
Aspect modelling as Role modelling

Kasper B. Graversen

IT University

Copenhagen

kbilsted@it-c.dk

(corresponding author)

Kasper Østerbye

IT University

Copenhagen

kasper@it-c.dk

Abstract

Aspect-oriented programming languages tend to be focused on the solution
domain. Focusing on the solution domain rather than the problem domain in-
hibits the strength of AOP in early phases of design and modelling. By using
roles to model aspects, modelling is conceptually supported by the programming
language, and focus is kept in the problem domain.

The paper shortly explains modelling using roles. Then it shows that modelling
aspects with roles is just a subset of role modelling. Finally, new properties of
aspects are shown, when aspects are modelled with roles, e.g. that an aspect can
be applied a perspective of an object rather than the object itself. Along the
way a pictorial representation is presented, which the we have found useful, and
which may inspire a graphical notation of aspects.

Keywords: Aspect-oriented design & modelling, roles, aspects.

1 Introduction

AOP is based on a fundamental paradox: The greatest advantage of AOP is that at

any point in the source code it is impossible to see all the code, which is to be executed.

At the same time the greatest disadvantage of AOP is, that at any point in the source

code it is impossible to see all the code, which is to be executed. To encounter this fact,
strong emphasis must be put on having a clear model which corresponds well with the
world to be modelled, and secondly and of equal importance, there must be a strong
correspondence between the model and the actual implementation.

In this paper we propose a modelling and implementation concept called `roles'. Roles
is an old concept but has not yet gained the attention it deserves. We extend the role
concept and show that roles can model aspects, and that when aspects are modelled
with roles, new properties of aspects arise. Further, we describe a graphical notation,
an extension to UML, which we have found useful in our research.

1



2 Modelling with roles

Having roles as �rst class entities yields new possibilities when modelling compared to
ordinary Object-oriented modelling. The motivation for roles is to be able to model
and apply perspectives on objects (which models phenomenon). Such perspectives are
used by other objects to access the object in a specialized form�as a special way of
knowing and using the object. Four important traits of the perspectives are

• They can change dynamically (removed and attached).

• One perspective does not change the behaviour of other (unrelated) perspectives
applied the same object.

• Roles are instantiated, referenced and used in the same maner as objects are.

• A role has the same types as the object it is a role for, hence it can be used in
all the contexts the object are used.

We call such perspectives `roles'. The role can introduce new properties (�elds and
methods) to an object, as well as overriding the behaviour of existing methods. The
behaviour of roles corresponds to how we as humans think, express and organize our
world�we think in roles [Kristensen: 1996]. We can, however, not easily obtain the
behaviour of roles using normal class-based languages. Parts of the dynamic behaviour
can be simulated with the �Decorator� design pattern, but its usage blurs the code,
makes the code rigid (changes are more di�cult as they must be made several places).
And making further abstractions on top of it is di�cult and error-prone (further dis-
cussed in [Graversen and Beyer: 2002,17�23]). In short we de�ne roles as object-based
inheritance with multiple views.

Take a person Bert. He is modelled by a name and a birth date. Let Bert's main
interest be playing golf, hence he is associated with a golf club and has several golf
course records of `personal best scores'. The golf club has a lot of members, of whom
a limited number is on the board and one is the chairman. The golf club owns several
lanes. Members must pay both an annual fee as well as for each time they want to
use the lanes (which again wary in size, price and quality). Another side of Berts life
is his �nancial situation, although limited, he has one nevertheless�Bert is associated
with a bank, on which he can perform operations.

When modelling Berts world using roles, each property is evaluated as either intrinsic

or extrinsic. Intrinsic properties are properties which the object (persons, the club and
lanes) can not exist without, whereas extrinsic properties are properties only needed
for certain situations. Notice that the intrinsic/extrinsic distinction is dependant on
the overall purpose of the system�nothing is intrinsically intrinsic so to say. For our
case, we model Bert as a person containing name and birth date. The rest of the
properties we have described, we de�ne extrinsic. The extrinsic properties are placed
in roles rather than classes. Since the banking business and gol�ng are unrelated in our
model, they are decomposed into two roles, as showed on �gure 1. If needed, further
decomposition can be accomplished by creating roles for the golfer and �nancial role.
In fact all abstraction mechanisms available for objects are equally available for roles
such as aggregation and inheritance. On the �gure the entities F, G, H represent

2



multiple (distinct) views on the person object. And since the properties are placed in
roles, they can dynamically be attached and detached person objects. This means, that
not all persons in the system needs not be golfers, nor necessarily have an association
with a bank or know how to use it.

