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Abstract. In this work propose a protocol combining a Physical Un-
clonable Function (PUF) with Password-based Authenticated Key Ex-
change (PAKE). The resulting protocol provides mutual multifactor au-
thentication between client and server and establishes a session key be-
tween the authenticated parties, important features that were not found
simultaneously in the literature of PUF-based authentication. The com-
bination can be adapted to support a panic password which allows the
client to notify the server in case of emergency. Moreover, a novel pro-
tocol for two-factor transaction authentication is proposed. This ensures
that only parties authenticated in the current session can realize valid
bank transactions.
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1 Introduction

One of the main concerns in modern cryptography is that one or both communi-
cating parties can prove its identity to the other party. Authentication protocols
can be used for this purpose and generally depend on the knowledge of a long
cryptographic key of exclusive possession by the legitimate holders. For this rea-
son, it is common to employ a device to store this key securely, since human
memory, in most cases, is unable to memorize it without errors. Protocols for
Password-based Authenticated Key Exchange (PAKE) relax this requirement to
the extent that they require the knowledge of a much shorter key (password).

Authentication protocols can be applied to several scenarios, ranging from
simply obtaining access to a computer, to securing a bank transaction. The ap-
plicability of these protocols in the banking environment is extremely important,
since many features are provided to the client via the Internet and ATMs, in
which the bank primarily needs to confirm the authenticity of the client’s iden-
tity. Conversely, the client must verify the authenticity of the bank’s identity
before providing credentials or sharing financial information. In practice, most
banking security solutions for client authentication involve an token producing
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one-time passwords generated by a synchronized timer and/or some keyed func-
tion. Server authentication is performed in parallel, through certificates in the
SSL/TLS protocol. The main limitations of these client-side solutions are vulner-
ability against reverse engineering for key extraction, lack of challenge-response
mechanisms, and difficult integration with other authentication factors. In this
work, we argue that exploring unpredictable physical effects improves security
by removing the need of explicitly stored secrets that may leak or be captured
by an adversary.

Several works in the literature employ Physical Unclonable Functions (PUF)
[1,2] for constructing leakage-resilient block ciphers [3], performing device au-
thentication [4], generating cryptographic keys [5], among others. Some works
aim to replace the possession of a long-term cryptographic key with a PUF in
authentication protocols. Delvaux et. al. [6] surveys lightweight authentication
protocols and presents desirable requirements and attacks against many proto-
cols in this solution space. Tuyls and Škorić [7] proposed a PUF-based protocol
for authentication in banking applications with establishment of a session key.
However, this protocol is not secure against server impersonation attacks in a
realistic adversarial model, in which the adversary has physical access to the
PUF, as shown by Busch et al. [8]. In Section 3, we show that the correction
proposed by Busch et al. [8] for the Tuyls and Škorić protocol [7] still retains the
vulnerability against server impersonation. Another work by Frikken et al. [9]
employs a zero-knowledge proof of possession of a PUF for client authentication
through a bank-issued device and an additional password. Beyond not estab-
lishing a session key and offering only client authentication, instead of mutual
authentication, this protocol also vulnerable to offline dictionary attacks, as dis-
cussed in Section 3. As a result, these protocols cannot be considered secure for
a realistic attacker, who has temporary possession of the PUF and colludes with
an attacker able to monitor network traffic between client and server.

This paper proposes PUF+PAKE, a secure protocol resulting from the com-
bination between PUF and PAKE. This combination is sound, because the
PAKE only requires knowledge of a small shared password, and the PUF out-
put may not be large enough to be comparable to a cryptographic key. The
general construction uses the PUF output as the shared password required by
the PAKE, ensuring that the shared session key produced by the PAKE will
only be available under possession of the PUF, and improving leakage resistance
by eliminating any long-term secrets stored explicitly. The protocol will also be
protected against dictionary offline attacks by employing the PAKE. In particu-
lar, the session key can be used to protect subsequent communications involving
financial information of the client. In particular, our protocols provably satisfy
the following security requirements: (i) no long-term secret needs to be stored;
(ii) a user should be unable to successfully authenticate without his/her device;
(iii) a stolen device cannot be used to impersonate the user; (iv) and the protocol
must have protection of additional credentials against offline attacks, a property
hard to obtain with a lightweight protocol. The contributions of this paper are:
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– A server impersonation attack against the Busch et al. protocol [8] which
shows that the correction suggested by the authors for Tuyls and Škorić
protocol [7] is not sufficient. This is a new attack not presented by Delvaux
et al. [6].

– Dictionary attacks against the protocol proposed by Frikken et al. [9] that
depend only on the temporary possession of the PUF and observation of a
single trace of client-server communication.

– A protocol combining PUF and PAKE for mutual multifactor1 (using the
output of the PUF and the user’s password) authentication and session key
establishment between authenticated parties. The protocol combines sev-
eral important features present in other protocols but that were not found
together in previous protocols and offers an interesting security trade-off
when compared to related work: lower resistance against internal agents,
but enhanced security against dictionary attacks. The proposed solution is
particularly applicable to the banking sector, where clients are already used
to have an additional authentication device. Current devices could then be
augmented with a PUF to provide multifactor authentication based on both
computational and physical assumptions.

