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Ideal Lattice-based (H)IBE Scheme

Karina Mochetti Ricardo Dahab∗

Abstract

In an Identity-Based Encryption Scheme, the public key is based on unique user’s
information, such as an email address, so it is possible to perform the decryption without
public-key certification. Ideal lattices are a generalisation of cyclic lattices, in which the
lattice corresponds to ideals in a ring. They allow some improvements in the parameters
size and multiplication complexity. In this paper, we present a version of the lattice-
based (H)IBE scheme by Agrawal, Boneh, Boyen (Eurocrypt’10) for ideal lattices. As
the underlying (H)IBE scheme, our scheme is shown to be weak selective secure based
on the difficulty of the Learning With Errors Problem (LWE), but our new primitive
has smaller public keys.

1 Introduction

Functional encryption has become increasingly important over the years because it provides
users with a much finer control of decryption capabilities. More specifically, in a functional
encryption system secret keys allow users to learn functions of encrypted data, i.e., for a
message m and a value k it is possible to evaluate a function f(k,m) given the encryption of
m and a secret key skk. Some examples of functional encryption are Identity-Based Encryp-
tion (IBE) [5, 7], Attribute-Based Encryption (ABE) [20, 9] and Inner-Product Encryption
(IPE) [10, 15].

In this paper, we focus on the notion of Identity-Based Encryption (IBE), that was
proposed by Shamir [21] in 1984, but remained as an open problem until 2001 when Boneh
and Franklin [5] and Cocks [7] constructed the first schemes. In an IBE scheme the public-
key is based on unique user’s information, such as an email address, so it is possible to
perform the decryption without the need for public-key certification.

Boneh and Franklin’s IBE scheme is based on bilinear pairings, while Cock’s IBE scheme
is based on the quadratic residuosity problem. The first lattice-based IBE scheme was pro-
posed by Gentry et al. [8] and its security is based on the LWE problem in the random oracle
model. Another lattice-based IBE scheme, but with hierarchical property, was proposed by
Agrawal et al. [1] and it is based on the Bonsai Trees concept [8, 6]; it does not use random
oracles, but it is also based on the LWE problem.

For cryptosystems, such as functional schemes, that use a Private Key Generator (PKG),
it is convenient to have a hierarchy of certificate authorities, that is, the root certificate
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authority can issue certificates for other certificate authorities, which can issue certificates
for users. For IBE schemes; a PKG have to compute private keys only to the entities
immediately below them, this scheme is called hierarchical.

Ideal lattices are a generalisation of cyclic lattices, in which the lattice corresponds
to ideals in a ring Z[x]/〈f(x)〉, for some irreducible polynomial function f . They can be
used to decrease the parameters needed to describe a lattice and its basis pattern can be
used to improve the matrix multiplication complexity. Cyclic lattices were presented by
Micciancio [13] along with the first provably secure one-way function based on the worst-
case hardness of the restriction of poly(n)-SVP to cyclic lattices.

Based on the LWE problem, a ring-LWE version was defined in a wide class of rings
and its hardness proved under worst-case assumptions on ideal lattices in these rings. This
allowed the construction of collision-resistant hash functions [11, 18]. Later, a new variant
of the LWE problem was defined, ideal-LWE [22], which was used to build an efficient public-
key encryption scheme based on the worst-case hardness of the approximate SVP in ideal
lattices.

An ideal lattice IBE scheme is presented by Okuhata et al. [16]. They use the ideal-LWE
variant of the LWE problem to build an IBE scheme similar to the one presented by Agrawal
et al. [1]. Their scheme has a fixed, therefore smaller, key size for all message sizes, while
on the original paper the key size increases with the size of the message.

Another ideal lattice IBE scheme is presented by Yang et al. [23]. Although really
similar, our schemes were developed independently of their scheme. Beside the ideal lattice
IBE, we also provide the hierarchical ideal lattice version of the scheme.

2 Definitions

In this section we present the basic concepts used in our construction. Section 2.1 defines an
identity-based encryption scheme and an hierarchical version, Section 2.2 gives definitions
and properties of lattices, sampling algorithms (for general and ideal lattices) and the LWE
and ring-LWE problems.

Notation
For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent
Zq as integers in (q/2, q/2]. We let Zn×mq denote the set of n × m matrices with entries
in Zq. We use capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. v)
to denote vectors. The notation A> denotes the transpose of the matrix A. When we say
a matrix defined over Zq has full rank, we mean that it has full rank modulo each prime
factor of q. If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the
n × (m + m′) matrix formed by concatenating A1 and A2. If w1 is a length m vector and
w2 is a length m′ vector, then we let [w1|w2] denote the length (m + m′) vector formed
by concatenating w1 and w2. However, when doing matrix-vector multiplication we always

view vectors as column vectors. For a vector v we define as |v| =
√∑

x2
i as the norm of

vector v and for a matrix A, we define as |A| = max |Ax|, for |x| = 1, the norm of matrix
A. We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to
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denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0,
and we use poly(n) to denote a polynomial function of n. We say an event occurs with
overwhelming probability if its probability is 1 − negl(n). Given a polynomial f(x) we say
a ring Z[x]/〈f(x)〉 is the set of all polynomials g(x) mod f(x) with coefficients in Z. The
notation g(x)⊗h(x) denotes the multiplication of polynomials g(x) and h(x) ∈ Z[x]/〈f(x)〉
modulo f(x).

2.1 Identity Based Encryption

Based on the definition of predicate encryption scheme by Katz et al. [10], we have that an
Identity-Based Encryption Scheme consists of the following four algorithms:

SetUp(1λ): Takes as input security parameter λ and outputs public-key mpk and master
secret key msk .

KeyGen(mpk ,msk , id): Takes as input public-key mpk , master secret key msk and an
identity id and outputs a secret key sk .

Enc(mpk ,msg , id): Takes as input msg in some associated message space, public-key
mpk , an identity id and outputs a ciphertext ct .

Dec(mpk , ct , sk): Takes as input public-key mpk , ciphertext ct , secret key sk and outputs
the message msg .

We make the following consistency requirement. Suppose ciphertext ct is obtained by
running Enc on input public key mpk , message msg and identity id and that sk is a secret
key for identity id ′ obtained through a call of KeyGen using the same mpk . Then Dec, on
input mpk , ct and sk returns msg , except with negligible probability, if and only if id = id ′.

