
Expanding the Horizons of Autograding: InnovativeQuestions at
UBC

Jeffrey Niu∗
yinian@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Jessica Wong†
jhmwong@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Charlie Lake
clake13@alum.ubc.ca

University of British Columbia
Vancouver, Canada

Justin Rahardjo
jdr213@alum.ubc.ca

University of British Columbia
Vancouver, Canada

Hedayat Zarkoob
hzarkoob@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Oluwakemi Ola
kemiola@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Patrice Belleville
patrice@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Karina Mochetti
mochetti@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Meghan Allen
meghana@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Firas Moosvi
firas.moosvi@ubc.ca

University of British Columbia
Vancouver, Canada

Steven Wolfman
wolf@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Abstract
The popularity of autograding has grown due to increasing class
sizes and the need to reduce grading load while ensuring quality.
Autograding has conventionally been used for multiple choice and
fill in the blank questions, or to check code correctness. In this
work, we discuss the use of autograders at UBC and some non-
conventional autograding implementations in our curricula. We
reflect upon our autograder use in our courses and discuss the
benefits, implications, and considerations of this pedagogical choice.

CCS Concepts
• Social and professional topics→ Student assessment.

Keywords
Automated Assessment, Computer Science Education
ACM Reference Format:
Jeffrey Niu, Jessica Wong, Charlie Lake, Justin Rahardjo, Hedayat Zarkoob,
Oluwakemi Ola, Patrice Belleville, Karina Mochetti, Meghan Allen, Firas
Moosvi, and StevenWolfman. 2025. Expanding the Horizons of Autograding:
Innovative Questions at UBC. In Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE TS 2025), February
26-March 1, 2025, Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3641554.3701892

∗co-first author
†co-first author

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701892

1 Introduction
Autograders (AGs) have been used for decades [23] and their use has
recently proliferated to reduce grading load in large classrooms [3].
AGs help improve consistency in grading [15], improve student
learning through providing immediate feedback and enabling iter-
ation over problems [15, 16], increase student autonomy through
providing feedback flexibly [15], and encourage students to start
assignments early through automated feedback schedules [9].

AGs have conventionally graded multiple choice questions [15],
fill in the blank questions [13], or code correctness [23]. While
autograding the functional correctness of coding questions has
been well-documented, many additional factors, such as style and
syntax, play into whether a student’s code is optimal in the context
of a course. These factors and other aspects of a student’s learning
can be assessed through non-conventional AG questions.

This experience report discusses effective, innovative ways we
have already incorporated autograding into courses we teach. These
questions extend beyond conventional autograding, i.e., multiple
choice and fill in the blank questions, and questions that exam-
ine code functionality. Section 2 briefly discusses other published
work about non-conventional uses of autograding. In Section 3, we
describe eight examples of non-conventional autograding use at
UBC. We then share our reflections on the benefits and drawbacks
of integrating these innovative autograding approaches into our
curricula. Finally, Section 5 briefly presents our views on the future
of autograding before we conclude in Section 6.

2 Related Work
2.1 Autograding Reasoning
Computer science reasoning skills appear across many courses and
are valuable to assess students’ analysis of complex mathematical

https://doi.org/10.1145/3641554.3701892
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3641554.3701892

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Jeffrey Niu et al.

problems that are not well-suited to conventional autograding ap-
proaches. One way of evaluating these reasoning skills is through
Parsons problems [24]. Students are provided with a list of code
snippets, possibly including distractors, and are asked to order the
relevant code fragments to obtain a program that solves a given
problem. Variants of Parsons problems have implementations that
are immediately autograded to provide feedback [7, 30].

AG proof blocks (Parsons proof problems) scaffold students to
make the jump to full proofs [25]. Similarly, the “Incredible Proof
Machine” is an interactive theorem prover that allows students to
logically connect assumptions, theorems, and conclusions across
varying types of proofs which helps students visualize connections
between different parts of the proof [6]. Zhao et al. [33] explored au-
tograding of complete induction proofs using NLP methods. While
students benefited from this AG’s immediate feedback, they ex-
pressed a lack of trust towards it [33], and it cannot autograde all
proof questions relevant to computer science courses.

2.2 Autograding Code
Code can be assessed via various metrics. Dynamic analysis in-
volves running the code and checking the outputs and efficiency [2,
23]. Static analysis examines non-functional elements of code qual-
ity such as software complexity and code structure, style, and syn-
tax [23]. For example, code segments can be autograded by convert-
ing them into a standardized pseudocode format whose structure
and logic is evaluated relative to an answer key [20]. One potential
benefit (or drawback) of this process is it does not evaluate syn-
tax. Providing feedback on style and structure is important; Singh
et al. [27] investigated automated feedback generation by compar-
ing code structure with a reference solution. They generated and
shared a minimal set of potential corrections as feedback.

