Build Management for AspectC++*

Andreas Gal Olaf Spinczyk
gal@cs.fau.de os@cs.fau.de

University of Erlangen-Niirnberg
Martensstrasse 1
91058 Erlangen, Germany

September 17th, 2002

Abstract

In large software systems the build process often takes a very consid-
erable amount of time. When some source code files are modified, partial
rebuilding of only the affected system parts is desired. For many years
tools have existed, which can automatically detect dependencies between
source code files and perform partial rebuilding. However, no common tool
is currently able to deal efficiently with the crosscutting nature of aspects
in aspect-oriented programming (AOP). As a result, changes to a single
system aspect often trigger a full system build process. In this position
paper we present our experiences with using AspectC++ to build large
software systems. We present an approach to speed up the rebuild process
by specifying aspect and component code dependencies in a declarative
manner.

1 Motivation

By its very nature, aspect-oriented programming (AOP) is often applied in large
software systems. The authors of this paper are using AOP for the implement-
ation of PURE [2], a family of operating systems, PUMA [6], a C++ parser
and source code manipulator, and AspectC++ [5], a general purpose aspect
language implemented using PUMA. AspectC++ is a preprocessor for regu-
lar C++ compilers and emits standard C++ code after performing the aspect
weaving. Both packages are written in C++ and AspectC++ is used as im-
plementation language for the aspect code. In total, PUMA and AspectC+-+
consist of over 80,000 lines of code.

When we originally started to develop PUMA (and later AspectC++), we
had no aspect-oriented programming language for C++ at our disposal. Thus,

*This work was partially supported by the German Research Council (DFG) under grant
no. SCHR 603/2.



when we wrote the original code we could not exploit AOP. After AspectC++
was able to bootstrap itself, we started to modularize certain aspects of PUMA
and AspectC++. We steadily replaced code scattered throughout the project
with aspect code.

While this greatly improved the overall maintainability, the development
process itself became painfully slow. Before we used AspectC++ for the devel-
opment, our build utility GNU make [4] was able to quickly rebuild the system
after a small change in a particular part of the system. It does so by ana-
lyzing the include dependencies of the C++ source code files. When invoking
make after a change in the source code, the affected source code file and all files
including that particular file are recompiled.

As aspects come into play, this approach of include file dependency analysis
does not work anymore. Aspects are not limited to operate within certain source
code file boundaries. Instead they can affect code throughout the whole project,
wherever the join points of the aspect are located. To ensure a proper rebuilding
of all possibly affected system parts, the whole system has to be recompiled after
any changes in the aspect code.

One might be tempted to assume, that this will not dramatically affect the
daily system development as long as component code represents the majority of
source code in a given system and thus the majority of changes will be performed
in the component code. However, this assumption is not correct. While the
specification of a particular join point set is given within the aspect code, the
concrete content of a join point set is mainly determined by the component
code. For example, an aspect A my choose to give advice to all base classes of
a certain class x. Lets assume z has two base classes y and z. In this scenario
the aspect A dictates what the aspect weaver is performing in y and z, but
the component code in z is determining where this manipulation takes place
(y and z). If we decide to remove the base class y from z, we will be forced to
recompile all three classes as the aspect A obviously does not apply to y any
more. This is quite “unexpected” to the programmer, as he did neither change
the base classes themselves nor the aspect A.

2 Dependency Analysis

Detecting such dependencies between component code and aspect code is ex-
tremely difficult. In pure functional C++ code the dependencies are simple to
analyze: the make tool simply tracks all files included by the source code file in
question. This analysis usually takes only a few seconds even in large projects.

Aspects, however, do not use simple #include statements to specify depen-
dencies to other source code modules. Instead, complex expressions can be used
to specify join points. To evaluate these expressions, explicit global seman-
tic knowledge of the whole project is required. Thus, the source code of the
whole project has to be parsed and semantically analyzed to do the dependency
analysis. However, this is already the lion’s share of the execution time of the
AspectC++ compiler. The actual aspect weaving process is basically for free.



Thus, we would not gain much from the dependency analysis as far as speeding
up the AspectC++ phase.