– Formal security analysis of the protocol, considering standard security no-
tions for authenticated key exchange.

– An adaptation of the proposed protocol to allow the client to notify the
server in case of emergency.

– A novel protocol for two-factor authentication of bank transactions, requiring
knowledge of the session key and an updated proof of possession of the PUF
as authentication factors.

This paper is organized as follows. In Section 2, we present the definitions
used during the development of this work. In Section 3, we show attacks against
two known protocols. The proposed protocol and its formal security analysis are
described in Sections 4 and 5, respectively. Section 6 presents a simple adaptation
of the protocol to support panic passwords. Section 7 presents our PUF-based so-
lution for transaction authentication and its security analysis. Section 8 presents
comparison and improvements over the protocols attacked on Section 3. Finally,
in Section 9, we present the conclusions and point out directions for future work.

2 Preliminary definitions

2.1 Physical Unclonable Functions

A Physical Unclonable Function [1,2] is usually implemented through an unpre-
dictable physical effect intrinsically linked to each individual instantiation. By
assumption, PUFs cannot be easily duplicated or manipulated without changing
their behavior considerably. Despite the existence of PUFs with certain security
1 We consider an authentication factor as any additional credential (such as biometric

information).
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properties being contested in the literature [10,11,12], our work depends on a
suitable choice of a PUF that satisfies rigorous security properties. Although
PUF behavior may be influenced by environmental factors, such as changes in
the temperature, we argue that there is a good PUF candidate [13] that can
be made reliable enough for actual deployment. In this work, we do not specify
a PUF to not lose generality and for simplifying the security analysis. Notice
that a strong PUF natively supporting a physically complex challenge-response
mechanism is required.

Since these physical effects are rarely completely stable, a PUF can generate
slightly different outputs for queries with the same input at two distinct points
of time. This noisy aspect hinders the direct use of PUFs in cryptographic ap-
plications, but fuzzy extractors [14] enable the conversion of PUF outputs to a
close-to-uniform distribution of binary strings. A fuzzy extractor is a pair of prob-
abilistic procedures to generate Gen : {0, 1}n ! {0, 1}` ⇥ {0, 1}⇤ and reproduce
Rep : {0, 1}n ⇥ {0, 1}⇤ ! {0, 1}` PUF outputs, where the generation process
produces auxiliary information ! for which its output can be recovered with
the Rep procedure. More formally, we fix a (m, `, t, ✏) fuzzy extractor equipped
with these procedures that are able to receive any distribution of inputs d with
min-entropy m and generate (r,!) Gen(d) with statistical difference between
(r,!) and (U

`

,!) at most negligible ✏. The correctness property requires the Rep
procedure to exactly reproduce r  Rep(d0,!) when dist(d, d0)  t.

Given its unpredictable behavior, PUFs can be mathematically modeled as
a function PUF : {0, 1}m ! {0, 1}n, for which one can define the following
response game against a polynomial adversary A [9]:

– Phase 1: The adversary A requests and receives responses (r
i

,!
i

) for any
PUF challenge d

i

of its choice.
– PUF challenge: A chooses a PUF challenge d not queried previously and

receives auxiliary information ! produced by Gen(PUF (d)), but not its
output.

– Phase 2: A can do more requests for the PUF for any other PUF challenges
different from d.

– Responde: Eventually, A outputs its guess r0 for r = Rep(PUF (d),!).

The adversary A wins if r = r0. For an unpredictable PUF, A has the winning
probability AdvPUF

A (`) = Pr[r = r0] as a negligible function of the security
parameter `. For the PUF response game above, a decisional version can be
defined as the PUF response indistinguishability game as follows [9]:

– Enroll: A executes the enrollment phase for any value d
i

of its choice, re-
ceiving the corresponding !

i

. Define the set of such pairs (d
i

,!
i

) as W.
– Phase 1: A requests and receives PUF responses r

i

for any (d
i

,!
i

) 2W of
its choice.

– PUF challenge: A chooses a PUF challenge d that has been queried during
the Enroll phase but not in Phase 1. A random bit b is chosen. If b = 0,
A receives r = Rep(PUF (d),!), where (d,!) 2 W, otherwise it receives a
string uniformly chosen from {0, 1}`.
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– Phase 2 A is allowed to query the PUF for challenges in W other than
(d,!).

– Response: Eventually, A outputs a bit b0.

The adversary A wins if b = b0. Let AdvPUF�ind

A = Pr[b = b0] be the prob-
ability of A winning the game. It is assumed that AdvPUF�ind

A (`) � 1
2 is also

negligible.

2.2 Password-based Authenticated Key Exchange

A Password-based Authenticated Key Exchange protocol establishes a shared
key over an insecure channel depending only on a small shared secret, called a
password. This is a very useful feature because an extra device is not required
for storing a long cryptographic key, but only the ability of human memory to
store a short secret.