2.3 Autograding Diagrams
In the context of object oriented programming, UML diagrams are
commonly used to show relationships between types or objects.
Fill in the blank UML diagrams have been explored with moderate
success to ease grading [18]. More complex systems such as SD4ED
allow students to develop UML sequence diagrams with an interac-
tive tool [1]. Algorithmic work has also been done to autograde
UML diagrams, allowing feedback via a similarity score between
the students’ UML diagram and the answer key [17].

General graph problems have been used in conjunction with
autograding. For instance, the “Online Judge” system automates
the generation and grading of graph questions [31]. Graph auto-
generators have also been explored on other platforms such as
PrairieLearn [30]. Tools such as these are promising due to the
potential for question randomization providing students with vir-
tually unlimited variants. One caveat of using diagram questions
in general (not just autograded diagrams) is the accessibility chal-
lenges it may pose to some students. Care must be taken to ensure
that diagram questions are compatible with text-to-speech and
screen-reader systems [28].

2.4 AI and AI-Assisted Autograding
In recent years, commercial educational technology companies have
successfully incorporated AI-assisted grading into their various

Figure 1: Question and answers about argument validity.

products [26]. For instance, using computer vision to group written
work together [14] and machine learning to develop adaptive as-
sessments based on student performance on specific questions [21].

There are also clear paths for large language models (LLMs) as
autograding assessment tools. Automatic short textual answers
grading (ASAG) is the lowest hanging fruit [12] but more sophisti-
cated approaches include automated parsing of code specifications
to generate test cases and evaluating student responses to “explain
in plain English” questions [12]. In some cases, LLMs can reduce
manual grading by separating clearly correct or incorrect responses
from those the model has low confidence in evaluating correctly.

Other work on AI-assisted autograding has explored fully au-
tomated essay scoring systems using methods such as neural net-
works, ontology based techniques, and regression and classification
models [4]. AI systems can be used in more sophisticated ways as
well; for instance Bayesian inference has previously been used to
facilitate fair peer-grading at scale [8, 32].

3 Autograding Examples
3.1 Autograding Reasoning
3.1.1 AG-Proofs. In our first-year course on Models of Compu-
tation, students are given an argument and must reach a given
conclusion by using a specified set of logical equivalence laws and
rules of inference. At each step, they can use only one law or rule
and they must clearly state which premise(s) it is applied to. Our
AG provides students with immediate feedback as they practice
these types of proofs. Each new fact derived in the proof goes into
a box, as do the law or rule and the premise(s) used to deduce it
(Figure 1). The AG can provide feedback on the location of syn-
tax issues (e.g., missing brackets) and incorrect deductions, and
also identify instances where a law/rule was not used with a given
premise correctly. Figure 1 shows possible student submissions and
feedback. Instead of giving somewhat arbitrary partial marks as
we did when grading on paper, we allow multiple attempts. This
approach not only evaluates the students’ ability to reach the con-
clusion but also encourages mastery-learning by leading them to
analyze their answers critically to correct any mistakes.

3.1.2 AG-Parsons. The initial application of Parsons problems and
most of the subsequent research has been focused on programming,
but they can be used for any problem where a number of statements

Expanding the Horizons of Autograding SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

need to be reordered correctly to reach a solution. The following
question is used in our upper-level operating systems course:

“Copy-on-write allows processes to share data for reading, up
until the point that one process writes the data. We implement this
by mapping the same physical page into the address space of two
or more processes. Imagine processes 𝑋 and 𝑌 both have physical
page 𝑃 mapped into their address space. If 𝑋 tries to write to page
𝑃 , we create a copy of the page, replace the mapping in 𝑋 with a
mapping to the new page, and then let 𝑋 write to the new page.
In the area below, order the steps that the hardware and software
must take to implement copy-on-write.”

The problem then states several assumptions and provides the
following list of items to order:

(1) The OS sets RW bit in 𝑄 ’s PTE for VA to 1.
(2) A fault occurs due to a page missing from physical mem.
(3) The OS sets the RW bit in 𝑅’s PTE for VA to 0.
(4) Hardware takes a fault due to permissions.
(5) The OS copies the contents of 𝑃 to 𝑃2.
(6) The OS copies the contents of 𝑃2 to 𝑃 .
(7) The OS sets the phys. page number in 𝑄 ’s PTE for VA to 𝑃2.
(8) The OS writes 𝑃2 to disk.
(9) The OS finds 𝑃2, an unused page of memory.
(10) Process 𝑄 issued a store to address VA.