In a hierarchical scheme, a user in level t can use his/her secret key to derive a secret key
for a user at level t + 1. We have that an Hierarchical Identity-Based Encryption Scheme
consists of the following four algorithms:

SetUp(1λ, 1µ): Takes as input security parameter λ and an hierarchical format µ and
outputs public-key mpk and master secret key msk , i.e., the secret key for level 0 (sk0 =
msk).

KeyDerive(mpk , sk t−1, id): Takes as input public-key mpk , secret key sk t−1 for level t−1
and an identity id = {id1, · · · , id t} and outputs a secret key sk t for level t.

Enc(mpk ,msg , , id): Takes as input msg in some associated message space, public-key
mpk , an identity id = {id1, · · · , id t} and outputs a ciphertext ct .

Dec(mpk , ct , sk t): Takes as input public-key mpk , ciphertext ct , secret key sk t for level
t and outputs the message msg .

We make the following consistency requirement. Suppose ciphertext ct is obtained by
running Enc on input public key mpk , message msg and identity id = {id1, · · · , id t} and
that sk t is a secret key for identity id ′ = {id ′1, · · · , id ′t} obtained through a call of KeyDerive
using the same mpk . Then Dec, on input mpk , ct and sk t returns msg , except with negligible
probability, if and only if id i = id ′i for all i ∈ [1, t].

Security is modelled by means of a game between a challenger C and a probabilistic
polynomial-time adversary A. In this work, we achieve selective identity security, meaning
that A must declare its challenge identities before seeing the public-key.

Init: A outputs challenge identities id?0, id
?
1.
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Setup: The challenger C runs the SetUp algorithm to generate public-keys mpk which
it gives to the adversary A.

Phase 1: The adversary A is given oracle access to KeyGen(mpk ,msk , ·).
Challenge: The adversary A gives a pair of messages (msg0,msg1) to the challenger

C. Then C chooses random η
$← {0, 1}, encrypts msgη under idη and sends the resulting

ciphertext to A.

Phase 2: The same as Phase 1.

Guess: The challenger A must output a guess η′ for η.

If the advantage of every probabilistic polynomial time adversary A is defined to be
|Prob[η′ = η] − 1

2 |, then we say the scheme has indistinguishability under chosen-plaintext
attack under the selective model (IND-sID-CPA for short).

2.2 Lattices

This section presents the collection of results from [2, 11, 22, 1, 14, 8, 6, 4] that we will need
for our construction and proof of security.

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a
linearly independent set of vectors whose span is Λ. We will focus on integer lattices and
among these we will focus on the q-ary lattices defined as follows: for any integer q ≥ 2 and
any A ∈ Zn×mq , we define

Λ⊥q (A)← {e ∈ Zm : Ae = 0 mod q}
Λuq (A)← {e ∈ Zm : Ae = u mod q}
Λq(A)← {e ∈ Zm : ∃ s ∈ Zmq with A>s = e mod q}.

Let I be an ideal of the ring R = Z[x]/〈f(x)〉, i.e., a subset of R that is closed under
addition and multiplication. The ideal I is a sublattice of Zn. For a ring R = Z[x]/〈f(x)〉
we can define the basis of the ideal lattice Λ⊥q (A), with A = rotf (g) ∈ Zn×nq , where each
row i of A is given by the coefficients of xig(x) mod f(x) for i ∈ {0, n− 1}.

For a polynomial g(x) ∈ R, we can represent it as a vector a where for each i ∈ {0, n−1},
ai is the coefficient of xi in g(x). We assume that any polynomial is a vector, and a⊗ b is
the multiplication of the polynomials represented by vectors a and b. For a ring R , we have
that ĝ ∈ Rk is a vector of k polynomials in R. Since polynomials are easily represented as
vectors, we denote by v̂ any concatenation of vectors, i.e., v̂ = [v0| . . . |vk], with vi a vector.

Note that if f(x) = xn + 1, then the matrix A = rotf (g) ∈ Zn×nq is an anti-circulant
matrix and for f(x) = xn − 1, we have that the matrix A = rotf (g) ∈ Zn×nq is a circulant
matrix. These lattices are called cyclic lattices and they are a special class of ideal lattices.

Lemma 1. For two matrices A and B, if A and B are bases for ideal lattices, then C =
[A|B] is also a basis for an ideal lattice.

Lemma 2. For a and b ∈ R we have that rotf (a)+rotf (b) = rotf (a+b) and rotf (a)rotf (b) =
rotf (a⊗ b).
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Lemma 3. ([13, Lemma 4.4]) Let b̂ ∈ Rk be a sequence of arbitrary ring elements. If â ∈
Rk are independently and uniformly distributed ring elements, then

∑
ai ⊗ bi is uniformly

distributed over the ideal generated by b̂. Note that for k = 1 we have that a⊗b is uniformly
distributed for a ∈ R and b ∈ R.

The two main advantages of using ideal lattices are: The basis matrix n×m can be built
from a polynomial with degree m, which results in smaller key sizes. The multiplication of
a matrix that is a basis for an ideal lattice by a vector can be done in an efficient way [17].

For simplicity, we define two auxiliary functions. The first is called Exp(), and it takes
a vector â ∈ Rk and expands it to a matrix as follows:

Exp(â) =


rotf (a′) O . . . O
O rotf (a1) . . . O
...

... . . .
...

O O . . . rotf (ak−1)


The second is the Rot() function, that takes a vector â ∈ Rk and also expands it to a

matrix as follows:

Rot(b̂) =
[
rotf (b0)|rotf (b1)| . . . |rotf (bk−1)

]
Note that

Rot(b̂)Exp(â) =
[
rotf (a′)rotf (b0)| . . . |rotf (ak−1)rotf (bk−1)

]
Gram-Schmidt norm Let S = {s1, . . . , sk} be a set of vectors in Rm. Then, S̃ ←

s̃1, . . . , s̃k ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk. We
refer to |S̃| as the Gram-Schmidt norm of S.

Gaussian distributions Let L be a discrete subset of Zn. For any vector c ∈ Rn
and any positive parameter σ ∈ R>0, let ρσ,c(w) ← exp

(
−π|x− c|2/σ2

)
be the Gaussian

function on Rn with center c and parameter σ. Let ρσ,c(L)←
∑
w∈L ρσ,c(w) be the discrete

integral of ρσ,c over L, and let DL,σ,c be the discrete Gaussian distribution over L with center

c and parameter σ. Specifically, for all v ∈ L, we have DL,σ,c(v) =
ρσ,c(v)
ρσ,c(L) . For notational

convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ respectively.
The following lemma captures standard properties of these distributions.