The first PAKEs arised in the 90s, with the Diffie-Hellman Encrypted Key
Exchange (DH-EKE) protocol in 1992 [15] and the Simple Password Exponen-
tial Key Exchange (SPEKE) protocol in 1996 [16]. More recently, an important
PAKE was proposed as the AuthA protocol [17] that provides the same security
properties of previous protocols, but is simpler, has a lower cost of communi-
cation and is more versatile. Other PAKE protocols can be found in the litera-
ture [18,19], with some based on the AuthA protocol [20,21]. In this paper, we
employ a simplified variant of a AuthA protocol [20,22] as choice of PAKE for
the purpose of illustration, but any secure PAKE protocol can be used instead.

Semantic security. Protocols are subject to various attacks, because the
message exchanges occur over an insecure channel. The information transmitted
is subject to various types of threats such as eavesdropping and tampering.
A malicious agent can eavesdrop honest conversation between two entities and
record all exchanges of messages for later impersonating one of the two parties.
This type of attack is called a replay or repetition attack.

One way to avoid this type of attack is to ensure that the protocols provide
the property of freshness. This property ensures that the messages probably
belong to the current execution, and do not constitute repetitions of previous
messages exchanged in some other honest execution. The freshness property
can be obtained in various ways, such as the use of clocks like in the Kerberos
authentication system [23,24] or the use of challenges-response operations [25].

Challenge-response mechanisms are commonly used because they do not re-
quire clock synchronization between the entities making them robust and popular
in cryptographic protocol design. In this method, an entity A sends a random
value (challenge) to an entity B and requires this value to be in the next message
(response) received from B, and contrariwise. The challenge must be protected
so that it can only be read by the legitimate recipient. This can be done in several
ways [16,18,20]. For example, the client can choose a random value x 2 [1, q� 1]

where q is the size of a finite cyclic group G, compute the value of gx for a
generator g 2 G and send it to the server, which in turn, chooses a random value
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y 2 [1, q � 1], computes gy, encrypts the result using a shared secret and sends
the result to the client. Afterwards, each party verifies implicitly if the other
party received the correct nonce.

Authentication. One of the goals of authenticated key exchange proto-
cols is to ensure the authentication property, which guarantees that the shared
cryptographic key is obtained only by parties that satisfy the authentication re-
quirements. The probability of an adversary A to impersonate the client or the
server in a protocol run P is denoted by Advm�auth

A,P

(`) and thus, the protocol P
is said to be secure if this probability is negligible in the security parameter `.

3 Protocol vulnerabilities

In this section we present a dictionary attack against the protocol proposed by
Frikken et al. [9], which depends only on the temporary possession of the PUF
and observation of a single trace of client/server communication. We also present
a server impersonation attack against the protocol proposed by Busch et al. [8],
which shows that the correction suggested by the authors is insufficient. Due to
space constraints, we omit the protocol descriptions and refer the reader to the
original versions [8,9], conserving most of the notation for compatibility.

3.1 Robust authentication using PUFs [9]

In their work, Frikken et al. [9] employ a zero-knowledge proof of possession of an
I-PUF for client authentication through a bank-issued device and an additional
password. The protocol does not provide mutual authentication between client
and server, and does not establish a session key.

Since the challenge c is fixed, the PUF challenge d = H(H(c||pwd), g, P ) is
also fixed, for some auxiliary information P . With possession of the PUF, the
adversary computes a set R of values gri corresponding to the PUF challenges
d
i

= H(H(c||pwd
i

), g, P ), where pwd
i

is a candidate password (this called a dic-
tionary attack). Observe that the I-PUF assumption does not allow the attacker
to obtain the responses r

i

directly, but the result of the computation gri , similar
to the one performed during the enrollment phase, could be captured without the
client’s knowledge. Afterwards, the adversary replays to the client the challenge
c, the group description hG

q

, qi, auxiliary information P and nonce N observed in
a previous honest communication. The user then sends (H(c||pwd), hG

q

i, q, P,N)

to the device that computes d = H(H(c||pwd), g, P ) and executes the Rep pro-
cedure to obtain r. The device chooses a random value v 2 Z

q

and computes
t = gv. Following the protocol, the device computes c = H(g, gr, t, N) and
w = v � c0r mod q, and returns c0 and w to the client, which sends these values
to the adversary. The adversary then calculates a set T of values t

i

= gwgric
0
,

because he knows the values of g, w, c0, and if c0 = H(g, gri , t
i

, N) for some value
of i, learning therefore the user password if pwd = pwd

i

.
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Furthermore, an insider who steals the authentication records in this proto-
col [9] recovers the value gr for some user being able to mount an offline attack
by obtaining to the device and making queries to the PUF with several chal-
lenges d

i

= H(H(c||pwd
i

), g, P ) in hope of receiving gri = gr as response. This
observation directly contradicts a security claim against insider attacker stated
in the Abstract and Introduction of the paper [9].

