Using Version Information for Concern Inference and
Code-Assist

Annie T.T. Ying, Gail C. Murphy, Raymond T. Ng

Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver BC Canada V6T 174

aying@cs.ubc.ca, murphy@cs.ubc.ca, rng@cs.ubc.ca

ABSTRACT

We propose an approach to assist software developers per-
form modification tasks that may involve source code arti-
facts that crosscut the system’s code base. Our hypothesis is
that given some initial knowledge about which source code
artifacts (e.g., methods or classes in an object-oriented lan-
guage) may need to change in a modification task at hand,
past modification tasks help predict the additional source
code artifacts that need to change to complete the desired
modification. Our approach is to analyze the past modifica-
tion tasks using association rule mining. Essentially, asso-
ciation rule mining finds relationships between source code
artifacts that tend to change together. We envision a tool
that uses this approach to interactively guide software engi-
neers during the implementation of modification tasks. The
tool might also help identify concerns since code related to
a concern likely changes together.

1. INTRODUCTION

Identifying what source code needs to change for a modifica-
tion task on an existing software system can be difficult. The
existing source code may be well-modularized with respect
to a limited number of anticipated modification tasks but
will not likely be well-modularized for all tasks. As a result,
software developers are often faced with modification tasks
that involve changes to source code artifacts (e.g., method
or classes in an object-oriented language) that are spread
across the code base.

In this paper, we propose an approach to assist software
engineers who are performing modifications to an existing
system. Our hypothesis is that information about past mod-
ification tasks is useful in guiding developers to implement
a modification task at hand. We assume that the source
code of a software system is stored in a version management
system, such as CVS [CVS] or Clear Case [LeBlang94]. In
addition, we assume that the implementation of a modifica-
tion task corresponds to the set of changes to source code
artifacts between two source code versions. In other words,
the version management system keeps track of the history
of completed modification tasks. The general framework

Mark C. Chu-Carroll
IBM T.J. Watson Research Center
19 Skyline Drive
Hawthorne NY USA 10591

mcc@watson.ibm.com

of our approach is that given some initial knowledge about
the source code artifact changes in a modification task at
hand, past modification tasks can be useful in predicting
the remaining source code artifacts that need to change to
implement the desired modification. We propose to analyze
the past modification tasks using association rule mining
[Agrawal93]. In essence, association rule mining on the past
modification tasks finds relationships between source code
artifacts that tend to change together.

‘We plan to build a tool that uses this approach to assist soft-
ware developers during the implementation of modification
tasks. The tool will be highly integrated into the software
implementation phase. The suggested rules found by our
tool could be used in a way similar to the code-assist func-
tionality in an integrated development environment, such as
Eclipse [Eclipse]. For example, for the Eclipse code-assist,
as a programmer is typing part of a method call in a source
code editor, Eclipse automatically displays a list of method
calls that match what the programmer has typed. Our tool
will suggest a list of method calls that might need to be
made.

One novelty of our approach is that source code versions
stored in a version management system are analyzed for
knowledge discovery; this contrasts with the original pur-
pose of using version management systems for archival and
retrieval. Another novelty is that our approach does not di-
rectly use conventional program analysis techniques to infer
information about a system’s source code.

We believe that in a reasonable number of cases the source
code artifacts involved in a modification task are part of
a concern that possibly crosscuts the system. When per-
forming a modification task, software developers can use
the source code artifacts suggested by our tool to exam-
ine a concern that may relate to the desired modification
task. Our approach is likely applicable for such concern ex-
ploration when the system has rich modification history but
does not have an appropriate implemented mechanism to
support separation of crosscutting concerns.

Modification tasks ~ #11 #18 #24 ...

DBAccessPt .createRepo (...) {... <

‘ stmt.exe("CREATE TABLE" ...);... } ~ ~

TextArtifactAgent .retrieve(...) { ... < N4
stmt.exe("SELECT " ...); ...}

DataArtifactAgent.retrieve(...) { ... - g

stmt.exe("SELECT " ...); ...}

Figure 1: Past history that involves the concern of
storage code of a system containing JDBC database
table creation and accesses.

2. SCENARIOS

To demonstrate our approach, we consider two modification
tasks that involve crosscutting concerns.

2.1 Scenario 1- A Modification Task Involving
a Database Storage Concern

We consider a modification task that touches the concern
involving the storage code of JDBC database table cre-
ation and accesses. In the system’s modularization, the Java
source code implementing the concern are spread across mul-
tiple classes in different packages. The modification task is
to change the name of an attribute of a JDBC table in SQL
statements embedded in Java source code.