Lemma 4. Let q ≥ 2 and let A be a matrix in Zn×mq with m > n. Let TA be a basis for

Λ⊥q (A) and σ ≥ |T̃A| · ω(
√

logm). Then, for c ∈ Rm and u ∈ Znq :

1. Pr
[
|w − c| > σ

√
m : w

$← DΛ,σ,c

]
≤ negl(n).

2. A set of O(m logm) samples from DΛ⊥q (A),σ contains a full rank set in Zm, except with
negligible probability.

3. There is a PPT algorithm SampleGaussian(A, TA, σ, c) that returns x ∈ Λ⊥q (A) drawn
from a distribution statistically close to DΛ,σ,c.
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4. There is a PPT algorithm SamplePre(A, TA,u, σ) that returns x ∈ Λ⊥q (A) sampled
from a distribution statistically close to DΛu

q (A),σ, whenever Λuq (A) is not empty.

Following [1, 6, 3, 4, 22] we will need the following algorithms to sample short vectors
and random basis from specific lattices.

Algorithm TrapGen Ajtai [3], and later Alwen and Peikert [4], showed how to sample
an essentially uniform matrix A ∈ Zn×mq along with a basis S of Λ⊥q (A) with low Gram-
Schmidt norm.

Theorem 1. ([4, Theorem 3.2] with δ = 1/3) Let q, n,m be positive integers with q ≥ 2
and m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm TrapGen(q, n,m) that
outputs a pair (A ∈ Zn×mq , S ∈ Zm×m) such that A is statistically close to uniform in

Zn×mq and S is a basis for Λ⊥q (A), satisfying |S̃| ≤ O(
√
n log q) and |S| ≤ O(n log q) with

overwhelming probability in n.

Algorithm IdealTrapGen Stehlé et al. [22] showed an adaptation of Ajtai’s trapdoor
key generation algorithm for ideal lattices.

Theorem 2. ([22, Theorem 3.1]) Let n, σ, q, k be positive integers with q ≡ 3 mod 8,
k ≥ dlog q + 1e, let n be a power of 2 and let f(x) = xn + 1 be a degree n polynomial
in Z[x]. Then, there is a probabilistic polynomial-time algorithm IdealTrapGen(q, n, k, σ, f)
that outputs a pair (â ∈ Rk, S ∈ Zkn×kn) such that â is statistically close to uniform in
Rk and S is a basis for Λ⊥q (A), for A = Rotf (â), satisfying |S| = O(n log q

√
ω(log n)) with

overwhelming probability in n.

Sampling Algorithms The following theorems give a few sample algorithms used in
lattice-based schemes.

Theorem 3. ([1, Theorem 17], [6, Lemma 3.2]) Let q > 2,m > n and σ > |TA| ·
ω(
√

log(m+m1)). Then SampleLeft(A,B, TA,u, σ) outputs a vector e ∈ Zm+m1 statis-
tically close to DΛu

q (F ),σ, with F = (A|B).

Theorem 4. ([1, Theorem 19]) Let q > 2,m > n and σ > |TB| · |R| ·ω(
√

log(k +m)). Then
SampleRight(A,B,R, TB,u, σ) outputs a vector e ∈ Zk+m distributed statistically close to
DΛu

q (F ),σ, with F = (A|AR+B).

Theorem 5. [1] Let A ∈ Zn×mq be a full rank matrix, let S be a short basis of Λ⊥q (A), let
B ∈ Zn×m1

q be a matrix and let σ be a Gaussian parameter. For q,m, n be integers such

that q > 2 and m > 2n log q and σ > ‖S‖ · ω(
√

log(m+m1)), then there is a probabilistic
polynomial algorithm SampleBasisLeft(A,B, S, σ) that outputs a new basis T ∈ Zn×m+m1

for the lattice Λ⊥q (F ), with F = (A|B).

Theorem 6 ([1]). Let A ∈ Zn×mq and B ∈ Zn×m1
q be a full rank matrices, let S be a short ba-

sis of Λ⊥q (B), let R ∈ {−1, 1}m×m1 be a uniform random matrix and let σ be a Gaussian pa-
rameter. Let q,m, n be integers such that q > 2 and m > n and let σ > ‖S‖·

√
m·ω(

√
logm).

Then there is a probabilistic polynomial algorithm SampleBasisRight(A,B,R, S, σ) that out-
puts a new basis T ∈ Zn×m+m1 for the lattice Λ⊥q (F ), with F = (A|AR+B).
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The LWE Problem The Learning with Errors problem, or LWE, is the problem of
determining a secret vector over Fq given a polynomial number of noisy inner products.
The decision variant is to distinguish such samples from random. More formally, we define
the (average-case) problem as follows:

Definition 1. ([19]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability distribution
on Zq. For r ∈ Znq , let Ar,χ be the probability distribution on Znq ×Zq obtained by choosing
a vector a ∈ Znq uniformly at random, choosing e ∈ Zq according to χ, and outputting
(a, b← 〈a, r〉+ e).

(a) The search-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number
of samples from Ar,χ, output r.

(b) The decision-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n)
number of samples that are either (all) from Ar,χ or (all) uniformly random in Znq ×Zq
, output 0 if the former holds and 1 if the latter holds.

The hardness of the LWE problem is summarised in the following:

Definition 2. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability distribution
over Zq obtained by choosing x ∈ R according to the normal distribution with mean 0 and
standard deviation α/

√
2π and outputting bqxe.

Theorem 7. ([19]) Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and αq > 2
√
n.

If there exists an efficient (possibly quantum) algorithm that solves decision-LWEq,n,Ψα, then
there exists an efficient quantum algorithm that approximates SIVP and GSVP to within
Õ(n/α) in the worst case.

The RingLWE Problem is the same as described above, but with in the set R with
b← a⊗ r + e.

Theorem 8 ([12]). Let n, q be integers and α > 0 such that q ≥ 2, q = 1 mod m and
q be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). If there exists an efficient (pos-

sibly quantum) algorithm that solves decision-RingLWEq,n,Υα, then there exists an efficient

quantum algorithm that solves γ-SIVP and γ-SVP for γ = Õ(n/α) in the worst case.

The following lemmas are use to bound the norm of vectors and matrices and will be
used to show correctness of decryption.

Lemma 5. ([1, Lemma 12]) Let e be some vector in Zm and let v ← Ψ
m
α .Then, the quantity

|〈e,v〉|, when treated as an integer in (−q/2, q/2], satisfies |〈e,v〉| ≤ |e|·
(
qα · ω(

√
logm) +

√
m/2

)
with overwhelming probability (in m).