3.2 Strong authentication with PUFs [8]

Tuyls and Škorić proposed a lightweight PUF-based authentication proto-
col [7] providing session key establishment without a security analysis. This
protocol is divided into two parts: the first is called the enrollment phase, in
which an identifier ID

PUF

is assigned to the PUF, a random sequence rd is
chosen, and a set of challenges C is created. Then for each challenge c

i

2 C, the
output s

i

and auxiliary information !
i

are generated, forming the sets S and W,
respectively. The memory of the card is initialized with ID

PUF

, n = 0 (number
of previous authentication attempts), m = rd; and the server stores ID

PUF

,
n = 0, m0

= rd and {C,W,S} in a database.
In [8], Busch et al. suggested a different attacker model, introducing physi-

cal control of the PUF and of its respective reader to the attacker for a short
time. This type of attacker is quite realistic in an authentication setting, for
example, in the situation where the employee of a business establishment takes
the client’s credit card away from the client’s view for billing. During this time
the employee (adversary) can read data stored in its memory or perform some
queries to obtain challenge-response pairs. Under this attacker model, an attack
where the adversary A can impersonate the server by first choosing a small num-
ber of challenges C⇤ and calculating their respective responses R⇤. Afterwards,
A reads the identifier ID

PUF

, the usage counter n and the current hash value
hn

(m) that are stored on the memory of card. With this information, the ad-
versary can compute the value M⇤

= hn�n

⇤
(m) for n⇤ > n, since the counter n

and the hash value m = h(m) are directly stored in memory. Then A calculates
K⇤

1 = h(M⇤||ID
PUF

), generates a random nonce �⇤ and chooses a challenge
c⇤
i

2 C⇤ to generates its respective output s
i

together with auxiliary informa-
tion !

i

. Then A computes a MAC on (↵||c⇤
i

||!⇤
i

||�⇤
) using the key K⇤

1 , encrypts
the MAC with K⇤

1 and sends Enc
K

⇤
1
[(↵||c⇤

i

||!⇤
i

||�⇤
)||MAC

K

⇤
1
(↵||c⇤

i

||!⇤
i

||�⇤
)] to

the reader. The reader subsequently calculates K1 = (m||ID
PUF

), decrypts
Enc

K

⇤
1
[(↵||c⇤

i

||!⇤
i

||�⇤
)||MAC

K

⇤
1
(↵||c⇤

i

||!⇤
i

||�⇤
)] and verifies if the MAC is valid.

Thus, since the MAC and decrypted nonce ↵ are valid, the protocol does not
abort with an error condition and a symmetric key K⇤ (respectively K) is es-
tablished between the reader and the adversary, proving that the adversary can
impersonate the server with success.

In order to mitigate this problem, the authors propose the use of Bloom
filters [26] or hash trees [27] for storing in the card’s memory the subset of
challenges which were initially queried by the server. This storage is done com-
pactly and does not allow an adversary with limited computational power to
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gain useful information about the challenges. We shall see now that the addi-
tional storage overhead imposed on the client does not solve the vulnerability
against server impersonation. Consider an adversary A who has access to the
credit card including the PUF only once. With access to the card, A can read
from the card’s memory the identity ID

PUF

, the usage counter n and the cur-
rent value of hash of m. Then, the adversary establishes a honest connection
with the server to determine ↵⇤, n⇤, ID

PUF

, Enc
K

⇤
1
[T ⇤||MAC

K

⇤
1
(T ⇤

)], where
T ⇤

= ↵⇤||c0⇤
i

||!⇤
i

||�⇤. Thus, A can find the challenge as follows: A calculates the
value of M⇤

= hn�n

⇤
(m), which is possible, because A has the usage counter

n and the value of m = H(m), computes K⇤
1 = h(M⇤||ID

PUF

) and can thus
decrypt Enc

K

⇤
1
[T ⇤||MAC

K

⇤
1
(T ⇤

)]. With the value of T ⇤, the adversary can ob-
tain the c

i

and !
i

that were used in the eavesdropped conversation. With a valid
challenge c

i

and its corresponding auxiliary information !
i

, the adversary can
impersonate the server successfully in the same way by Busch et al. [8].

This attack works because the client does not verify the reuse of the same
c
i

. For this “verification” to work, the client must remove each c
i

used from
the card’s memory from either the Bloom filter B or the hash tree, introducing
additional complexity and storage costs [28].

4 PUF+PAKE protocol

The protocol presented in this section uses the combination of a PUF with
a PAKE. The main idea is to use the PUF output as the shared password
required by the PAKE. This protocol is divided into two phases: enrollment and
authentication. In the enrollment phase, the server uses the PUF to generate
tuples (c

i

,!
i

, s
i

) that will be used during the authentication phase. At this stage
the server obtains a challenge d

i

generated from a nonce c
i

concatenated with the
user’s password pwd, and then uses the PUF output as input in the generation
process Gen, presented in the Section 2.1, to obtain the output s

i

and auxiliary
information !

i

that are stored along with c
i

. Notice that other authentication
factors can be concatenated to c

i

as input to the PUF, as suggested by Frikken et

al. [9]. The server discards the tuple (c
i

, s
i

,!
i

) after using it in an authentication
attempt.