As shown in Figure 1, from the past modification
tasks, we can determine that a change to the method
issuing the JDBC calls to create a table (method
DBAccessPt.createRepo) tends to occur with changes
to the methods that issue JDBC calls to access
that table (methods TextArtifactAgent.retrieve and
DataArtifactAgent.retrieve) from the association rule

{DBAccessPt.createRepo} =
{TextArtifactAgent.retrieve,
DataArtifactAgent.retrieve}.

For example, modification task #11 in Figure 1 involves
changes to both the method containing the table creation
statement and the two methods containing the table accesses
statements. Obviously, the reason behind such an associa-
tion rule is that when changing the name of an attribute
in a table in JDBC, all accesses of the changed attribute
in the table must be updated. When a developer makes a
change to DBAccessPt.createRepo, we envision our tool will
suggest that methods TextArtifactAgent.retrieve and
DataArtifactAgent.retrieve are likely to change as well.

If a developer neglected to change the references to some
of the attribute names, a compiler would not be able to
catch this error because the SQL statements are string liter-
als in the Java source code. Conventional program analysis
approaches would require a specific SQL static analyzer in
order to give this suggestion. However, in this scenario, our
approach just depends on the fact that methods containing

the changed string literals have tended to change together
in the past.

2.2 Scenario 2 - A Modification Task Involving
Ul Code

We consider making a modification to the integrated de-
velopment environment Eclipse [Eclipse]. Eclipse supports
team programming using CVS [CVS]. The modification task
is to enable a user to specify a default value of the host loca-
tion of the CVS repository. This modification involves mak-
ing changes to the preferences configuration Ul page and
changes to the team programming related UI code (such
as entries in a pop-up menu associated with a project icon).
‘We believe that our approach is applicable since adding new
features in the Ul tends to have a certain pattern. Using our
approach, software engineer can identify changes to the Ul
based on the patterns discovered from the past changes.

3. APPROACH

In this section, we describe our method of analyzing the past
modification tasks using association rule mining. We assume
that the source code is stored in the repository in a version
management system and a modification task corresponds to
the difference between two source code versions. The data
to be mined is the source code repository.

3.1 Mining Association Rules on Changed
Source Code Artifacts

The problem of finding association rules is often referred
to the market basket problem [Agrawal93]. Intuitively, mar-
ket basket data corresponds to a database of transactions of
customers’ purchases D, or market baskets, in retail orga-
nizations. In this setting, the goal is to find the association
rules of the form “when a customer purchases item z, the
customer is likely to also purchase item y”. More precisely,
given basket data D, the goal is to generate all association
rules of the form z = y with support greater than a user-
specified threshold s (i.e., both x and y occur together in at
least s% of the market baskets) and confidence greater than
a user-specified threshold c¢ (i.e., of all baskets containing x,
at least ¢% also contain y). This definition can be general-
ized to X = Y in which X and Y are disjoint sets of items
instead of just a single item. For a formal treatment of the
problem, see [Agrawal93].

In our application, the source code repository is a database
D of implemented modification tasks; each modification task
T is a set of source code artifact changes between two source
code versions. In this setting, the association rule z = y
means that when the source code artifact change x is present
in a modification task, the source code artifact change y is
likely to be present in the same task. This definition can be
generalized to X = Y in which X and Y are disjoint sets
of source code artifact changes.

3.1.1 Dealing with Low Support of Rules

We anticipate that some interesting rules in the source
code version repository may not occur frequently enough
to have support greater than the minimum threshold. Be-
cause the number of association rules discovered depends on
the user-specified support threshold (and confidence thresh-
old), choosing a good support threshold is tricky. Setting

the support threshold too high would eliminate potentially
interesting rules; setting the support threshold value too low
would kill the efficiency and would likely return many unin-
teresting rules, which would cause problems with the accep-
tance of the approach by developers. We may need to use
alternative mechanism other than support and confidence to
measure the interestingness of the rules.

3.1.2 Cleaning Negative Data

Source code artifacts that frequently change together do not
necessarily correspond to a correct modification and may
possibly correspond to bugs. To avoid such misleading sug-
gestions, we need to distinguish such negative data by cor-
relating bug fixing reports with modification tasks in the
source code repository. We need to exclude this negative
data in the computation of association rules.

3.2 Strengths of the Approach

Our approach has at least three strengths. The algorithm
we use for finding association rules is scalable, incremental,
and able to handle second-hand data.