Lemma 6. Let r be a vector of length n in {−1, 1}n; then, |rot(r)| ≤ O(n
√
n) is a bound

for the norm of rot(r).

Lemma 7. Let R = Exp(r̂) be a kn× kn matrix, for r̂ ∈ Rk; then, |R| ≤
√
kmax |Ri| is a

bound for the norm of R, with Ri = rotf (ri).
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3 Our Identity-Based Encryption Scheme

As described in Section 2.1, an Identity Based Encryption Scheme consists of the following
algorithms: SetUp, KeyGen, Enc and Dec. In this section we describe each algorithm for our
construction, based on the IBE scheme presented by Agrawal et al. [1].

The SetUp algorithm creates an ideal lattice based on a function f(x) = xn + 1, with
n a power of 2. It chooses vectors at random rather than matrices, as the original scheme
does, which results in smaller public keys. The KeyGen algorithm generates the secret key
by encoding the identity id into a matrix using the rotf () function and concatenating it
to the lattice basis. The secret key is the vector created by the sample algorithm, i.e.,
e ∈ Λuq (Aid ).

The Enc algorithm uses the message, the identity id and the vectors in the public-key to
create an integer c′ and a vector c that will compose the ciphertext ct for one bit. Finally,
the Dec algorithm can recover the message from the ciphertext, only if the identity used
during the key generation is exactly the same as the one used in the encryption.

3.1 Our Construction

Let n = 2α be the security parameter, σ be the Gaussian parameter and R = Zq[x]/f(x),
with f(x) = 〈xn + 1〉. Notice that [x̂|x0R0| . . . |xk−1Rk−1] = [x̂|x̂R], for R = Exp(r̂) and
Ri = rotf (ri).

SetUp(1n)

1. run the IdealTrapGen(n, k, q, f, σ) algorithm to select uniformly a vector â ∈ Rk, with
a short basis T ∈ Zkn×kn for Λ⊥q (A), such that A = Rotf (â);

2. choose uniformly random vectors â′, b̂ ∈ Rkq and u ∈ Rq;
3. output mpk = (â, â′, b̂,u) and msk = T .

KeyGen(mpk ,msk , id = d̂)

1. sample a vector for lattice Λ(Aid )uq , with Aid = [A|C], where A = Rotf (â) and C =
[C0| . . . |Ck−1], for Ci = rotf (a′i)+rotf (bi⊗di) by invoking ê← SampleLeft(A,C, T,u, σ);

2. output sk = ê.

Enc(mpk ,msg , id = d̂)

1. choose a uniformly random vector s ∈ Rq and a random ring r̂ ∈ {−1, 1}kn;

2. choose a noise vector x̂ ∈ Ψ
kn
αt and a noise term x ∈ Ψαt ;

3. compute ĉ = A>ids + [x̂|x̂R], for R = Exp(r̂) and Aid = [A|C];

4. compute c′ = u>s + x+ msg · bq/2e;
5. output ct = (ĉ, c′).

Dec(mpk , sk , ct)
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1. compute z = c′ − ê>ĉ; for z ∈ (−q/2, q/2];

2. output 0 if |z| < q/4 and 1 otherwise.

3.2 Correctness

If the exactly same identity is used during key generation and encryption, we have:

z = c′ − ê>ĉ

= u>s + x+ msg · bq/2e − ê>A>ids− ê>[x̂|x̂R]

= u>s + x+ msg · bq/2e − u>s− ê>[x̂|x̂R]

= msg · bq/2e+ x− ê>[x̂|x̂R]︸ ︷︷ ︸
error term

Note that for the correct decryption the error term must be less than q/4.

3.3 Security

In this section we prove the following theorem.

Theorem 9. If the decision-RingLWE problem is infeasible, then the IBE scheme described
on Section 3.1 is IND-sID-CPA.

Following [1], we define additional algorithms. These will not be used in the real scheme,
but we need them in our proofs.

Sim.SetUp(1n, id?): The algorithm chooses random â ∈ Rkq , u ∈ Rq and r̂? ∈ {−1, 1}kn×kn;

it uses IdealTrapGen to generate b̂? ∈ Rkq with a basis T ∈ Zkn×kn for Λ⊥q (B?), where

B? = Rotf (b̂?) and defines a′i ← ai ⊗ r?i − b?i ⊗ d?i . Then, it outputs mpk = (â, â′,u) and

msk = (r̂?, b̂?, T ).

Sim.KeyGen(mpk ,msk , id): Secret keys are now created by using the trapdoor T , sam-
pled by Sim.SetUp, and the SampleRight algorithm. It outputs sk = ê ∈ Λuq (A|AR?+B?D),

where A = Rotf (â?), B? = Rotf (b̂?), R? = Exp(r̂?) and D = Exp(d̂− d̂?), for d̂− d̂? 6= 0,
by invoking ê ← SampleRight(A,B?D,R?, T,u, σ). By construction, each Di = rotf (di)
and D?

i = rotf (d?i ) are full-rank and non-singular matrices; therefore, Exp(D−D?) is also a
full-rank non-singular matrix. Note that det(D) =

∏
det(Di−D?

i ) and, since each (Di−D?
i )

is a full-rank non singular matrix (see Section 5 of [1]), then D is also full-rank non-singular.

Sim.Enc(mpk ,msg , id): The algorithm differs from Enc in the sense that it uses rings r̂?

and b̂? instead of tings r̂ and b̂.

For a probabilistic polynomial-time adversary A, our proof of security will consist of the
following sequence of six games between A and C. The six games are defined as follows:

Game 0 C runs the SetUp algorithm, answers A’s secret key queries using the KeyGen
algorithm, and generates the challenge ciphertext using Enc with vector id? = id0 and
message msg0.
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Game 1 In this game, C uses the simulation algorithms. Specifically, C runs the
Sim.SetUp algorithm with id0, answers A’s secret key queries using the Sim.KeyGen al-
gorithm, and generates the challenge ciphertext using Sim.Enc with id? = id0 and message
msg0.

Game 2 This is the same as Game 1, except that the challenge ciphertext is randomly
chosen from the ciphertext space.

Game 3 Same as Game 2, except that C runs the Sim.SetUp algorithm with id? = id1.

Game 4 Same as Game 3, except that C generates the challenge ciphertext using Sim.Enc
with id? = id1 and message msg1.

Game 5 C runs the SetUp algorithm, answers A’s secret key queries using the KeyGen
algorithm, and generates the challenge ciphertext using Enc with id? = id1 and message
msg1.