Items 2, 3, 6, 8 and 10 are distractors and do not appear in any
correct solution (for instance, 4, 9, 5, 7, 1). The question includes a
list of 29 possible distractors, five of which are chosen at random
when the problem is presented to each student. This question tests
student’s reasoning about how to implement copy-on-write.

3.2 Autograding Code
3.2.1 AG-Structure. In an introductory programming course for
non-majors, we teach a systematic program design process [11];
students design data types that model real-world information. We
designed an AG to assess whether students follow the process
taught in class.

Each data type includes a template function outlining the struc-
ture of a one-argument function that operates on the data type.
When students design a function, we expect they will modify the
input data type’s template function to inform the structure of their
function. Students are taught that the template function’s structure
will provide consistency across functions, thereby improving their
program’s readability and maintainability.

To emphasize the importance of the design process, and because
the template function is not executable, the AG uses regular expres-
sions to check whether students have deviated from the template
function’s structure. Solutions that are functionally correct will not
receive many marks unless they follow the design process.

3.2.2 AG-Efficiency. Another programming question used in a
computer hardware and operating systems course involves both
code correctness and, unlike most common uses of autograding,
code efficiency. The students are given a small C program that
computes a convolution of a large image in order to apply a filter to
it. This C program is correct, but intentionally inefficient. Students
are then asked to use their knowledge of how caches work to
improve the code. The faster solution must obviously still be correct,
so submissions that produce incorrect output do not receive any

marks. The grade given to a correct submission depends entirely
on how fast it runs compared to the original program. In order to
get full marks, students need to develop an implementation that
takes only 4% of the time of the original/baseline implementation.

3.3 Autograding Diagrams
3.3.1 AG-UML. In a second-year course on software construction,
students learn object-oriented programming. UML class diagrams
play an important role in the learning objectives for this course,
but they are laborious to create, even for paper-based exams. We
have designed a UML problem generator that helps us create new
problems more efficiently. It allows for randomization that can deter
cheating and encourages mastery-learning when students revisit
randomized variants of the same question repeatedly.

In the UML problem generator, nodes and edges can be specified.
A node specification is [not] (concrete | abstractClass | interface)
<Name> where Name is a name beginning with an uppercase letter.
The not is optional. For example:

• concrete SomeConcreteClass
• not interface SomeClassMayBeAbstract
• not concrete DefinitelyAbstract

An edge specification is [mutual] <Name1> (<type>) <Name2>where
Name1 and Name2 are legal node names and the edge goes from
Name1 to Name2. If the edge is mutual, then it is bidirectional. The
type is an edge type. The specific edge types are: (1) implements,
extends; (2) depends; and (3) aggregates, associates.

Figure 2 shows an exam question that uses the UML generation
tool. The exam question shown also uses randomization; we specify
a relationship between two or more types and then present a list
of randomly generated UML diagrams. Students must select all of
the UML diagrams that are consistent with the described types and
their relationship(s).

Figure 2: Sample UML question.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Jeffrey Niu et al.

Figure 3: A variant of a graph question where students need
to determine an edge weight to satisfy a condition.

3.3.2 AG-Graphs. In a second-year programming and algorithms
course intended for non-computer science majors, students are
taught how to parse graphs and apply algorithms. These classes
of problems are essential to develop students’ algorithmic think-
ing skills. One important example is applying Dijkstra’s algorithm
to find the shortest path between two nodes in a directed graph.
Anecdotally, students do not perceive this to be a particularly diffi-
cult concept, but over several terms students score lower on these
questions compared to other questions in this unit (higher discrimi-
nation index). To give students plenty of practice opportunities, we
used GraphViz notation [10] to develop virtually unlimited directed
graph diagrams for students to practice on, as shown in Figure 3.
Variants of this problem include giving students incomplete dia-
grams and asking them to draw edges to create graphs that are
consistent with the provided specification. Creating these problems
requires significant upfront effort, but with appropriately set con-
straints, near limitless randomization is possible by varying edge
weights and the conditions that need to be satisfied.

3.4 AI and AI-assisted Autograding
3.4.1 AG-Adaptive. In our CS1 course, where students use guided
data and function definitions, we use an adaptive AG. The course
follows the “How to Design Programs” [11] approach, which speci-
fies a five-step recipe for defining functions. The platform is a key
player in this approach, using multiple-choice questions at each
recipe step to support students’ learning. The scenarios are semi-
adaptive, with the student’s choice determining the next question,
hint, or support they are given. If a student answers a question
incorrectly, instead of a fixed score of 0, the platform steps in, pro-
viding supportive hints to illuminate the errors and then redirect
the student to a similar question that helps to re-assess the learning
goal before proceeding to the next step in the design process. The
structured approach is beneficial in isolating each step of the design
process and providing multiple support structures and questions to
ensure that misconceptions are corrected. The structure of a sce-
nario can be visualized as a network of nodes connected by edges,
similar to a graph. This structure allows for numerous connections,
leading to different pathways through the problem. Figure 4 illus-
trates a simple scenario with one main question. The main question
is the starting point, leading to three possible options. Depending

