
The Dimension of Separating Requirements Concerns
for the Duration of the Development Lifecycle

Siobhán Clarke†*, William Harrison, Harold Ossher, Peri Tarr

* Siobhán Clarke is partially funded by IBM Ireland Ltd.

† School of Computer Applications,
Dublin City University,

Dublin 9,
Republic of Ireland.

+353-1-8388 702
sclarke@compapp.dcu.ie

IBM T.J. Watson Research Center,
P.O.Box 704,

Yorktown Heights,
NY 10598.

+1-914-784-7278
{harrisn, ossher, tarr}@watson.ibm.com

1. Introduction

“Separation of concerns” is a fundamental principle within software engineering, with its
benefits well-documented. Looking at “separation of concerns” from the perspective of its
application to each phase of the software development lifecycle, considerable research exists
applying the principle within each individual phase. Some examples from the many
approaches within the requirements engineering domain are multiple views [7], or separation
of requirements by feature [5]. Much work also exists within the analysis and design domain,
where role modelling [10], Catalysis [2], and contracts [4] are just some examples. Within the
implementation domain, work on subject-oriented programming [3,8] and aspect-oriented
programming [6] has identified difficulties associated with code tangling in software
development. Each has provided solutions for separating code that affects many units of
functionality in the system (i.e. cross-cutting code), with corresponding composition
techniques to integrate cross-cutting and component code. More recent work on multi-
dimensional decomposition [11] extends and opens the possibilities for separation of concerns
with hyperslices, which support simultaneous decomposition according to multiple
dimensions of concern, across the full development lifecycle.

One dimension of concern within this multi-dimensional context is the separation of
individual requirements, with the maintenance of that separation for the duration of the
software development process – i.e. through each of the software lifecycle phases of
requirements specification, software analysis/design and software implementation. Separation
of requirements concerns across the lifecycle, and co-ordinating those separated concerns
across all lifecycle artefacts, requires decomposition mechanisms that allow for software
design to match both requirements specifications and code. In the context of the object-
oriented development paradigm, however, current object-oriented design methods suffer from
the “tyranny of the dominant decomposition” [11] problem, where the dominant
decomposition dimension is by object. As a result, designs are caught in the middle of a
significant structural misalignment between requirements and code. The units of abstraction
and decomposition of object-oriented designs align well with object-oriented code, as both are
written in the object-oriented paradigm, and focus on interfaces, classes and methods.
However, requirements specifications tend to relate to major concepts in the end user domain,
or capabilities like synchronisation, persistence, and failure handling, etc., all of which are
unsuited to the object-oriented paradigm.

This misalignment across the development lifecycle leads to scattering of the design and code
of individual requirements across multiple classes and tangling, where individual classes in
the design and code may address multiple requirements. Scattering and tangling are

devastating from the point of view of traceability – the ability to determine how one software
artefact (e.g. requirements, design, code) affects others. This leads to a host of problems,
including: impaired comprehension, inability to determine how a change in one artefact
affects others, increased complexity of addition, removal or modification of requirements, and
potentially high-impact of change – even a small, well-contained change to requirements can
affect a large part of the design and code.

No single development paradigm is appropriate for all software artefacts, and so we need to
address the misalignment problem by providing additional means of further decomposing
artefacts written in one paradigm so that they align with those written in another. This
approach suggests that it must be possible to reify features within the object-oriented
paradigm to permit encapsulation of feature concerns, as specified in the requirements, within
designs and code. Features may be domain-specific, or cross-cutting aspects like persistence,
error detection/handling, logging, tracing, caching, synchronisation etc. Our work on subject-
oriented design is centred on this approach, and is an outgrowth of the work on subject-
oriented programming, which addressed misalignment and related problems at the code level
[3,8]. Like subject-oriented programming, subject-oriented design supports decomposition of
object-oriented software into modules, called subjects, that cut across classes, and integration
of subjects to form complete designs. In this position paper, we focus on the design phase,
since design models can be viewed as a specification bridge between requirements and code.
We are working with subject-oriented design in the context of UML [1], though it can be
applied to other design languages.

