Questions to Ponder in Advance of the Workshop

To help stimulate discussion during the workshop, we would like to ask all participants to
consider the following questions prior to the workshop. The questions are in bold,

surrounded by some explanation and examples.

Please be sure to have thought about these issues and be prepared to discuss them.
Don'’t take the questions as being boundaries, however—if other issues strike you as
important, please bring them as well!

Concerns and Methodologies

Many different kinds of concerns are of importance in software systems. Some of them
derive from the domain of the system, others from the software development process
itself. To give but a few examples: key data and functions in the domain model; features
in the system; non-functional aspects, such as distribution and error handling; use cases,
describing particular scenarios of operation; configurations, variations and versions.
Developers often encapsulate, or at least try to encapsulate, important concerns in
whatever kinds of “modules” are available to them in the language(s) they are using.
Examples include: functions, classes, interfaces, packages, UML or Catalysis diagrams,
design patterns, frameworks, aspects, propagation patterns, subjects.

What kinds of concerns do you deal with in your research or development
activities? What is at least one example of each kind of concern?

For each kind of concern:

— How do you go about identifying concerns of this kind in practice? For
example, in the Booch object-oriented design methodology, Booch recommends
underlining all of the nouns and verbs in a requirements specification to begin the
design process; the nouns become candidate classes (concerns) in the design, and
the verbs become candidate methods of those classes. Features and use cases are
also often identified from end-user requirements specifications; aspects are identified
by noting capabilities which “cut across” multiple classes; one way to identify subjects
is by determining when developers have different perspectives on a piece of
software, and encapsulating each perspective in a subject; product lines are
generally identified by discerning needed points of variation in a particular system,
such as operating system or hardware dependencies.

— Can you represent and manipulate this kind of concern as a first-class entity?
For example, Java can represent class concerns readily, but not features, aspects or
use cases.

— When do you identify and use this kind of concern? For example, does it occur
during requirements-gathering, design, initial coding, or software testing? During the
course of evolution? To facilitate certain kinds of changes? Is it one that you use
repeatedly throughout the software lifecycle, like classes? Is it one that you use for
briefer periods of time, to accomplish certain tasks? An example of a transitory kind
of concern occurs, for example, if a developer's task is “rename all classes that
contain ‘Impl’ in their name so that they contain ‘Spec’ instead”. In this case, the
developer has two primary concerns: the set of all classes that contain ‘Impl’ in their
name, and the set of code locations that make eference to these classes. (This is
also a kind of concern that cannot be represented as a first-class entity in Java.)



Mechanisms and Tradeoffs

Many kinds of mechanisms exist for achieving separation of concerns. For example:

— Linquistic mechanisms: These include the definition of new languages or formalisms,
and the use of features built into one or more formalisms, to represent concerns.
Some examples of existing linguistic mechanisms that may be used to represent
concerns are modules (e.g., classes, packages), annotations, comments, information
transparency, reflection, aspects, macros (as in C++), etc.

— Extra-linquistic _mechanisms: These entail defining special mechanisms outside
particular programming languages to permit the representation of concerns. These
include propagation patterns, composition filters, subject-oriented programming,
design patterns, version control and configuration management systems, separate
documentation to describe concerns, etc.

What kinds of mechanisms do you use to achieve separation of concerns in your
work?

If you use more than one kind of mechanism, when do you use each of the
mechanisms? For example, do you use different mechanisms at different stages of the
software lifecycle (e.g., some during initial development, and others during evolution)?
Do you use different mechanisms to separate different kinds of concerns?

Once concerns are separated, it is often useful to be able to integrate them. For example,
aspect-oriented programming provides a weaver tool to add aspects to base classes;
subject-oriented programming provides a compositor tool to integrate subjects together;
Java classes are integrated together into components or running systems partly at
compilation-time and partly at load-time, based on “imports” clauses and references from
one class’ members to those of another class; RCS provides the ability to merge
separate branches.

For each separation of concerns mechanism you have identified:

— How does it permit concern integration? What, specifically, can be integrated?

— What are the “join points,” and what integration properties do they imply?
When different concerns are integrated, there are points at which they come
together, or interact, which are called join points. For example, composition filters
operate by filtering method calls, so the join points are methods. Some weaving
approaches combine entire methods as atomic units, whereas others weave code
statements within methods. The nature of the join points affects a number of
properties of an integration mechanism, such as flexibility, the ability to understand
the integrated whole in terms of the components, reusability of components, and the
nature and complexity of needed tool support.

— How much do concerns know about one another? That is, how tightly are they
bound to, and coupled with, one another? For example, Java classes know the
name and package of every class to which they refer, and they know which members
they can access in those classes, but they do not know, until runtime, which specific
implementation class will actually be used (because of possible changes to the “class
path”); aspects know about, and refer directly to, the base classes they augment, but
they do not know about each other, and the base classes do not know about them;
subjects know nothing about one another.

— When can concerns be integrated? For example, is integration done statically (at
compile, link, or analysis time), as in Catalysis, propagation patterns and subject-
oriented programming? Dynamically (at runtime), as in composition filters or aspect



instances within aspect-oriented programming? If dynamically, can it be done once
or repeatedly?

For each of the mechanisms you use, what do you see as its primary strengths
with respect to the tasks to which you apply it? What are its primary weaknesses?
For example, are there particular kinds of concerns it lets you separate well, and others
that it does not allow you to separate well? Are the concerns you separate first-class
entities? Are they reusable? Are there circumstances under which you would not, or
have not been able to, use this mechanism? Have you ever gotten frustrated with the
mechanisms you had available to you, and wished that they had some additional feature
or capability that they are lacking (or, conversely, that they did not have some feature that
you find hinders or constrains you)? Please think about the weaknesses, as well as the
strengths, of the mechanisms you use or defined as part of your research or development
activities; that helps to promote understanding of the boundaries and tradeoffs.