The authentication phase is composed of three steps. In the first step, a
shared secret is reproduced (which is the output of the PUF queried with the
challenge d

i

) between client and server. In the second step, a PAKE protocol sat-
isfying the semantic secutity (freshness) and authentication properties is used to
establish a new session key. Finally, in the third step, an additional key confirma-
tion step is executed for ensuring mutual authentication, following the generic
transform [17].

4.1 Enrollment phase

The enrollment phase of a client’s device D, performed according to Figure 1,
is a step where the server generates and stores challenges for a client and their
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corresponding responses. We consider N as a set of nonce c
i

2 [0, 1]128, H as
a hash function and c

i

R N indicates that c
i

was sampled randomly from a
set N . We assume that this phase is physically secured, because in banking
applications there is a trust relationship between client and bank, and the client
can go the bank in person to participate in this phase. Each iteration of the
enrollment phase generates a tuple (c

i

, s
i

,!
i

) in C.

Fig. 1. Physically secure enrollment phase performed to generate a tuple (ci, si,!i) 2 C.

4.2 Authenticated key exchange phase

During the authentication, generation and verification of the session key are
performed as in Figure 2. As mentioned before, this phase is divided into three
steps, so the role of each feature, the PUF, the PAKE and the server authenti-
cation can be clear. The first part reproduces the value K

i

and K 0
i

used in the
combination between PUF and PAKE, in which the server randomly chooses a
tuple from set C, assigns s

i

as value of his key K
i

, sends c
i

and !
i

to the client,
which in turn, employs the PUF and password to generate the value for key K 0

i

.
Notice that for the protocol to be performed successfully K

i

must be equal to
K 0

i

.
The second part is flexible and can be performed by any secure

PAKE [15,16,20]. In Figure 2, we use an One-Encryption Key Exchange protocol
(OEKE) [20,22], which is a simplified variant of the PAKE protocol proposed by
Bellare et al. [17] with slight adaptations. This PAKE protocol has proofs of se-
mantic security and authentication properties [20,22], that are the two necessary
requirements for a PAKE protocol to be considered secure. Client authentication
happens in this stage.

The third part is also flexible and there are other choices of protocols for
key confirmation, as discussed by Jablon [16]. In this part, server authentica-
tion occurs and, hence, the mutual authentication between client and server is
established. Functions H0, H1 represent cryptographic hash functions that can
be constructed from a hash function H with different prefixes and E,D rep-
resent the encryption and decryption functions of an authenticated symmetric
primitive (such as AES-GCM [29]), respectively.
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Fig. 2. Authenticated key exchange phase, divided into three parts, where we use the
secure PAKE protocol.

5 Security

At any instant of time, the adversary does not have simultaneous access to all
authentication factors, otherwise an attack becomes trivial. Thus, the adversary
is unable to capture K

i

directly. In order to prevent progressively leaking K
i

by
continuous interaction, a different tuple in C is used in each authentication at-
tempt. We assume the bank has enough capacity for storing thousands of nonces
c
i

, and corresponding responses s
i

with auxiliary information !
i

. This is differ-
ent from other works that assume the existence of a stronger PUF inseparably
bound to a chip able to perform computation (I-PUF) [30]. In this case, commu-
nication between the PUF and the chip is inaccessible to an attacker and thus
cannot be tampered with.

Accordingly, we consider that the adversary A has temporary access to the
PUF when he can perform a limited number of queries to build a set of PUF
challenge-response pairs. If the number of authentication attempts is exceeded,
the server can impose a limit of time that prevents an online exhaustive search
attack in the password without blocking completely the client/server. The ad-
versary also has access to network traffic between the client and server, corre-
sponding to successful authentication attempts.

5.1 Security intuition

We analyze three scenarios in which the attacker tries to impersonate the client
and the server.
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Adversary does not have access to the PUF and to the password.
In this scenario the adversary does not have access to PUF at any moment and
does not know the client’s password. The adversary only has access to previous
honest communication traffic between the client and server.
– Client and server: since the PAKE is secure and satisfies the freshness

property, the probability of an adversary impersonating the client or the
server is the same probability as guessing K

i

. For this to work, the adversary
must be able to guess the response generated by the PUF, which happens
with negligible probability, according to Section 2.1.

Adversary does have access to the PUF, but does not know the
password. This scenario is the most realistic for authentication, where the ad-
versary has access to the PUF for a limited time but does not have knowledge
of the client’s password pwd.
– Client and server: the adversary is able to impersonate the client success-

fully if he can guess the user’s password. The probability for the adversary
to impersonate the server successfully is considered negligible either if the
distribution of passwords is nearly uniform or if there is a limited number of
unsuccessful authentication attempts. Notice that the PAKE requires each
authentication to involve interaction between client and server, allowing the
client and the server to limit the number of unsuccessful attempts. Addi-
tionally, recall that the probability distribution of passwords is usually far
from uniform, due to the fact that some passwords are commonly chosen
and prone to dictionary attacks.