2. Subject-Oriented Design

A subject-oriented design is an object-oriented design model that is divided into design
subjects. A design subject encapsulates some concern in an object-oriented design. Design
subjects are themselves object-oriented design models or design model fragments. They
model all, and only, those parts of a software system that pertain to the concern they
encapsulate, and they model those pieces from that concern’s perspective. For example, we
look here at the construction and evolution of a simple software engineering environment
(SEE) for programs consisting of expressions (example more fully introduced in [11]). The
SEE should include features to evaluate, check and display expressions, and permit optional
logging of operations. By reifying each feature as a separate subject, we come up with
different subjects that may be modelled separately: the expressions, the evaluation tool, the
checking tool, the display tool, and a logging utility. Expressions are modelled as abstract
syntax trees. Figure 1 presents an example of the structural design of one of these subjects –
the evaluation tool.

The evaluation tool has one view of expressions. The check tool will have a different view of
expressions in its design, as will the display subject and the subject handling the inherent
properties of abstract syntax trees. Any full system’s design will be a collection of some set of
potentially overlapping design subjects. In the subject-oriented design paradigm, we introduce
the notion of a composition specification that describes how overlapping design elements in
different subjects correspond, and how they can be understood as a whole. A composition
specification includes a composition relationship that specifies what design elements in
different subjects correspond. Composition relationships may also have reconciliation
specifications, which indicate how differences in the specifications of corresponding elements
can be overcome; and integration specifications, which describe how to synthesise multiple
corresponding design elements into a single design unit that subsumes the originals. Figure 2
illustrates the composition relationships for the SEE example.

Figure 1: Evaluation Subject Structural Design

At the simplest level, correspondence between two specific design elements that are instances
of the same design language construct can be specified. For example, a class Expression from
subject Evaluation, and class Expression from subject Check correspond, and in a
composition of Evaluation and Check a class Expression should also appear that is the
combination of the Expression classes from both subjects. A more general kind of matching
may also be specified for common cases. Correspondence relationships can be annotated with
a matching specification that says how correspondence is to be determined between
subsidiary elements (for example, a matching specification on a correspondence relationship
between classes induces derived correspondence relationships among the members of those
classes). Matching specifications are based on the values of the properties of the elements. For
example, matching may be based on the names of the elements, or on a combination of the
names and types of the elements. Matching by name is appropriate for the SEE, and is
illustrated in Figure 2.

Figure 2: Composition Relationships for SEE

To specify how a design separated into subjects is to be understood as a whole,
correspondence relationships are annotated with integration specifications. Integration
specifications specify how to synthesise a single, composed design element from a collection
of corresponding elements. Synthesis of the composed design is optional; it might be
desirable, for example, to permit completeness checking or various forms of analysis. In this
case, the designs can be composed as guided by the composition relationships, in much the
same way as code subjects are composed in subject-oriented programming [8]. Better

Expression

+ evaluate() : Expression
+ asString() : String

VariableExpression NumberExpression

name : String

UnaryMinusOp

operand : Expression

{or}

UnaryPlusOp

operand : Expression

{or}

MinusOperator

PlusOperator
operand1

operand1

operand2

operand2

operand1: Expression
operand2: Expression

operand1: Expression
operand2: Expression

+ evaluate() : Expression
+ asString() : String

+ evaluate() : Expression
+ asString() : String

+ evaluate() : Expression
+ asString() : String + evaluate() : Expression

+ asString() : String
+ evaluate() : Expression
+ asString() : String

+ evaluate() : Expression
+ asString() : String

L og g er

[To ta lL og g ing]

S E E

E v alu a te

K ern e l

C h ec k D isp lay

m a tch [n am e]

m a tch [n am e]

m a tch [n am e]

alignment of the design with the code is achieved by coding each individual design subject as
a code subject, and then composing the code subjects with a composition rule [8] derived
from the composition specifications in the design.

Many different kinds of integration specifications are possible. For example, the views
contained in different elements might be merged, such that the composed element contains all
views specified for the element. The kind of integration where one design subject’s view is
intended to replace that of another is an override. This often occurs when, for example, design
subjects support change requests from test teams. Select integration can also be specified by
including some criterion in the design that can be used to select from a number of different
design elements as appropriate at run-time. In Figure 2, each of the composition relationships
specifies merge integration, as denoted by the two-way composition relationship arrow.