Figure 4: The structure of a one-question scenario.

on the option chosen, the next step could be a clarifying question,
immediate support before retrying the question, or the end of the
scenario. A typical scenario would have five main questions (i.e.,
one per recipe step), each question would have four options, and
each option would have zero to two clarifying questions. The plat-
form resets the problem if it determines that students are trying to
subvert the learning process. The scenario-based platform breaks
down programming problems into discrete steps; the semi-adaptive
nature also provides support for all students as needed.

3.4.2 AG-Peer-Grading. In a fourth-year course about the rela-
tionship between information technology and society, students
complete an assigned reading and write a mini-essay in response
each week. They are then asked to grade their peers’ written work
with each essay receiving 2-5 grades and each student submitting
2-5 grades. Peer grading provides faster feedback and helps stu-
dents learn the course material better by thinking critically about
each other’s work. However, without a proper way to evaluate the
quality of the peer evaluations, many students are not motivated to
put in the effort required to give high-quality feedback. Historically,
students’ grading performance in this course was partially assessed
by TAs, but this process was time-consuming and we often lacked
sufficient resources to grade everyone. We therefore switched to an
AI-based algorithm that autogrades students’ peer grading perfor-
mance. This algorithm takes in peer grading data and uses Bayesian
inference to aggregate the student-assigned grades, resulting in a
score that indicates how accurately each student graded their peers.
This approach helps aggregate students’ noisy grades to estimate
grading performance and essay grades, detect undesired grading
behavior, and direct TA efforts where they are most needed.

4 Discussion
4.1 Implications
4.1.1 Equity in Grading. AGs can improve equity in assessment by
improving grading consistency and by enabling alternative grading
practices. Consistent manual grading can be challenging, especially
when different graders are assigned to the same question. For proofs
or coding questions, evaluating how close an incomplete answer is
to the correct solution is subjective. Transitioning these types of
questions frommanual to autograding can result in more consistent
grading, ensuring that identical answers receive identical grades.
Also, the same feedback is given to all students with a given answer,
offering them the same learning opportunity. This consistency
builds students’ trust in their final grades and reduces the time
spent on regrade requests caused by human error.

Expanding the Horizons of Autograding SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Autograding allows students to make several attempts and crit-
ically analyze their incorrect answers based on feedback, giving
them a chance to understand and correctmistakes. For instance, AG-
Proofs and AG-Structure showcase questions used in all-or-nothing
grading systems where partial marks are replaced by multiple at-
tempts. In AG-Structure, students receive feedback beyond what a
typical compiler or interpreter might provide. These features align
well with alternative grading systems such as Mastery Learning [5]
and Specification Grading [22].

4.1.2 Problem Authenticity. In order for students to engage with
questions genuinely and not treat them solely as hoops that they
need to jump through for marks, students must be convinced the
questions are (at least somewhat) authentic. This means the ques-
tions are not artificially constrained by the technology used (here,
the AG), and that they might even be problems students would
need to solve in situations beyond the context of the course.

Rule of inference proofs (AG-Proofs), while not a question type
that would arise outside of this course, are authentic for two reasons:
(1) because this is precisely the type of question we would have
asked on a paper evaluation, and (2) because the answer is either
correct or not, just like a proof in a research paper. The questions
about UML diagrams (AG-UML), directed graphs (AG-Graphs), and
virtual memory (AG-Parsons) are additional examples of question
types that frequently appeared on paper evaluations. Adaptive
problem presentation (AG-Adaptive) mimics the way an instructor
or teaching assistant would guide a student through a problem,
while the Bayesian inference AG inAG-Peer-Grading also efficiently
executes the same tasks that would have taken teaching assistants
a great deal of time in the past.

4.1.3 Developing Metacognitive Skills. Students often race through
course materials without taking time to slow down and pay atten-
tion to the nuances of the content. From a constructivist perspective,
activities that enable students to focus on how they are developing
their solutions are helpful for learning [19]. One of the benefits
of our AGs is an increased focus on improving students’ metacog-
nition by designing autograded questions that allow students to
slow down and pay attention to how they construct knowledge.
In AG-Proofs, the autograded questions allow students to practice
creating proofs where they must justify each step explicitly. Exter-
nalizing thought processes in early theory courses facilitates the
active construction that enables students to isolate and identify the
reasoning involved at each step. In AG-Adaptive, the staged pro-
gramming builds metacognitive skills as students can think about
how they approach the question and confront their misconceptions
in a low-stakes environment. Furthermore, the scaffolding provided
by a staged-adaptive process tailors the learning activity to help
students construct their understanding of the material and achieve
their learning outcomes. A key aspect of metacognition is external-
izing and examining mental models. In AG-UML, the focus on UML
diagram-type questions focuses students on the relationships and
interactions between components of their course project. While
their projects are small in this CS2 course, AG-UML allows them to
see benefits of non-textual models of their software systems.