Adversary does not have access the PUF, but has access to the
password. In this case the adversary cannot obtain PUF responses, but knows
the client’s password.
– Client and server: for the adversary to impersonate the client or the server,

he needs to guess the output K
i

of the PUF under input d
i

. The probability
of the adversary guessing this value is negligible, according to Section 2.1.

5.2 Formal analysis

A protocol for authenticated key exchange must satisfy two security notions: se-
mantic security (also called freshness property in this context) and the authen-
tication property. The first security notion ensures that the protocol produces
a new shared cryptographic key as result. The second security notion ensures
that the shared cryptographic key is obtained only for parties who meet certain
authentication requirements.

Theorem 1 The combined PUF+PAKE protocol using a semantically secure

PAKE protocol remains semantically secure under the assumptions of the PAKE

protocol and assuming a close to uniform statistical distribution of the PUF

outputs.
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Proof. A PAKE protocol is semantically secure given a set of computational
assumptions and uniformly random choice of a shared password. A PUF mod-
eled as an unpredictable function postprocessed by a fuzzy extractor satisfies
this requirement. Therefore, the combined construction only transfers the se-
mantic security and other security properties from the PAKE protocol to the
PAKE+PUF protocol under the same computational assumptions that guaran-
tee the semantic security of the PAKE protocol isolated.

Theorem 2 A polynomial adversary with access to the PUF (with security pa-

rameter `) has negligible probability of success in the PUF+PAKE authentication

protocol for a previous user enrollment, assuming that H is a random oracle, the

PAKE protocol satisfies the property of authentication and passwords are chosen

from a set large enough for the probability of guessing to be also negligible.

Proof. This security reduction is an adaptation of Theorem 1 as seen in the
work from [9]. Assuming that an adversary A with non-negligible success prob-
ability exists for the authentication property, we construct an adversary B for
the PUF indistinguishability using A as a black box. The adversary B chooses
a random challenge c and a random password pwd, computes d = H(c||pwd)
and chooses d as his PUF challenge for the game of indistinguishability. The
adversary B receives a pair (r

b

,!) determined by the random bit b such that
r0 = Rep(PUF (d),!) and r1 is randomly chosen; and instantiates the adver-
sary A with values (c,!) giving oracle access to H and PUF . To simulate the
random oracle H, B creates a set of tuples initialized as H

S

= (c||pwd, h) for
a randomly chosen value h. When A queries the oracle with input x, B verifies
if a pair (x, y) already exists in H

S

and returns y, otherwise adds (x, h0
) to set

H
S

and returns the randomly chosen value h0 as result. To simulate the PUF
for a query (d0,!0

), B checks if d = d0 and returns FAIL if positive. Otherwise,
B returns (r0,!0

) = Gen(d0) as a result. Thus, A has a view indistinguishable
from the real protocol and eventually produces a proof of authentication for the
possibly shared key. If this proof of authentication is correct, B returns 0 as a
result, or an random bit b0 otherwise.

First, let’s analyze the probability Pr[b = b0]. Let F be the event that B
returns FAIL. This event occurs with only negligible probability, since it requires
that the adversary A guess the password pwd or the PUF challenge d to query
the PUF. One can divide the remaining case Pr[b = b0|F ] for the two values of
b:

Pr[b = b0|F ] =

1

2

Pr[b = b0|F , b = 0] +

1

2

Pr[b = b0|F , b = 1].

Let G be the event that A produces a correct proof of authentication. We con-
dition both of the above cases on G. For the case b = 1:

Pr[b = b

0|F, b = 1] = Pr[b = b

0|F, b = 1, G] Pr[G|F, b = 1] + Pr[b = b

0|F, b = 1, G] Pr[G|F, b = 1].

We have that Pr[b = b0|F , b = 1, G] = 0, because b = 0 for the event G;
Pr[b = b0|F , b = 1, G] =

1
2 , because b = 1 occurs with 50% for the event G, and



PUF-based mutual multifactor entity and transaction authentication 13

Pr[G|F , b = 1] is a negligible function by the security of the PAKE protocol.
Hence, for some negligible function �(`):

Pr[b = b0|F , b = 1] >
1

2

� �(`).

The case b = 0 is similar:

Pr[b = b

0|F, b = 0] = Pr[b = b

0|F, b = 0, G] Pr[G|F, b = 0] + Pr[b = b

0|F, b = 0, G] Pr[G|F, b = 0].

Here, Pr[b = b0|F , b = 0, G] = 1,Pr[b = b0|F , b = 0, G] =

1
2 and Pr[G|F , b = 0] >

1
f(`) for some polynomial f , by the assumption that A breaks the authentication
property with non-negligible probability. Therefore:

Pr[b = b0|F , b = 0] >
1

f(`)
+

1

2

·
✓
1� 1

f(`)

◆
=

1

2

+

1

2f(`)
.

Substituting the terms, we have:

Pr[b = b0|F ] >
1

2

✓
1

2

+

1

2f(`)

◆
+

1

2

✓
1

2

� �(`)

◆
.

In summary, if we have Pr[b = b0|F ]� 1
2 non-negligible then, Pr[b = b0]� 1

2 is
also non-negligible and the attacker A must exist, contradicting the hypothesis
that the PAKE protocol is secure.