We have that for i = {0, . . . , 4}, Game i is indistinguishable from Game i+ 1 under the
appropriate assumptions.

3.3.1 Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 8. The view of adversary A in Game 0 (resp. Game 4) is statistically close to the
view of A in Game 1 (resp. Game 5).

Proof.

Setup In Game 0, the ring â is generated by IdealTrapGen and ring â′ is uniformly
random in Rkq . On the other hand, in Game 1, â is chosen uniformly at random and â′ is
the concatenation of a′i ← ai⊗r?i −b?i ⊗d?i . In both games vector u is random. Notice that,
by Theorem 2, vectors â and b̂?, output by IdealTrapGen, are statistically indistinguishable
from a uniformly random vector.

Secret keys The secret key in Game 0 for identity id0 is the ring ê ∈ Λuq (Aid ), where
Aid = [A|C] is sampled using the SampleLeft algorithm. In Game 1, the secret key for
identity id0 is the ring ê ∈ Λuq (A|AR? + B?D), sampled with the SampleRight algorithm.
Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext component c′ and ĉ
are computed the same way:

ĉ = A>ids + [x̂|x̂R]

= [A|C0| · · · |Ck−1]>s + [x̂|x0R0| · · · |xk−1Rk−1] ∈ R2k
q

.

But, in Game 0, the matrices Ci is computed as follows:

Ci = rotf (a′i) + rotf (b?i ⊗ di)

= rotf (a′i + b?i ⊗ di).
.

On the other hand, in Game 1, we have:
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Ci = rotf (a′i) + rotf (b?i ⊗ di)

= rotf (ai ⊗ r?i − b?i ⊗ d?i ) + rotf (b?i ⊗ di)

= rotf (ai ⊗ r?i )− rotf (b?i ⊗ d?i ) + rotf (b?i ⊗ di)

= rotf (ai ⊗ r?i ).

.

Let us now analyse the joint distribution of the public parameters and the challenge
ciphertext in Game 0 and Game 1. We will show that the distributions of (â, â′, ĉ) in
Game 0 and in Game 1 are statistically indistinguishable.

First notice that, by Lemma 3, we have that the following two distributions are statis-
tically indistinguishable for every fixed b̂? and d̂?:

(ai,a
′
i, [xi|xiR?i ]) ≈s

(ai,ai ⊗ r?i − b?i ⊗ d?i , [xi|xiR?i ]) .

Since [rotf (ai)|rotf (ai⊗ r?i − b?i ⊗d?i )]
>s is statistically close to [rotf (ai)|rotf (a′i)]

>s, it
is possible to add each term to one side of the equation:

(ai,a
′
i, [rotf (ai)

>s + xi|(rotf (ai ⊗ r?i − b?i ⊗ d?i ))
>s + xiR

?
i ]) ≈s

(ai,ai ⊗ r?i − b?i ⊗ d?i , [rotf (ai)
>s + xi|rotf (a′i)

>s + xiR
?
i ]) .

Finally, we add rotf (b?i ⊗ d?i )
>s to both sides:

(ai,a
′
i, [rotf (ai)

>s + xi|(rotf (ai ⊗ r?i ))
>s + xiR

?
i ]) ≈s

(ai,ai ⊗ r?i − b?i ⊗ d?i , [rotf (ai)
>s + xi|rotf (a′i + b?i ⊗ d?i )

>s + xiR
?
i ]) .

To conclude, observe that if we concatenate all the parts, we have that the distribution
on the left hand side is that of the public parameters and the challenge ciphertext in Game
0, while that on the right hand side is the distribution in Game 1.

3.3.2 Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 9. The view of adversary A in Game 1 (resp. Game 3) is computationally indis-
tinguishable from the view of A in Game 2 (resp. Game 4) under decision-RingLWE.

Proof.
Suppose A can distinguish between Game 1 and Game 2 with non-negligible advantage.

Then, it is possible to use A to build an algorithm B to solve decision-RingLWE.
Init B is given k RingLWE challenge pairs (aj ,yj) ∈ Rq × Rq, where either yj =

aj ⊗ s + xj for a random s ∈ Rq and a noise term xj ← Ψn
α, or yj is uniformly random in

Rq. And one LWE challenge pair (a0, y0) ∈ Znq × Zq, where either y0 = 〈a0, s〉 + x0 for a
noise term x0 ← Ψα, or y0 is uniformly random in Zq.

SetUp The public parameters are constructed using the vectors of the pairs (aj ,yj).
The i-th polynomial of ring â will be the vector ai, for 1 ≤ i ≤ k and vector u will be a0.
The ring â′ is still calculated as in Sim.SetUp, i.e., a′i ← ai ⊗ r?i − b?i ⊗ d?i .
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Secret keys All private-key extraction queries are answered using Sim.KeyGen.

Challenge Ciphertext The ciphertext CT = (ĉ?, c′?) is constructed based on the
terms in the LWE challenge pairs (aj ,yj), with ĉ? = [(y1, . . . ,ym)|R?>(y1, . . . ,ym)] and
c′? = y0+Mbq/2e. If we have yj = aj⊗s+xj on the RingLWE challenge and y0 = 〈a0, s〉+x0

on the LWE challenge, then the ciphertext is distributed exactly as in Game 1, and if yj is
uniformly random inRq and y0 is uniformly random in Zq, then the ciphertext is distributed
exactly as in Game 2.

If yj = aj⊗s+xj , then (y1, . . . , ym) = (a1⊗s+x1, . . . ,ak⊗s+xm) = Rotf (â)>s+ x̂.

Therefore, for Game 1 we have

Ci = rotf (a′i) + rotf (b?i ⊗ di)

= rotf (ai ⊗ r?i − b?i ⊗ d?i ) + rotf (b?i ⊗ di)

= rotf (ai ⊗ r?i )− rotf (b?i ⊗ d?i ) + rotf (b?i ⊗ di)

= rotf (ai ⊗ r?i )

= rotf (ai)rotf (r?i ).

and

ĉ = A>ids + [x̂|x̂R?]
= [A|C0| · · · |Ck−1]>s + [x̂|x̂R?]
= [Rotf (â)|rotf (a0)rotf (r?0)| · · · |rotf (ak−1)rotf (r?k−1)]>s + [x̂|x̂R?]
= [Rotf (â)|R?>Rotf (â)]>s + [x̂|x̂R?]
= [Rotf (â)>s + x̂|R?>(Rotf (â)>s + x̂)]

= [(y1, . . . , ym)|R?>(y1, . . . , ym)] .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the ciphertext
generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2. The answer to
this guess is also the answer to the RingLWE and LWE challenges, because, as we showed, if
yj is uniformly random in Rq and y0 is uniformly random in Zq, then A’s view is the same
as in Game 2 and if y0 = 〈a0, s〉 + x0 and yj = aj ⊗ s + xj , then A’s view is the same as
in Game 1.