4.1.4 Emphasizing Process over Correctness. Encouraging students
to focus on the problem solving process enables them to develop

transferable skills to identify and solve problems beyond those
they have already encountered. In order to encourage students to
focus on the process, we have structured questions to steer students
towards thinking about the process they took to reach the answer.

In AG-Structure, we reward students who follow the systematic
design process, while penalizing students who write functions in an
ad-hoc manner. In AG-Adaptive, each step of the recipe is treated
as a unique sub-problem. This approach reinforces systematic pro-
gramming principles and emphasizes the importance of attention
to detail in the early design stages to avoid mistakes.

The randomization in AG-UML and AG-Graphs also drives stu-
dents to consider their process as students can attempt different
variations. These variations discourage students from guessing and
instead encourage them to construct a generalizable process for
understanding UML diagrams and graph algorithms.

4.2 Reflections
4.2.1 Students learning the AG. Students enter our program with
limited experience with autograded assessments. We observed that
students had to grapple with learning to use the AG, on top of
course concepts. This struggle was particularly pronounced for in-
troductory courses as students often lacked the domain background
to understand whether an error was due to their answer or to an
issue with the AG itself. There is a gap between student expecta-
tions of AG behavior and what the AG actually does, which can
be frustrating for the students. For example, they can be unhappy
that their code must compile for the AG to generate a grade. To
someone with domain background, this restriction seems like an
obvious expectation, but it is not to introductory students.

There can also be a perception that the AG makes things harder
as it impedes the students’ ability to submit their work. This is
particularly true for courses that are transitioning from paper-based
assessments to autograding. In another instance, when attempting
AG-Proofs, students were frustrated when they formatted their
answers incorrectly across multiple attempts. With manual grading,
these frustrations would not arise as improper formatting would
only be detected after submission. Providing immediate feedback
that pinpoints the line causing the issue helped students learn how
the AGworks and reduced their frustration. Students also found the
all-or-nothing grading scheme with multiple attempts drastically
different from a conventional approachwith one attempt and partial
marks; this led to many requests for grade reconsideration.

Another source of confusion that arose in AG-Structure is that
many students expect the AG to work like a conventional AGwhere
there is exactly one correct answer. They asked many questions on
how to modify their solution to match the correct solution, which
does not exist. To address these questions, we redirected students
towards the systematic design process to obtain a correct solution.
Finally, students in AG-Peer-Grading needed to understand that
the AG provides an unbiased estimate based on their peers, unlike
conventional grading where one grader provides a definitive score.

4.2.2 Instructors learning the AG. Most of the AGs discussed in this
paper were written, and use questions developed, by one or two
people. Their design tried to ensure that future instructors can cre-
ate new questions based on already existing ones. For instance, the
code efficiency checker from AG-Efficiency can be easily integrated

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Jeffrey Niu et al.

Example Pedagogical Value Benefits
Equity Authenticity Metacognition Process first

AG-Proofs authentic mathematical and logical thinking X X X
AG-Parsons low-barrier way to assess virtual memory comprehension X X
AG-Structure assess design and student abilities to follow templates X X X
AG-Efficiency assess knowledge of caching, run-time efficiency X
AG-UML authentic diagrams, mastery-oriented practice X X X
AG-Graphs authentic diagrams, mastery-oriented practice X X
AG-Adaptive individualized support X X X
AG-Peer-Grading reduces the need for TAs to monitor peer grading X X

Table 1: Summary of pedagogical value and benefits for each autograder example.

into another question or course that uses our autograding platform.
Similarly, AG-UML and AG-Graphs can be easily modified for dif-
ferent UML or graph questions. In AG-Proofs and AG-Structure,
we implemented custom frameworks to support our AG uses. They
expose a simple API that future instructors can leverage to create
new questions. For AG-Structure we also provided extensive docu-
mentation and unit tests to allow future instructors to extend the
framework and add further functionality. Other AGs require instruc-
tors to understand how to best use them, such as AG-Peer-Grading,
which requires extensive hyperparameter tuning.

For instructors, learning how to set up questions to target specific
concepts can be difficult. For example, in the adaptive problems
in AG-Adaptive, question design requires careful considerations
to target the concept requiring reinforcement. Each question also
needs to be carefully placed within the graph of questions. Even
labelling questions so other instructors can find similar ones can
be a difficult task as devising a classification system is non-trivial.