Scalable

Data mining algorithms are designed to be scalable. There
are a series of proposals addressing on scalibility of associa-
tion rule mining algorithms (e.g., [Agrawal94,Park97]).

Incremental

The algorithm for finding association rules can incremen-
tally adopt the completed modification tasks between source
code versions. A non-incremental algorithm would require
a recomputation on all the modification tasks in the reposi-
tory; the performance may not be acceptable if we would like
to interactively guide the developer through a modification
task. The algorithm would depend on an association rule
mining algorithm that handles dynamic data [Cheung98].
Using conventional program analysis techniques to analyze
change impact cannot easily handle incremental updates to
the source code because such techniques often require global
reanalysis of the source code.

Capable of handling second-hand data
We can apply data mining algorithms to data that have been
already collected. The original purpose of the source code
repository was for managing versions of the system, but we
can reuse this data for knowledge discovery. No additional
collection or generation of data is required.

4. IMPLEMENTATION

4.1 Issues
There are several implementation issues that we will address
in our tool.

Granularity of the source code artifacts

The granularity of versioning in the version management
system determines the precision of the association rules in-
ferred. Many version management systems, including CVS,
use file-level granualarity. We think that file-granularity
is too coarse; many association rules would look redun-
dant because each source code artifact unit may include
changes that are irrelevant to each other. We believe our

approach will work well at the method-granularity. We plan
to build our code-assist tool on a version management sys-
tem called Stellation [Chu-Carroll02, Stellation], which will
support fine-grained (which includes method-grained) ver-
sioning shortly.

Lack of data

Because our hypothesis is that past history is useful in pre-
dicting the source code artifact changes in the current modi-
fication task, we must have a big enough database of source
code versions from which to mine rules. Not all software
projects have such a history available.

4.2 Exploring Concerns Related to a Modifi-

cation
Our tool can be integrated into FEAT [Robillard02], a con-
cern exploration tool that shows representation of concerns
of the system. A software developer can incrementally build
up the concern using suggestions given by our tool. Us-
ing FEAT, the developer can store the representation of the
concern and further explore the concern.

5. SUMMARY

In this paper, we have described an approach that provides
suggestions on what source code artifacts tend to change
together in the past. Such suggestions are useful when per-
forming a modification task that involves a crosscutting con-
cern. To evaluate our approach, we will build a tool that
assists software developers perform modification tasks.

6. REFERENCES

[Agrawal93] Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami. Mining association rules between sets of items in
large databases. In Proc. of the ACM SIGMOD Conference
on Management of Data, pages 207-216, May 1993.

[Agrawal94] Rakesh Agrawal and Ramakrishnan Srikant.
Fast Algorithms for Mining Association Rules. In Proc. of
the 20th Int’l Conference on Very Large Databases, pages
487-499, September 1994.

[Aggarwal98] Charu Aggarwal and Philip Yu. Online gen-
eration of association rules. In Proceedings of 14 th Intl.
Conf. on Data Engineering (ICDE’98), pages 402-411,
February 1998.

[Cheung96] David W. Cheung, Jiawei Han, Vincent T. Ng,
and C.Y. Wong. Maintenance of Discovered Association
Rules in Large Databases: An Incremental Update Tech-
nique. In Proceedings of the 12th International Conference
on DataEngineering (ICDE’96), pages 106-114, March 1996.

[Chu-Carroll02] Mark Chu-Carroll, James Wright, and
David Shields. Supporting Aggregation in Fine Grained Soft-
ware Configuration Management. To appear in FSE 2002,
November 2002.

[CVS] CVS (Concurrent Versions System) web site:
http://ccvs.cvshome.org/servlets/ProjectHome

[Eclipse] Eclipse web site:
http://www.eclipse.org/

[Park97] Jong Soo Park, Ming-Syan Chen and Philip S. Yu.
Using a Hash Based Method with Transaction Trimming for
Mining Association Rules. TEEE Transactions on Knowl-
edge and Data Engineering. Volume 9, Number 5, pages 813-
825, September 1997.

[LeBlang] David LeBlang. The CM Challenge: Configu-
ration Management that works. In Configuration Manage-
ment, pages 1-37. John Wiley and Sons, June 1994.

[Robillard02] Martin P. Robillard and Gail C. Murphy. Con-
cern Graphs: Finding and Describing Concerns Using Struc-
tural Program Dependencies. Proceedings of ICSE 2002,
pages 406-416, May 2002.

[Stellation] Stellation web site:
http://www.eclipse.org/technology /index.html