Person
 name
 birthdate
 talk()

Financial

bank

deposit()
withdraw()

Member
golfclub

swingclub()
signout()

F HG

Figure 1: The �gure illustrates a person object with two roles, a golfer and a

�nancial role.

We now extend the example to also include the golf club. As the golf club uses its
members for a variety of things, there are many roles applied the `member role' of the
person and the multiple view of objects are naturally used (see �gure 2). Members
can either be just members, or be on the board or be the chairman. Finally for the
elite members there are statistics associated with them. The golf club owns several
golf lanes, these are independent entities which are modelled by a class.

Person
 name
 birthdate
 talk()

Financial
bank

deposit()
withdraw()

Member
golfclub

swingclub()
signOut()

Golf club

Golf lane

 play()

1

*

Elite
statistics[]

!swingclub()

Chairman

Board-
member

1

1

*

* *

*

Figure 2: The �gure illustrates persons of a system which may be associated

with either a golf club, a bank or both. Members of a golf club can be members

of the clubs board, be the chairman. Members can simultaneously be elite golf

players which means that their matches are registered and statistics are produced

automatically.

Using roles complex objects, such as Bert, can be split up in di�erent complementary
views. Further, objects which are needed for di�erent purposes can similarly bene�t
from such separations.

3



3 Extending the role concept

In many role models and delegation systems [Albano et al.: 1993; Chu and Zhang:
1997; Gottlob et al.: 1996; Kniesel: 1996; Lieberman: 1986], roles are used only to
dynamically extend objects at runtime. Fundamentally there are two problems with
such role concepts which inhibits it from being used for aspect-oriented modelling:
Roles must be attached the object at every object creation in the program, and more
importantly, an object is only extended by the role when the object is being referenced
through the role rather than being referenced directly.

We shall address both problems and show that, not only can we model aspects but
the nice properties of modelling with roles are preserved. The two role extensions
we present are: �constituent methods� (introduced under another name and shape in
[Kristensen and Østerbye: 1996]) and �life roles� (introduced under another name and
shape in [Graversen and Beyer: 2002]).

Constituent methods: are special methods residing in roles, which hooks onto me-
thods of the roles' intrinsic. The constituent methods cannot be invoked. They
are executed only when the method they hook on to is invoked. The execution
takes place before, after, or instead of the original method�with the additional
possibility of changing input arguments or return values.

Constituent methods radically change how roles work. Prior to constituent me-
thods, a role's functionality was only executed, when methods were called on
the role. With constituent methods it is easy to functionally decompose a single
object by the use of roles.

Constituent methods are graphically depicted as methods with a preceding !

e.g. as on �gure 2 where the swingClub() is a constituent method in the Elite
role.

Life roles: Life role is a role modi�er (in a similar fashion as �private� is a modi�er to
a class). Specifying a role to be a life role has the e�ect that whenever an object
is created which is the roles intrinsic, the role is automatically instantiated and
attached the object. The second property of life roles is, that the role is attached
its intrinsic the whole life of the intrinsic�hence it cannot be removed when �rst
applied.

Life roles are graphically depicted as a solid circle whereas normal roles are
depicted with a dashed circle.

Using the two extensions, one can functionally decompose an entity (using roles), and
have the roles be automatically attached. Prior to the introduction to constituent
methods, roles did not really represent separations of concerns, as each concern (the
roles) were explicitly used, instantiated, referenced etc., hence roles was no more than
an �advanced form of aggregation�.

4



Class
+attributes
+methods() Class.
Role

Attributes

methods

Role.
Role

Attributes

methods

Life role.

Table 1: Summary of the graphical notation.

4 Roles as aspects

A role cannot de�ne an aspect, as an aspect is de�ned as a �cross-cutting concern�,
and hence involves multiple entities. A set of roles in unity, on the other hand, can
represent an aspect. If an aspect, say logging, requires the code chunks x, y, z to be
inserted in the entities A, B, C in their method foo(), then this is done by creating
a life role for each entity, each containing a constituent method with the code x, y
or z which hooks onto the method foo() of its intrinsic. Much in a similar fashion
to AspectJ, where the three constituent methods would be called �advices� and be
de�ned within an explicit block called an �aspect�. This is illustrated on �gure 3.

A

 foo()

C

 foo()

B

 foo()

A

 foo()

B

 foo()

C

 foo()

R1
!foo(){x}

R2
!foo(){y}

R3
!foo(){z}

Aspect

x

z

y

advice

advice

advice

Figure 3: On the left an aspect is made up by three roles R1, R2, R3. The

equivilent situation is depicted on the right using AspectJ. Notice the great si-

milarities between the two approaches.