4.2.3 Recognizing AG pitfalls. One of the difficulties when design-
ing an AG is ensuring that it accurately reflects the course goals.
Both AG-Proofs and AG-Structure can be too strict when evaluating
an answer. The custom library used for verifying proof steps in
AG-Proofs requires specific formatting, and disallows expressions
with more than two operators within a bracket such as (𝑎 ∧ 𝑏 ∧ 𝑐).
In AG-Structure, creating regular expressions that do not result in
false positives or false negatives was difficult. We designed feedback
around known limitations and continue working to fix issues and
align the AG with the learning objectives.

Randomization within the AG can also create problems. In AG-
UML, randomization of surface-level features such as fake names
can mislead students, distracting them from the target concept.
The AG design needs to take this into account to avoid confusing
students and focus on the concepts at hand. As a simple example,
the different distractor options in AG-Parsons are only targeted
towards virtual memory misconceptions, not extraneous features.

Finally, we can unintentionally commit future instructors to
grading decisions because there is a risk that some of these decisions
get built into the AG and are non-trivial to change.

5 Future of Autograding
We foresee that the scope of autograding will expand in the future.
Integrating new computational tools, including LLMs, can enhance
autograding frameworks to grade subjective tasks [12]. These tools

can further the authenticity of all our questions by prompting
students for explanations in addition to their answers. This strategy
can be especially useful in AG-UML or AG-Graphs, where the
answer format is still multiple choice or fill in the blank.

Computer vision and NLP tools can expand the scope of what is
graded. Tools that can parse and understand scratchwork can award
partial marks based on the types of errors made. Unlike AG-Proofs,
where only fully-correct solutions earn grades, an intelligent grader
can assign grades based on an estimated level of understanding.

Future AGs can become increasingly adaptive to students’ learn-
ing. Our approach in AG-Adaptive requires manual setup of the
question network. By incorporating intelligent agents, we can au-
tomate question suggestion, parse the gaps in the student’s knowl-
edge, and offer useful next steps. LLMs can assist in generating
questions and solutions that target student knowledge gaps. How-
ever, we must exercise caution when integrating AI tools, especially
surrounding privacy and bias. The AI tools we use must be vetted to
ensure student data is protected and that their outputs are accurate
and impartial. Otherwise, our AGs may leave students with further
confusion, or worse, propagate AI tools’ biases [29] onto students.

6 Conclusion
In this paper, we described how several courses at UBC have adopted
various AGs beyond conventional autograding. We took a tool-
agnostic approach, providing a variety of questions across courses
to highlight novel ways in which we can assess students. Though
not a comprehensive look at the full space of autograding, we hope
it provides useful perspectives, implications, and reflections on
our adoption of these AGs. Approaches to autograding amongst
instructors vary: some use the most advanced tools and conform
assessments to available question types, while others create bespoke
tools to address specific needs. As computer science educators, we
can both use and design these tools so it is beneficial to discuss the
strengths and limitations of existing tools, as well as the types of
questions that can be created. It is our hope that this paper will
serve as a catalyst for future discussions.

Acknowledgments
We gratefully acknowledge Cinda Heeren and Margo Seltzer for
designing two of the question types and for their feedback on this
paper.

Expanding the Horizons of Autograding SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References
[1] Sohail Alhazmi, Charles Thevathayan, and Margaret Hamilton. 2021. Learning

UML Sequence Diagrams with a New Constructivist Pedagogical Tool: SD4ED. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(SIGCSE ’21). ACM. https://doi.org/10.1145/3408877.3432521

[2] Maha Aziz, Heng Chi, Anant Tibrewal, Max Grossman, and Vivek Sarkar. 2015.
Auto-grading for parallel programs. In Proceedings of the Workshop on Education
for High-Performance Computing (EduHPC2015). ACM, Article 3. https://doi.org/
10.1145/2831425.2831427

[3] Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. 2021. STOP
THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder
Overreliance. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21). Association for Computing Machinery, New York,
NY, USA, 1062–1068. https://doi.org/10.1145/3408877.3432430

[4] Majdi Beseiso, Omar A. Alzubi, and Hasan Rashaideh. 2021. A novel automated
essay scoring approach for reliable higher educational assessments. Journal of
Computing in Higher Education 33, 3 (June 2021), 727–746. https://doi.org/10.
1007/s12528-021-09283-1

[5] Benjamin S. Bloom. 1968. Learning for mastery. Evaluation comment 1, 2 (March
1968), 1–12.