3.3.3 Indistinguishability of Game 2 and Game 3

Lemma 10. The view of adversary A in Game 2 is statistically indistinguishable from the
view of A in Game 3

Proof.

SetUp The public parameters are generated in the same way in both games. Vectors
â and u are random and a′i ← ai⊗ r?i − b?i ⊗d?i , with d̂? = d̂0 for Game 2 and d̂? = d̂1 for
Game 3.
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Secret keys All private-key extraction queries are answered using Sim.KeyGen. The
only difference is, again, that for Game 2, id? = id0 and, for Game 3, id? = id1.

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for ring â′. There-
fore, the indistinguishability of Game 2 and Game 3 only depends on the indistinguishability
of â′. From Lemma 3 we can prove that â′ for each game is statistically close to a uniformly
random ring, because

a′i ← ai ⊗ r?i − b?i ⊗ d?i .

4 Our Hierarchical Identity-Based Encryption Scheme

As described in Section 2.1, an Hierachical Identity Based Encryption Scheme consists of
the following algorithms: SetUp, KeyDerive, Enc and Dec. In this section we describe each
algorithm for our construction, based on the HIBE scheme presented by Agrawal et al. [1].

The SetUp algorithm creates an ideal lattice based on a function f(x) = xn + 1, with
n a power of 2. It chooses vectors at random rather than matrices, as the original scheme
does, which results in smaller public keys. The KeyDerive algorithm generates the secret
key by encoding each identity id i into a matrix using the rotf () function and concatenating
it to the lattice basis. Now, the secret key is a short basis for the lattice generate by this
encoding, using the algorithm SampleBasisLeft. Note that sk0 = msk ,.

The Enc algorithm uses the message, the identity id and the vectors in the public-key to
create an integer c′ and a vector c that will compose the ciphertext ct for one bit. Finally,
the Dec algorithm can recover the message from the ciphertext, only if all the identities
used during the key generation are exactly the same as the ones used in the encryption.

4.1 Our Construction

Let n = 2α be the security parameter, µ be the hierarchical parameter, σj be the Gaussian
parameters andR = Zq[x]/f(x), with f(x) = 〈xn+1〉. Notice that [x̂|x0R0,j | . . . |xk−1Rk−1,j ] =
[x̂|x̂Rj ], for Rj = Exp(r̂j) and Ri,j = rotf (ri,j).

SetUp(1n,1µ)

1. run the IdealTrapGen(n, k, q, f, σ) algorithm to select uniformly a vector â ∈ Rk, with
a short basis T ∈ Zkn×kn for Λ⊥q (A), such that A = Rotf (â);

2. choose uniformly random vectors â′j , b̂ ∈ Rkq and u ∈ Rq, for j ∈ [1, h];

3. output mpk = (â, â′j , b̂,u) and msk = T .

KeyDerive(mpk , sk t−1, id1 = d̂1, . . . , id t = d̂t)
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1. sample a short basis for lattice Λ(Aid |Ct)⊥q , with Aid = [A|C1| · · · |Ct−1], where A =
Rotf (â) and Cj = [C0,j | . . . |Ck−1,j ], for Ci,j = rotf (a′i,j) + rotf (bi ⊗ di,j) by invoking
St ← SampleBasisLeft(Aid , Ct, T, St−1, σt);

2. output sk = St.

Enc(mpk ,msg , id1 = d̂1, . . . , id t = d̂t)

1. choose a uniformly random vector s ∈ Rq and random rings r̂j ∈ {−1, 1}kn;

2. choose a noise vector x̂ ∈ Ψ
kn
αt and a noise term x ∈ Ψαt ;

3. compute ĉ = A>ids + [x̂|x̂R1| · · · |x̂Rt], for Rj = Exp(r̂j) and Aid = [A|C1| · · · |Ct];
4. compute c′ = u>s + x+ msg · bq/2e;
5. output ct = (ĉ, c′).

Dec(mpk , sk t, ct)

1. sample a vector for lattice Λ(Aid )uq , with Aid = [A|C1| · · · |Ct], using the short basis
on the secret key, by invoking algorithm ê ← SamplePre(Aid , St,u, σ), with σ =
σt
√
kn(t+ 1)ω(

√
log(tkn));

2. compute z = c′ − ê>ĉ; for z ∈ (−q/2, q/2];

3. output 0 if |z| < q/4 and 1 otherwise.

4.2 Correctness

If the exactly same identity is used during key generation and encryption, we have:

z = c′ − ê>ĉ

= u>s + x+ msg · bq/2e − ê>A>ids− ê>[x̂|x̂R1| · · · |x̂Rt]
= u>s + x+ msg · bq/2e − u>s− ê>[x̂|x̂R1| · · · |x̂Rt]
= msg · bq/2e+ x− ê>[x̂|x̂R1| · · · |x̂Rt]︸ ︷︷ ︸

error term

Note that for the correct decryption the error term must be less than q/4.

4.3 Security

In this section we prove the following theorem.

Theorem 10. If the decision-RingLWE problem is infeasible, then the HIBE scheme de-
scribed on Section 4.1 is IND-sID-CPA.

Following [1], we define additional algorithms. These will not be used in the real scheme,
but we need them in our proofs.

Sim.SetUp(1n, id?1, · · ·, id?h): The algorithm chooses random â ∈ Rkq , u ∈ Rq and r̂?j ∈
{−1, 1}kn×kn; it uses IdealTrapGen to generate b̂? ∈ Rkq with a basis T ∈ Zkn×kn for Λ⊥q (B?),
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where B? = Rotf (b̂?) and defines a′i,j ← ai ⊗ r?i,j − b?i ⊗ d?i,j . Then, it outputs mpk =

(â, â′j ,u) and msk = (r̂?j , b̂
?, T ).

