMARY

As consumers, we are seeing an increasing number of
tools introduced to ease our access to information. For
instance, Alexa enables a human to ask a question about

2www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept

the weather today and obtain an answer without finding
a web browser, locating a weather page and reading the
result themselves. When computerized assistants can access
context, such as where we are and who we are, they can
provide humans the ability to focus on the the task at hand,
instead of the mechanics of performing the task.

In this paper, we have argued that explicit attention and
investigation of context as a first-class construct in software
engineering enables a leap forward in how tools support
software developers, much like the leap forward being taken
with tools like Siri. A focus on context can surface the
many different kinds of information useful to tools, such
as historical and activity information, and can enable the
provision of such information to allow for the creation of
tools that truly augment human intelligence. It is time for
us to move beyond the limited notion of context available
in current development environments.

ACKNOWLEDGMENT

This work was supported by an NSERC Discovery Grant.

REFERENCES

[1] B. Dagenais and M. P. Robillard, “Recovering traceability
links between an API and its learning resources,” in 34th
Int’l Conf. on SE, 2012, pp. 47–57.

[2] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and
M. Lanza, “Prompter: A self-confident recommender system,”
in 30th Int’l Conf. on Soft. Maint. and Evol., 2014, pp. 577–
580.

[3] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in 26th
Int’l Conf. on SE, 2004, pp. 563–572.

[4] A. J. Ko and B. A. Myers, “Designing the whyline: a debug-
ging interface for asking questions about program behavior,”
in 2004 Conf. on Human Factors in Comp. Sys., 2004, pp.
151–158.

[5] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in 14th ACM SIGSOFT Int’l Symp.
on Found. of SE, 2006, pp. 1–11.

[6] M. Kersten, Project to product: How to survive and thrive in
the age of digital disruption with the flow framework. IT
Revolution, 2018.

[7] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit:
Aiding the development of context-enabled applications,” in
Conf. on Human Factors in Comp. Sys., 1999, pp. 434–441.

[8] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in 28th Int’l Conf. on SE, 2006, pp. 361–370.

[9] M. Gasparic, G. C. Murphy, and F. Ricci, “A context model
for ide-based recommendation systems,” Journal of Sys. and
Soft., vol. 128, pp. 200–219, 2017.

[10] N. C. Bradley, T. Fritz, and R. Holmes, “Context-aware
conversational developer assistants,” in 40th Int’l Conf. on
SE, 2018, pp. 993–1003.

[11] S. P. Reiss, J. N. Bott, and J. J. LaViola. Jr., “Code bubbles:
A practical working-set programming environment,” in 34th
Int’l Conf. on SE, 2012, pp. 1411–1414.