5.3 Checklist analysis

Delvaux et al. [6] were the pioneers in enumerating a set of ten requirements
that PUF-based protocols should possess. In the following, we do a brief analysis
about how our protocol fits into each one these requirements.

1 Complete specification: the PUF+PAKE protocol has a complete unam-
biguous specification with graphical representation of both enrollment and
authentication phases, showing details of all computations and exchanged
messages between client and server. Also, we loosely recommend a PUF [13],
noting that the protocol can be used with any PUF satisfying the security
properties.

2 Leakage resilience: the PUF+PAKE protocol does not impose secure data
storage on the client, hence, leakage of information does not occur. Data is
only stored in server side in a non-volatile memory that is assumed secure.

3 Able to handle noisiness: the PUF+PAKE protocol handles noisiness and
also non-uniform distribution of PUF outputs, using a fuzzy extractor, as
shown in Section 2.1

4 Counteracting strong PUF modeling attacks: the adversary is unable
to capture PUF challenges, because the challenges d

i

are not transmitted or
stored in the server. The challenges are correctly generated only if the adver-
sary knows the user’s password. Hence, collecting pairs (d

i

, s
i

) for mounting
machine learning modeling attacks requires physical access to the PUF.
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5 Strong PUF: the PUF+PAKE protocol requires a strong PUF providing a
large set of challenges. Hence, we can use any PUF that has response space
expansion [13].

6 Low-cost and resource-constrained: the PUF+PAKE protocol only re-
quires symmetric primitives and few public key operations. The latter can
be instantiated with elliptic curves to benefit from efficient implementations
and reduced parameter sizes.

7 Easy-to-instantiate: the PUF+PAKE protocol is easy-to-instantiate be-
cause we designed the protocol to not depend on a specific PUF, but any
PUF that satisfies the security requirements.

8 Resistance against protocols attacks: the PUF+PAKE protocol has a
formal analysis of security (Section 5.2) and no attacks are known.

9 Scalability: in banking applications, identification is easy and clients pro-
vide the bank branch and account number before performing the authenti-
cation protocol.

10 On the Mutual Authentication Order: in PUF+PAKE client authenti-
cation happens first, because in banking applications client impersonation is
more common. Changing the order of the messages at the end of the second
part (PAKE) is enough to adapt the protocol for applications in which the
server authenticates first.

6 Emergency

Panic passwords are mechanisms that allow users to use a special kind of pass-
word, called panic password, to signal the server (or any other communicant
party) that his password is being inserted as a result of coercive action [31].
They are also known as help passwords or codes in the literature. A popular
example of the use of panic passwords was employed in older versions of the
RSA SecurID device [32]. This device is intended to perform two-factor user au-
thentication for accessing network resources using both a personal identification
number and a one-time password generated by the token.

The protocol shown in Figure 2 can easily support panic passwords [31], by
using an adaptation of a known technique [9]. There are two valid passwords
for each user, both with a fixed-length shared prefix (pwd1) and distinct suffixes
that indicate normal situation (pwd2) and emergency (pwd3). Let pwd⇤ repre-
sent one of the two valid suffixes. The server is able to distinguish between the
two situations by checking what session key was derived by the protocol execu-
tion. The enrollment phase undergoes some changes and proceeds as shown in
Figure 3.

In the authentication phase, the roles for the client and server are reversed
in the illustrative PAKE, which causes no security impact when the generic
transformation of mutual authentication is applied [17]. This reversion is needed
to transfer the encryption step to the client, which will send the encryption under
one of the two possible keys, indicating normal or emergency situation. The
server can then decrypt the received message and check what kind of situation
the next message from the client corresponds.
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Fig. 3. Physically secure panic enrollment phase performed to generate a tuple
(ci,!i, pi, p

⇤
i ) 2 C⇤.

When the server detects an emergency situation, it executes the protocol
normally, so that the adversary does not notice that the panic password has
been used, therefore, both executions must be indistinguishable. In this case,
the server can send a signal to the police, warning that something suspicious is
happening or even limit the amount of money available for withdrawal.

In most cases, when there is no emergency situation, the server continues
normally and sends its message to mutual authentication. The resulting protocol
is described in Figure 4. Naturally, when notification of emergency is desirable, all
clients in any situation should use the adjusted protocol so that normal instances
of the protocol have the same communication pattern as emergency situations.
The formal analysis of security of this variant follows directly from the formal
analysis of the Section 5.2, since only simple modifications were required in the
protocol.

7 Transaction authentication protocol

In banking applications, ensuring that both parties, server and client, are au-
thenticated in the beginning of a session is not enough. It is also important to
ensure that the client remains connected and with access to the PUF at the time
when transactions are performed. Protocols with this feature are calls transac-
tion authentication protocols. The Figure 5 shows our transaction authentication
protocol, to be executed for each new transaction in a session. The protocol is
linked to the PUF+PAKE protocol shown in Section 4, since the same session
key is used here (skS and skU ) to ensure that the transaction is indeed occurring
in the current session. For this reason, it is a two-factor transaction authentica-
tion protocol, implicitly authenticating participation in the current session and
access to the previously enrolled PUF.