[6] Joachim Breitner. 2016. Visual Theorem Proving with the Incredible Proof Ma-
chine. In Interactive Theorem Proving, Lecture Notes in Computer Science, Jas-
min Christian Blanchette and Stephan Merz (Eds.). Springer International Pub-
lishing, 123–139. https://doi.org/10.1007/978-3-319-43144-4_8

[7] Serena Caraco, Nelson Lojo, Michael Verdicchio, and Armando Fox. 2024. Gener-
ating Multi-Part Autogradable Faded Parsons Problems From Code-Writing Exer-
cises. In Proceedings of the 55th ACM Technical Symposium on Computer Science Ed-
ucation V. 1 (SIGCSE ’24). ACM, 179–185. https://doi.org/10.1145/3626252.3630786

[8] Binglin Chen, Matthew West, and Craig Zilles. 2022. Peer-grading “Explain
in Plain English”: A Bayesian Calibration Method for Categorical Answers. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education-
Volume 1 (SIGCSE ’22’). 133–139. https://doi.org/10.1145/3478431.3499409

[9] Paul Denny, Jacqueline Whalley, and Juho Leinonen. 2021. Promoting Early
Engagement with Programming Assignments Using Scheduled Automated Feed-
back. In Proceedings of the 23rd Australasian Computing Education Conference
(ACE ’21). ACM, 88–95. https://doi.org/10.1145/3441636.3442309

[10] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. 2002. Graphviz — Open Source Graph Drawing Tools. In Graph
Drawing: 9th International Symposium. Springer, 483–484.

[11] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing. MIT Press.

[12] Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding “Explain in Plain English” questions using NLP. In Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ’21).
ACM. https://doi.org/10.1145/3408877.3432539

[13] Edward F. Gehringer. 2015. Automated and Scalable Assessment: Present and
Future. In 2015 ASEE Annual Conference & Exposition. 26.270.1–26.270.8.

[14] Victor H. Gonzalez, Spencer Mattingly, Jessica Wilhelm, and Danielle Hemingson.
2023. Using artificial intelligence to grade practical laboratory examinations:
Sacrificing students’ learning experiences for saving time? Anatomical Sciences
Education 17 (2023). Issue 5. https://doi.org/10.1002/ase.2360

[15] Marcelo Guerra Hahn, Silvia Margarita Baldiris Navarro, Luis De La Fuente
Valentín, and Daniel Burgos. 2021. A systematic review of the effects of automatic
scoring and automatic feedback in educational settings. IEEE Access 9 (2021),
108190–108198. https://doi.org/10.1109/ACCESS.2021.3100890

[16] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos,
Jay Shah, Danielle Yucht, and Thu D. Nguyen. 2018. Providing Meaningful
Feedback for Autograding of Programming Assignments. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
ACM. https://doi.org/10.1145/3159450.3159502

[17] Rhaydae Jebli, Jaber El Bouhdidi, andMohamed Yassin Chkouri. 2024. A Proposed
Algorithm for Assessing and Grading Automatically Student UML Diagrams.

International Journal of Modern Education and Computer Science 16, 1 (Feb. 2024),
37–46. https://doi.org/10.5815/ijmecs.2024.01.04

[18] Andrew Luxton-Reilly, Ewan Tempero, Nalin Arachchilage, Angela Chang, Paul
Denny, Allan Fowler, Nasser Giacaman, Igor Kontorovich, Danielle Lottridge,
Sathiamoorthy Manoharan, Shyamli Sindhwani, Paramvir Singh, Ulrich Speidel,
Sudeep Stephen, Valerio Terragni, Jacqueline Whalley, Burkhard Wuensche, and
Xinfeng Ye. 2023. Automated Assessment: Experiences From the Trenches. In
Proceedings of the 25th Australasian Computing Education Conference (ACE ’23).
ACM, 1–10. https://doi.org/10.1145/3576123.3576124

[19] Lauren E. Margulieux, Brian Dorn, and Kristin A. Searle. 2019. Learning Sciences
for Computing Education. Cambridge University Press, 208–230.

[20] Patrick McDowell, Christine Terranova, and Kuo-Pao Yang. 2019. Design of
an Automated Pseudo-Code Grading Tool. International Journal of Engineering
Research and Technology 8, 12 (Dec. 2019), 47–50. https://doi.org/10.17577/
ijertv8is120016

[21] Jorge Leoncio Rivera Muñoz, Federico Moscoso Ojeda, Dina Lizbeth Aparicio
Jurado, Percy Fritz Puga Peña, Christian Paolo Martel Carranza, Haydeé Quispe
Berríos, Shanda Ugarte Molina, Amanda Rosa Maldonado Farfan, José Luis Arias-
Gonzáles, and Mario José Vasquez-Pauca. 2022. Systematic review of adaptive
learning technology for learning in higher education. Eurasian Journal of Educa-
tional Research 98, 98 (2022), 221–233.