The subsequent compilation phase, however, could benefit from such a de-
pendency analysis. As we mentioned earlier, AspectC++ is emitting standard
C++ code, which has to be compiled with a regular C++ compiler to binary
code. While the aspect weaving itself does not cost much, if we regenerate all
the “intermediate” C++ code emitted by AspectC++, all of the code has to be
compiled again to binary code, which takes a considerable amount of time.

A simple optimization, which can be applied here, is the use of compiler-
cache [3] or ccache [1]. Both programs cache the compilation result of a par-
ticular input file instead of re-running the actual compiler every time. As in
the average case the vast majority of the “intermediate” C++ code files do not
change between builds, the compilation phase is dramatically accelerated.

3 Declarative Approach

While the system developed up to this point already greatly reduces the partial
rebuilding time, it is still quite unsuitable for a number of scenarios. Besides
“global” aspects like synchronization and distribution one also often encoun-
ters in aspect-oriented programming “local” implementation aspects. Just as
“global” aspects these aspects do modularize code, but in a much smaller scope.
For example, in PUMA we use aspect code to implement certain C++ language
dialects (GNU C++, Visual C++). We chose to modularize this code with
an aspect, because otherwise the parser code would be cluttered with dialect
specific code. By design we know that these aspects only affect a few classes in
the parser subsystem. However, any time we change a single line in this aspect
programs or the parser component code, the whole 80,000 lines of PUMA and
AspectC++ have to be reread and reanalyzed by AspectC++, which can take
minutes.

Obviously the crosscutting nature of aspects does not allow an efficient auto-
matic detection of component and aspect-code dependencies as it is possible for
pure functional C++ code. Instead, we propose to use a declarative approach to
explicitly specify the scope of aspects on the source file level. To prevent addi-
tional overhead for “global” aspects, where the scope should not be restricted,
we understand these declarations as hints to the aspect compiler. If no such
hint is specified, the aspect is assumed to (potentially) affect all source files in
the system.

In AspectC++, the scope hints are given using a #pragma statement in the
aspect code (Figure 1). We understand that the #pragma statement is very
controversially discussed in the C++ community. The alternatives would have
been hiding the hint inside C4++ comments or extending the AspectC++ syntax.
We disliked the idea with the C++ comments because of the possible collision
with regular comments. Extending the AspectC++ was not an option either as
we understand this approach as a build process “hint” not worth complicating
the already quite complex C++/AspectC++ language.



aspect GNU_Extensions { aspect VisualC_Extensions {
#pragma weave "./CParser/*.*" #pragma weave "./CParser/*.*"

}; };
Figure 1: Giving scope hints in AspectC++

4 Conclusions

In this paper we motivated the importance of a quick system rebuilds for the
development process and discussed the problems AOP causes in this context.
We highlighted why traditional build management approaches fail to deal with
the crosscutting nature of aspects in AOP and we presented a declarative hint
mechanism to speed up the recompilation process by explicitly limiting the
scope of aspect code to certain source files. While we do not understand the
current mechanism to be the ultimate and final solution to this problem, we
have reasoned that there is basically no alternative to this or similar declarative
approaches as an automatic dependency analysis is too costly.

As far as future work is concerned, we are interested in extending the declar-
ative description of aspects beyond the plain source file dependencies. We are
confident that such declarative descriptions can lead to a better understanding
and verifiability of component and aspect-code interaction as well as aspect code
behavior in general.

References

[1] Andrew Tridgell. The ccache Homepage, 2002. http://ccache.samba.org)/.

[2] D. Beuche, A. Guerrouat, H. Papajewski, W. Schroder-Preikschat,
O. Spinczyk, and U. Spinczyk. The PURE Family of Object-Oriented Op-
erating Systems for Deeply Embedded Systems. In Proceedings of the 2nd
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’99), St Malo, France, May 1999.

[3] Erik Thiele. The compilercache ~ Homepage, 2002.
http://www.erikyyy.de/compilercache/.

[4] Free Software Foundation. The GNU Make Homepage, 2002.
http://www.gnu.org/software/make /make.html.

[5] O. Spinczyk, A. Gal, and W. Schroder-Preikschat. AspectC++: An Aspect-
Oriented Extension to C++. In Proceedings of the 40th International Con-
ference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002), pages 53-60, Sydney, Australia, Feb. 2002.

[6] M. Urban. The PUMA User’s Manual, 2000. http://ivs.cs.uni-
magdeburg.de/ puma.