We have here a modelling mechanism, which allows us to clearly separate concerns
by the use of roles. More interestingly, when we let aspects be modelled by roles, we
can apply an aspect to a perspective of an object rather than the object. Naturally
such behaviour can be simulated in other languages, e.g. AspectJ, which gives the
programmer access to the calling stack. However, such solutions are rather technical
compared to our conceptual role model and which when being technical, typically are
rooted in the solution domain.

Let us extend our golf club example from �gure 2 with aspects. Our �rst aspect is

5



an economy aspect. Members must pay an anual fee to be a member of the club,
and additionally must pay each time they use one of the lanes. We model this aspect
by applying an �economy� role to the entities �golf club�, �golf lane� and �member�.
The members each have an account balance which when zero results in notifying the
member e.g. through email. The golf lane's economy role ensures that the member's
accounts are adjusted according to the current prices. The golf club's economy role
takes care of managing the fees etc. The second aspect we apply the system is a
security aspect, which is applied all board members and the chairman roles of the
system. These special members have access to certain administrative functionality of
the system which ordinary members are prohibited. The security aspects ensures that
a logon is required to access this functionality along with logging facilities which logs
all actions so e.g. changing the fee to zero will not go unnoticed. The two aspects are
depicted on �gure 4.

Person FinancialMember

Golf club

Golf lane

+play()

Elite

Chairman

Board-
member

Eco-
nomic

Eco-
nomic

Eco-
nomic Security

Security

Figure 4: The golf club model from �gure 2 extended with an economy and a

security aspect. The �gure is a simpli�ed, unimportant entities has been removed

or faded.

5 Dynamic aspects

We are able to set up aspects for certain objects in the system (not all members are
members of the board), and we are able to specify that they apply only to certain
perspectives of these objects. Such functionality is to our knowledge not supported by
existing AOP languages, which typically operate on a static basis�that is, a `member
aspect' can only be applied all members, not individuals.

Since perspectives (roles) are dynamically attachable and detachable, so becomes the
�aspect roles� applied them (removing the board member role removes the security as-
pect role as well). But the dynamics can be taken one step further. As we model
aspects using a set of roles, it is natural to let the properties of roles a�ect the
modelling�in other words, an aspect could very well be dynamic in the sense that

6



it can be removed (and re-attached when needed). An aspect can be removed from
certain entities merely by removing the �aspect-roles� from them. Dynamic aspects
has only to a limited degree been seen in aspect-oriented languages.

To allow this requires either a change of our role extensions or a new concept similar
to life roles, but allows the role to be detached at run time. Such an extension how-
ever, exposes a vulnerability of the model: Letting �autonomous� entities represent an
aspect, enables a subset of the roles to be removed, thereby leaving the aspect in a
inconsistent state�e.g. when removing role R1 from the situation illustrated on �gure
3 page.

We remedy this problem by gathering roles in groups. These groups we name �aspect
groups�, each containing a set of roles, which together form an aspect for a set of
objects. Deactivating a role in the system has the e�ect, that all roles within the
aspect groups the deactivating role resides are deactivated as well.

Unfortunately such groups must be established, and roles be subscribed, which entail
some inconvenience (in some ways similar to the problems of modelling AOP without
life roles). However, we see the grouping mechanism as a nice concept usable to
group �ordinary� roles as well as �aspect roles�, e.g. the grouping can mimic grouping
of entities of the world to be modelled, and grouping of roles allows actions to be
performed on a group of roles rather than single roles.

6 Discussion

One of the important contributions that roles have to o�er to aspect-oriented pro-
gramming is its foundation in modelling. The traditional distinction between problem
domain and solution domain is excellently described in the book on Generative Pro-
gramming[Czarnecki and Eisenecker: 2000]. The problem domain has to do with the
real world, e.g. students, courses, grade average, and how to model that world in a
manner that is useful for developing applications. The solution domain is the domain
of software artefacts, e.g. source programs, classes, and objects.

Role modelling takes outset in the problem domain, addressing a need for separation
of concerns in that domain. The work in [Graversen and Beyer: 2002] builds a bridge
from the problem domain oriented role models, to the solution domain, by providing
linguistic support for roles. Aspect oriented programming has its natural outset in
structuring problems in the solution domain, separating e.g. logging, transactions,
and security concerns (which are the standard examples).

There are two important perspectives to examining aspects for the early phases in
software development. One is to �nd out how to handle solution domain issues in
earlier phases of software development. Another perspective is to investigate how
aspect oriented thinking can be applied to the problem domain, rather then the solution
domain.