Sim.KeyDerive(mpk ,msk , id1, · · ·, id t): Secret keys are now created by using the trap-
door T , sampled by Sim.SetUp, and the SampleBasisRight algorithm. It outputs sk = St,a
short basis for lattice Λuq (A|AR?1 + B?D1| · · · |AR?t + B?Dt), where A = Rotf (â?), B? =

Rotf (b̂?), R?j = Exp(r̂?j ) and Dj = Exp(d̂j − d̂?j ), for d̂j − d̂?j 6= 0, by invoking St ←
SampleBasisRight(A,B?

id , R
?, T,u, σ), for R? = [R?1| · · · |R?t ] and B?

id = [B?D1| · · · |B?Dt].
By construction, each Di,j = rotf (di,j) and D?

i,j = rotf (d?i,j) are full-rank and non-singular
matrices; therefore, Exp(Dj − D?

j ) is also a full-rank non-singular matrix. Note that
det(Dj) =

∏
det(Di,j −D?

i,j) and, since each (Di,j −D?
i,j) is a full-rank non singular matrix

(see Section 5 of [1]), then each Dj is also full-rank non-singular.

Sim.Enc(mpk ,msg , id): The algorithm differs from Enc in the sense that it uses vectors
r̂?j and b̂? instead of vectors r̂j and b̂.

For a probabilistic polynomial-time adversary A, our proof of security will consist of the
following sequence of six games between A and C. The six games are defined as follows:

Game 0 C runs the SetUp algorithm, answers A’s secret key queries using the KeyGen
algorithm, and generates the challenge ciphertext using Enc with vector id?j = id0

j and
message msg0.

Game 1 In this game, C uses the simulation algorithms. Specifically, C runs the
Sim.SetUp algorithm with id0

j , answers A’s secret key queries using the Sim.KeyGen al-

gorithm, and generates the challenge ciphertext using Sim.Enc with vector id?j = id0
j and

message msg0.

Game 2 This is the same as Game 1, except that the challenge ciphertext is randomly
chosen from the ciphertext space.

Game 3 Same as Game 2, except that C runs the Sim.SetUp algorithm with id?j = id1
j .

Game 4 Same as Game 3, except that C generates the challenge ciphertext using Sim.Enc
with id?j = id1

j and message msg1.

Game 5 C runs the SetUp algorithm, answers A’s secret key queries using the KeyGen
algorithm, and generates the challenge ciphertext using Enc with id?j = id1

j and message
msg1.

We have that for i = {0, . . . , 4}, Game i is indistinguishable from Game i+ 1 under the
appropriate assumptions.

4.3.1 Indistinguishability of Game 0 and Game 1 (or Game 4 and Game 5)

Lemma 11. The view of adversary A in Game 0 (resp. Game 4) is statistically close to
the view of A in Game 1 (resp. Game 5).

Proof.

Setup In Game 0, the ring â is generated by IdealTrapGen and rings â′j are uniformly

random in Rkq . On the other hand, in Game 1, â is chosen uniformly at random and â′j
are the concatenation of a′i,j ← ai ⊗ r?i,j − b?i ⊗ d?i,j . In both games vector u is random.
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Notice that, by Theorem 2, vectors â and b̂?, output by IdealTrapGen, are statistically
indistinguishable from a uniformly random vector.

Secret keys The secret key in Game 0 for identities id0
j is the matrix St, a short basis

for lattice Λuq (Aid ), where Aid = [A|C1| · · · |Ct], that is sampled using the SampleBasisLeft

algorithm. In Game 1, the secret key for identities id0
j is the matrix St, a short basis for

lattice Λuq (A|AR?1 +B?D1| · · · |AR?t +B?Dt), sampled with the SampleBasisRight algorithm.
Thus, the secret keys have the same distribution in both games.

Challenge Ciphertext In both games the challenge ciphertext component c′ and ĉ
are computed the same way:

ĉ = A>ids + [x̂|x̂R]

= [A|C0,1| · · · |Ck−1,1| · · · |C0,t| · · · |Ck−1,t]
>s+

[x̂|x0R0,1| · · · |xk−1Rk−1,1| · · · |x0R0,t| · · · |xk−1Rk−1,t] ∈ R2tk
q

.

But, in Game 0, the matrices Ci,j is computed as follows:

Ci,j = rotf (a′i,j) + rotf (b?i ⊗ di,j)

= rotf (a′i,j + b?i ⊗ di,j).
.

On the other hand, in Game 1, we have:

Ci,j = rotf (a′i,j) + rotf (b?i ⊗ di,j)

= rotf (ai ⊗ r?i − b?i ⊗ d?i,j) + rotf (b?i ⊗ di,j)

= rotf (ai ⊗ r?i,j)− rotf (b?i ⊗ d?i,j) + rotf (b?i ⊗ di,j)

= rotf (ai ⊗ r?i,j).

.

Let us now analyse the joint distribution of the public parameters and the challenge
ciphertext in Game 0 and Game 1. We will show that the distributions of (â, {â′j}, ĉ) in
Game 0 and in Game 1 are statistically indistinguishable.

First notice that, by Lemma 3, we have that the following two distributions are statis-
tically indistinguishable for every fixed b̂? and d̂?j :

(ai,a
′
i,j , [xi|xiR?i,j ]) ≈s

(ai,ai ⊗ r?i,j − b?i ⊗ d?i,j , [xi|xiR?i,j ]) .

Since [rotf (ai)|rotf (ai⊗r?i,j−b?i ⊗d?i,j)]
>s is statistically close to [rotf (ai)|rotf (a′i,j)]

>s,
it is possible to add each term to one side of the equation:

(ai,a
′
i,j , [rotf (ai)

>s + xi|(rotf (ai ⊗ r?i,j − b?i ⊗ d?i,j))
>s + xiR

?
i,j ]) ≈s

(ai,ai ⊗ r?i,j − b?i ⊗ d?i,j , [rotf (ai)
>s + xi|rotf (a′i,j)

>s + xiR
?
i,j ]) .

Finally, we add rotf (b?i ⊗ d?i,j)
>s to both sides:

(ai,a
′
i,j , [rotf (ai)

>s + xi|(rotf (ai ⊗ r?i,j))
>s + xiR

?
i,j ]) ≈s

(ai,ai ⊗ r?i,j − b?i ⊗ d?i,j , [rotf (ai)
>s + xi|rotf (a′i,j + b?i ⊗ d?i,j)

>s + xiR
?
i,j ]) .
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To conclude, observe that if we concatenate all the parts, we have that the distribution
on the left hand side is that of the public parameters and the challenge ciphertext in Game
0, while that on the right hand side is the distribution in Game 1.