The protocol is performed as follows: first, the client encrypts the transaction
data T with the session key (skU ) and then sends it to the server. The server
then decrypts the transaction with its session key (skS), randomly chooses a
tuple on the set C and generates a new key K

j

based on the concatenation of
the PUF output (for a new nonce c

j

and consequently a new d
j

to the client)
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Fig. 4. Authenticated key exchange phase with support for panic passwords, where
pwd⇤ represent one of the two valid suffixes (normal (pwd2) or emergency (pwd3)
situation).

and the session key. The server then chooses a 4-digit one-time password z,
that is concatenated with T 0 as (z||T 0) and then encrypted using K

j

and sent
together with the nonce c

j

and the auxiliary information !
j

. The client compares
the received transaction data with the requested transaction, and if positive
calculates the value of K 0

j

using the PUF, his password pwd and the session key
skU . Then, the client decrypts the message Z⇤ and returns the decrypted one-
time password for verification2. Finally, the server remove the tuple (c

i

,!
i

, s
i

)

from C.
To reduce the size of C, one can employ the same tuple (c

i

,!
i

, s
i

) on all
transactions in the same session, one for entity authentication and another for
transaction authentication. Because of this, only two tuples of C are necessary
per session. In the Figure 5 , E and D are defined as previously.

7.1 Security analysis

The security analysis is restricted to the scenario where the adversary does not
have access to the PUF. Consider that the PUF+PAKE protocol was performed

2 This is the only user interaction with the protocol, besides making the transaction
request. The other operations are done by software.
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Fig. 5. Transaction authentication protocol that use the same tuple (ci,!i, si) on all
transactions in the same session.

successfully and securely, and consequently the session key is only known by
authenticated parties.

Assume that the adversary does not have access to the PUF and/or user’s
password at any moment. Otherwise, and if the adversary had authenticated
in the PUF+PAKE protocol, an attack is trivial. The adversary thus only has
access to previous traffic of honest communications between the client and server.

For an adversary to impersonate the client successfully, he would have to
guess the values of skU (client’s session key) and the output of the PUF for
the challenge d

j

that can only be computed if the adversary knows the client’s
password. As the PUF+PAKE protocol is secure, the advantage of the adversary
in guessing skS is negligible and the probability of guessing the output of the
PUF, according to Section 2.1, is also negligible. Thus, the advantage of the
adversary successfully impersonating the client is negligible.

8 Comparison

Considering the scenarios discussed in Section 5.1 the protocol developed by
Frikken et al. [9] has the same security properties as the protocol proposed in
this paper, with a notable exception when the adversary has temporary access
to the PUF, but does not know the user’s password. In the PUF+PAKE proto-
col, the adversary successfully impersonates the client or the server under these
circumstances with negligible probability for each authentication attempt. In
Section 3.1, we presented a server impersonation attack that allows the server
to discover the user password with higher probability. This happens because the
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adversary only needs to impersonate the server one time to check if the user
password is included in the set of candidate passwords queried through the PUF
and the remaining work can be done offline. The PAKE in our protocol forces the
adversary to impersonate the client/server to check a single password candidate
per authentication attempt, further allowing either the client or the server to
monitor the malicious behavior of the other party. Comparing our protocol to
Frikken et al. provides an interesting security trade-off: while our protocol pro-
vides stronger resistance against dictionary attacks, an insider attack is easier
to mount in PUF+PAKE because the PUF response is stored in the server.

Delvaux et al. [6] present many attacks against lightweight authentication
protocols. Our attack in Section 3.2 against the protocol proposed by Tuyls and
Škorić [7] is new, and illustrates the inherent limitations of lightweight proto-
cols for our target application. In short, lightweight protocols are not designed to
receive and protect additional credentials (multifactor feature) against offline at-
tacks. For attaining this goal, more computationally expensive protocols forcing
client-server interaction in every authentication attempt are needed.

9 Conclusions and future work

In this paper, we proposed a flexible authentication protocol based on a combina-
tion of PUF with PAKE that provides mutual authentication between the client
and the server establishing a session key, some of the main features for a useful
authentication protocol. This protocol can be used in various environments, for
example authentication in banking applications, in which the session key can
be used to authenticate subsequent transactions or protect financial informa-
tion in transit. In particular, the PUF+PAKE combination improves the state
of the art of authentication solutions based on PUFs, according to the formal
analysis presented. Additionally, a variant of the protocol is proposed to support
panic passwords for emergency situations where the client is compelled to deliver
the PUF and reveal his password, and a two-factor authentication solution for
transaction authentication is discussed. We also presented server impersonation
attacks on two PUF-based authentication protocols proposed in the literature,
motivating the need for mutual authentication in such applications.

For future work, we plan to develop an alternate protocol that provides se-
curity against both insider agents and offline dictionary attacks, satisfying both
of the security properties. Finally, it is important to implement the proposal
with a real PUF candidate for obtaining performance/reliability measures and
studying its practical feasibility.
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