[22] Linda Nilson and Claudia J. Stanny. 2015. Specifications Grading: Restoring Rigor,
Motivating Students, and Saving Faculty Time. Stylus Publishing. https://books.
google.ca/books?id=UrCpCwAAQBAJ

[23] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated As-
sessment in Computer Science Education: A State-of-the-Art Review. ACM
Transactions on Computing Education 22, 3, Article 34 (June 2022), 40 pages.
https://doi.org/10.1145/3513140

[24] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: A fun
and effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education - Volume 52 (ACE ’06). Australian
Computer Society, Inc., 157–163.

[25] Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West.
2021. Evaluating Proof Blocks Problems as Exam Questions. In Proceedings of the
17th ACM Conference on International Computing Education Research (ICER ’21).
ACM, 157–168. https://doi.org/10.1145/3446871.3469741

[26] Ido Roll and Ruth Wylie. 2016. Evolution and revolution in artificial intelligence
in education. International Journal of Artificial Intelligence in Education 26 (2016),
582–599.

[27] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). ACM, 15–26. https://doi.org/10.1145/2491956.2462195

[28] Márcio Josué Ramos Torres and Regina Barwaldt. 2019. Approaches for diagrams
accessibility for blind people: A systematic review. In 2019 IEEE Frontiers in Edu-
cation Conference (FIE ’19). 1–7. https://doi.org/10.1109/FIE43999.2019.9028522

[29] Yixin Wan, George Pu, Jiao Sun, Aparna Garimella, Kai-Wei Chang, and Nanyun
Peng. 2023. “Kelly is a Warm Person, Joseph is a Role Model”: Gender Biases in
LLM-Generated Reference Letters. In Findings of the Association for Computational
Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.).
Association for Computational Linguistics, 3730–3748. https://doi.org/10.18653/
v1/2023.findings-emnlp.243

[30] Matthew West, Nathan Walters, Mariana Silva, Timothy Bretl, and Craig Zilles.
2021. Integrating diverse learning tools using the PrairieLearn platform. In
Seventh SPLICE Workshop at SIGCSE.

[31] Rose Marie Tan Zhao Yun. 2013/2014. "Online Judge" for Data Structures and
Algorithms Course. (2013/2014).

[32] Hedayat Zarkoob and Kevin Leyton-Brown. 2024. Mechanical TA 2: Peer Grading
With TA and Algorithmic Support. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE ’24). 1470–1476. https:
//doi.org/10.1145/3626252.3630891

[33] Chenyan Zhao, Mariana Silva, and Seth Poulsen. 2024. Autograding Mathe-
matical Induction Proofs with Natural Language Processing. arXiv preprint
arXiv:2406.10268 (2024). https://doi.org/10.48550/arXiv.2406.10268

https://doi.org/10.1145/3408877.3432521
https://doi.org/10.1145/2831425.2831427
https://doi.org/10.1145/2831425.2831427
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1007/s12528-021-09283-1
https://doi.org/10.1007/s12528-021-09283-1
https://doi.org/10.1007/978-3-319-43144-4_8
https://doi.org/10.1145/3626252.3630786
https://doi.org/10.1145/3478431.3499409
https://doi.org/10.1145/3441636.3442309
https://doi.org/10.1145/3408877.3432539
https://doi.org/10.1002/ase.2360
https://doi.org/10.1109/ACCESS.2021.3100890
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.5815/ijmecs.2024.01.04
https://doi.org/10.1145/3576123.3576124
https://doi.org/10.17577/ijertv8is120016
https://doi.org/10.17577/ijertv8is120016
https://books.google.ca/books?id=UrCpCwAAQBAJ
https://books.google.ca/books?id=UrCpCwAAQBAJ
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3446871.3469741
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1109/FIE43999.2019.9028522
https://doi.org/10.18653/v1/2023.findings-emnlp.243
https://doi.org/10.18653/v1/2023.findings-emnlp.243
https://doi.org/10.1145/3626252.3630891
https://doi.org/10.1145/3626252.3630891
https://doi.org/10.48550/arXiv.2406.10268

	Abstract
	1 Introduction
	2 Related Work
	2.1 Autograding Reasoning
	2.2 Autograding Code
	2.3 Autograding Diagrams
	2.4 AI and AI-Assisted Autograding

	3 Autograding Examples
	3.1 Autograding Reasoning
	3.2 Autograding Code
	3.3 Autograding Diagrams
	3.4 AI and AI-assisted Autograding

	4 Discussion
	4.1 Implications
	4.2 Reflections

	5 Future of Autograding
	6 Conclusion
	Acknowledgments
	References