4.3.2 Indistinguishability of Game 1 and Game 2 (or Game 3 and Game 4)

Lemma 12. The view of adversary A in Game 1 (resp. Game 3) is computationally
indistinguishable from the view of A in Game 2 (resp. Game 4) under decision-RingLWE.

Proof.

Suppose A can distinguish between Game 1 and Game 2 with non-negligible advantage.
Then, it is possible to use A to build an algorithm B to solve decision-RingLWE.

Init B is given k RingLWE challenge pairs (aj ,yj) ∈ Rq × Rq, where either yj =
aj ⊗ s + xj for a random s ∈ Rq and a noise term xj ← Ψn

α, or yj is uniformly random in
Rq. And one LWE challenge pair (a0, y0) ∈ Znq × Zq, where either y0 = 〈a0, s〉 + x0 for a
noise term x0 ← Ψα, or y0 is uniformly random in Zq.

SetUp The public parameters are constructed using the vectors of the pairs (aj ,yj).
The i-th polynomial of ring â will be the vector ai, for 1 ≤ i ≤ k and vector u will be a0.
The rings â′j are still calculated as in Sim.SetUp, i.e., a′i,j ← ai ⊗ r?i,j − b?i ⊗ d?i,j .

Secret keys All private-key extraction queries are answered using Sim.KeyGen.

Challenge Ciphertext The ciphertext CT = (ĉ?, c′?) is constructed based on the LWE
challenge pairs (aj ,yj), with ĉ? = [(y1, . . . ,ym)|R?>0 (y1, . . . ,ym)| · · · |R?>t (y1, . . . ,ym)] and
c′? = y0+Mbq/2e. If we have yj = aj⊗s+xj on the RingLWE challenge and y0 = 〈a0, s〉+x0

on the LWE challenge, then the ciphertext is distributed exactly as in Game 1, and if yj is
uniformly random inRq and y0 is uniformly random in Zq, then the ciphertext is distributed
exactly as in Game 2.

If yj = aj⊗s+xj , then (y1, . . . , ym) = (a1⊗s+x1, . . . ,ak⊗s+xm) = Rotf (â)>s+ x̂.

Therefore, for Game 1 we have

Ci,j = rotf (a′i,j) + rotf (b?i ⊗ di,j)

= rotf (ai ⊗ r?i,j − b?i ⊗ d?i,j) + rotf (b?i ⊗ di,j)

= rotf (ai ⊗ r?i,j)− rotf (b?i ⊗ d?i,j) + rotf (b?i ⊗ di,j)

= rotf (ai ⊗ r?i,j)

= rotf (ai)rotf (r?i,j),

Cj = [C0,j | · · · |Ck−1,j ]

= [rotf (a0)rotf (r?0,j)| · · · |rotf (ak−1)rotf (r?k−1,j)]

= R?>j Rotf (â)

and
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ĉ = [A|C1| · · · |Ct]>s + [x̂|x̂R?1| · · · |x̂R?t ]
= [Rotf (â)|R?>1 Rotf (â)| · · · |R?>t Rotf (â)]>s + [x̂|x̂R?1| · · · |x̂R?t ]
= [Rotf (â)>s + x̂|R?>1 Rotf (â)>s + x̂R?1| · · · |R?>t Rotf (â)>s + x̂R?t ]

= [Rotf (â)>s + x̂|R?>1 (Rotf (â)>s + x̂)| · · · |R?>t (Rotf (â)>s + x̂)]

= [(y1, . . . , ym)|R?>1 (y1, . . . , ym)| · · · |R?>t (y1, . . . , ym)] .

If yj is uniformly random in Zq then the ciphertext is uniformly random, as the ciphertext
generated by Game 2.

Guess A must guess whether it is interacting with Game 1 or Game 2. The answer to
this guess is also the answer to the RingLWE and LWE challenges, because, as we showed, if
yj is uniformly random in Rq and y0 is uniformly random in Zq, then A’s view is the same
as in Game 2 and if y0 = 〈a0, s〉 + x0 and yj = aj ⊗ s + xj , then A’s view is the same as
in Game 1.

4.3.3 Indistinguishability of Game 2 and Game 3

Lemma 13. The view of adversary A in Game 2 is statistically indistinguishable from the
view of A in Game 3

Proof.

SetUp The public parameters are generated in the same way in both games. Vectors
â and u are random and a′i,j ← ai ⊗ r?i,j − b?i ⊗ d?i,j , with d̂?j = d̂0

j for Game 2 and d̂?j = d̂1
j

for Game 3.

Secret keys All private-key extraction queries are answered using Sim.KeyGen. The
only difference is, again, that for Game 2, id?j = id0

j and, for Game 3, id?j = id1
j .

Challenge Ciphertext The challenge ciphertext in both games is randomly chosen.

All public parameters are randomly generated in both games, except for rings â′j . There-
fore, the indistinguishability of Game 2 and Game 3 only depends on the indistinguishability
of â′j . From Lemma 3 we can prove that â′j for each game is statistically close to a uniformly
random ring, because

a′i,j ← ai ⊗ r?i,j − b?i ⊗ d?i,j .

5 Conclusion

In this paper we present an ideal lattice-based IBE scheme based on the one presented by
Agrawal et al. [1]. The scheme presented by Okuhata et al. [16] is similar to ours, but
it does not fully take advantage of using ideal lattices. Representing the lattice basis as
a vector of length m instead of a n ×m matrix, and using the function rot to create the
matrices, makes it possible to reduce the public-key size. Beside that, we present a clearer
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scheme and detailed proof of security for our scheme. Although really similar, our schemes
were developed independently of the schemes described by Yang et al. [23]. Beside the ideal
lattice IBE, we also provide the hierarchical ideal lattice version of the scheme.

The first main advantage of the new scheme is the decrease in public-key size. In the
original scheme, it is O(mn), but as we do use vectors instead of matrices, the size is
decreased to O(n). The private keys, master key and ciphertext have exactly the same
size in both schemes. The second main advantage is the decrease in encryption complexity.
Since the new basis is a circular (Toeplitz) matrix, it allows fast multiplications [17]. Note
that as the TrapGen algorithm, the IdealTrapGen algorithm is also polynomial and functions
rot, Rot and Exp do not affect the complexity. Therefore, the remain algorithms in the
scheme have the same complexity as the original ones.

As in the Agrawal et al. IBE scheme, our new scheme is shown to be weak selective
secure based on the difficulty of a special case of the Learning With Errors Problem (LWE)
for ideal lattices. Therefore, our scheme retains the security of the original scheme with the
advantage of decreasing the public-key size and the complexity of the encryption algorithm.
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