Various constraints may be specified for the integration of design elements, for example,
ordering, dependency or mutual exclusion. As described in [9], many kinds of cross-cutting
concerns affect the definition of collections of operations that span multiple units of
functionality. For subject-oriented design, we maintain the focus on operation-level joining
[9] for our integration specifications. In UML [1], interaction diagrams are used to model the
dynamic aspects of a system, modelling (in many situations) the flow of control of a particular
scenario. We can extend the semantics of interaction diagrams to allow them to be used by
composition relationships, where integration specifications specify the flow of control
between a particular subject and any subject with which it will be integrated. From our
example, the intent of the logging feature for the SEE is that operations of the SEE are logged
before and after execution. We model this with beforeInvoke() and afterInvoke()
operations that are called before and after the execution of operations to be logged,
respectively. The flow of control associated with the logging feature may be modelled with
interaction diagrams that are used by the integration specification in the composition
relationship between the logging subject and subjects containing operations to be logged.

3. General Purpose Design Subjects

There are many situations where features are not specific to the end-user domain of an
application (like support for persistence or synchronisation), and therefore might be useful in
many different situations. In the SEE example, the logging of operations is applicable to any
subject that has operation elements (i.e. all subjects). The specification of the composition
relationship, with reconciliation specifications and integration specifications, between such
subjects and other subjects will generally have the same pattern. It is convenient to identify,
name and define such composition patterns. Portions that might vary in different contexts can
be separated out as parameters. Composition patterns can be instantiated whenever needed by
naming them and supplying the parameters. An example of the use of a composition pattern is
shown in Figure 2, where the composition relationship involving the Logger subject uses the
pattern TotalLogging, specifying concisely that all operations are to be logged.

4. Conclusion

We believe that it is extremely important to separate concerns throughout the development
lifecycle, and co-ordinate separated concerns across all lifecycle artefacts. Misalignment of
requirements, design and code in current approaches result in a host of well-known problems,
including weak traceability, poor comprehensibility, scattering, tangling, coupling, poor
evolvability, low reuse, high impact of change and reduced concurrency in development. The
subject-oriented design approach supports the decomposition of software designs that align
with both requirements specifications and with object-oriented code. This allows all features,
including those that have a cross-cutting impact on the software system, to be decomposed
into subjects and designed and developed separately from the rest of the system. Code

subjects can be written from design subjects, and then composed using composition rules
derived from the composition relationships at the design level.

References

[1] Booch, G., Rumbaugh, J., Jacobson, I. “The Unified Modelling Language User Guide”
Addison-Wesley, 1998

[2] D’Souza, D., Wills, A. “Objects, Components and Frameworks with UML. The
Catalysis Approach” Addison-Wesley, 1998

[3] Harrison, W., Ossher, H., “Subject-Oriented Programming (a critique of pure objects)”
In Proc. OOPSLA’93

[4] Holland, I. “Specifying Reusable Components Using Contracts” In Proc. ECOOP’92
[5] Jackson, M., Zave, P. “Distributed Feature Composition: A Virtual Architecture for

Telecommunications Services” IEEE TSE Special Issue on Feature Interaction
[6] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J, Irwin, J.,

“Aspect-Oriented Programming” In Proc. ECOOP’97 (Finland, June 1997) Springer-
Verlag

[7] Nuseibeh, B, Kramer, J., Finkelstein, A. “A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specification” IEEE Transactions on Software
Engineering, October 1994.

[8] Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V. “Specifying Subject-
Oriented Composition” Theory and Practice of Object Systems, Volume 2(3), 179-202,
1996

[9] Ossher, H., Tarr, P. “Operation-Level Composition: A Case in (Join) Point” in Proc.
ECOOP’98, Workshop on Aspect-Oriented Programming

[10] Reenskaug, T., Wold, P., Lehne, O.A. “Working with objects: The OORam Software
Engineering Method” Prentice-Hall, 1995

[11] Tarr, P., Ossher, H., Harrison, W., Sutton, S.M. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns” in Proc. ICSE’99