The previous sections has revealed that linguistic support for roles, with some exten-
sions, is remarkable close to aspects. The rest of this section will investigate what
contributions role modelling can o�er to early aspects, aspects in the problem domain.

One of the fundamental properties of roles is that they encapsulate perspectives of

7



an object, which is relevant from the perspective of some other (set of) objects. This
allows us to break down large objects into an intrinsic part, and a set of roles. The
contents in a role is additional instance variables, methods that manipulate those
and/or integrate the role into the intrinsic. This corresponds somewhat to aspects
that only introduces instance variables and methods onto objects, though an aspect
cannot override a method from one perspective only. In the gol�ng example, it is
worth noticing that roles are not something de�ned in isolation, the golf member roles
are all working in unison with the golf club. The logical package that deals with
gol�ng consists of a number of classes representing the gulf club, and some roles for
the persons involved in the golf club. As mentioned in section 5, we have felt a need
for linguistic and conceptual support for this �package� level of modelling (we called it
�aspect groups�).

Returning to aspect oriented programming, it becomes clear that the same problem
exist. In AspectJ, an aspect can contain aspects of other classes, but not classes by
itself. If we for an instance assume that persons were born golfers, then an aspect
cannot describe our example, as it does not allow us to describe the classes of the golf
club and the advices and introductions necessary to establish the member hierarchy.
Thus, our modelling perspective points to a natural extension of aspects.

Another facet of roles is that the roles are �rst class abstraction mechanisms. It
has in the literature been described how one make specializations of roles, how one
establishes roles of roles, how roles can be aggregated etc. Such maturity of abstraction
does not seem to be present for aspects, e.g. what is an aspect of an aspect (there are
some mechanisms for specialization in AspectJ through the use of abstract pointcuts).
However, we believe that it is possible with outset in roles to further develop the aspect
paradigm to handle aspects of aspects and support a richer notion of composition and
specialization.

With regard to the early phases of software development, it will be fruitful to attempt
a merge between the modelling capabilities of roles and the grouping capabilities of
aspects. However, our own modelling practice show that the aspect-oriented thinking,
at least as represented by AspectJ, has so high emphasis on the crosscutting portion,
that it misses the obvious, that full classes can also be part of an aspect�the logger
class itself is part of the logging aspect. This would lift aspects to a interesting proposal
on an abstraction mechanism that goes beyond classes, being not only a scooping
mechanism like packages in Java, but a �rst class abstraction mechanism.

7 Conclusion

On the basis of the paper we conclude, that roles can be used to model aspects. Further
the role concept provides new properties to aspects both in terms of dynamics as well
as in terms of decomposing the problem domain into manageable units.

8



References

Albano, A., Bergamini, R., Ghelli, G. and Orsini, R. [1993]. An object data model
with roles, Proceedings of the 19th Conference on Very Large Databases, Morgan

Kaufman pubs.

URL: citeseer.nj.nec.com/albano93object.html

Chu, W. W. and Zhang, G. [1997]. Associations and roles in object-oriented mod-
eling, International Conference on Conceptual Modeling / the Entity Relationship

Approach, pp. 257�270.
URL: citeseer.nj.nec.com/33946.html

Czarnecki, K. and Eisenecker, U. W. [2000]. Generative Programming, Methods, Tools,

and Applications, Addison Wesley.

Gottlob, G., Schre�, M. and Rock, B. [1996]. Extending object-oriented systems with
roles, ACM Transactions on Information Systems 14(3): 268�296.
URL: citeseer.nj.nec.com/gottlob94extending.html

Graversen, K. B. and Beyer, J. [2002]. Chameleon. Masters thesis available at http:
//it-c.dk/~kbilsted.

Kniesel, G. [1996]. Objects don't migrate!�perspectives on objects with roles.
URL: citeseer.nj.nec.com/kniesel96objects.html

Kristensen, B. B. [1996]. Object-oriented modeling with roles, in J. Murphy and
B. Stone (eds), Proceedings of the 2nd International Conference on Object-Oriented

Information Systems, Springer-Verlag, pp. 57�71.
URL: citeseer.nj.nec.com/kristensen95objectoriented.html

Kristensen, B. B. and Østerbye, K. [1996]. Roles: Conceptual abstraction theory &
practical language issues, Theory and Practice of Object Systems 2(3): 143�160.
URL: citeseer.nj.nec.com/article/kristensen96roles.html

Lieberman, H. [1986]. Using prototypical objects to implement shared behavior in
object-oriented systems, in N. Meyrowitz (ed.), Proceedings of the Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
Vol. 21, ACM Press, New York, NY, pp. 214�223.
URL: citeseer.nj.nec.com/lieberman86using.html

9


