
Expanding a Lattice-based HVE Scheme

Karina Mochetti1, Ricardo Dahab1

1Instituto de Computação (UNICAMP)
Av. Albert Einstein, 1251, 13083-852, Campinas-SP, Brazil

{mochetti,rdahab}@ic.unicamp.br

Abstract. Functional encryption systems provide finer access to encrypted data
by allowing users to learn functions of encrypted data. A Hidden-Vector Encryp-
tion Scheme (HVE) is a functional encryption primitive in which the ciphertext is
associated with a binary vector w and the secret key is associated with a special
binary vector v that allows “don’t care” entries. The decryption is only possible
if the vectors v and w are the same for all elements, except the “don’t care” en-
tries in v. HVE schemes are used to construct more sophisticated schemes that
support conjunctive and range searches. In this work we show how to expand
the basic fuzzy IBE scheme of Agrawal et al. (PKC 2012) to a hierarchical HVE
scheme. We also show how the version using ideal lattices affects the security
proof.

1. Introduction

In a functional encryption system, secret keys allow users to learn functions of encrypted
data, i.e., for a message m and a value k it is possible to evaluate a function f(k,m) given
the encryption ofm and a secret key skk, thus providing a much finer control of decryption
capabilities. Some functional encryption primitives are Identity-Based Encryption (IBE),
Attribute-Based Encryption (ABE), Inner-Product Encryption (IPE) and Hidden-Vector
Encryption (HVE) [Boneh et al. 2011] .

In a Hidden-Vector Encryption (HVE) scheme the ciphertext is associated with a
binary vector w and the secret key is associated with a special binary vector v that allows
“don’t care” entries (denoted by ?). The decryption is only possible if the vectors v and
w are the same for all elements that are not represented by ? in vector v.

HVE schemes are used on more sophisticated functional encryption schemes that
support conjunctive and range searches, for example. The first scheme was proposed
in [Boneh and Waters 2007] based on bilinear groups and proved secure under the selec-
tive model. Other schemes, also based on bilinear groups, were developed, such as the
scheme proposed in [Iovino and Persiano 2008] that uses bilinear groups of prime order
and the scheme presented in [Caro et al. 2011] that is the first fully secure construction
known.

Most lattice-based HVE schemes known can be built from Inner Product En-
cryption, such as [Agrawal et al. 2011] and [Abdalla et al. 2012]. Such construction
was first presented in [Katz et al. 2008]. Also, the basic fuzzy IBE scheme presented
in [Agrawal et al. 2012] can clearly be seen as an HVE scheme. The main focus of this
work is to expand the underlying scheme to an ideal lattice-based HVE scheme and to a
hierarchical HVE scheme.



Ideal lattices are a generalization of cyclic lattices, first presented
in [Micciancio 2002], in which the lattice corresponds to ideals in a ring Z[x]/〈f(x)〉, for
some irreducible polynomial function f(x). They can be used to decrease the parameters
needed to describe a lattice and its basis pattern can be used to improve the matrix
multiplication complexity.

For cryptosystems that use a Trusted Third Part, as HVE schemes, it is convenient
to have a hierarchy of certificate authorities, that is, the root certificate authority can
issue certificates for other certificate authorities, which can issue certificates for users.
A scheme in which a user in level t can use his/her secret key to derive a secret key for
a user at level t + 1 is called hierarchical, as introduced in [Hanaoka et al. 2009]. This
reduces the workload on a Thrusted Third Part as it does not need to generate all public
and master keys.

Our Contributions. In this work we show how to expand the basic fuzzy IBE scheme
of [Agrawal et al. 2012] to a hierarchical HVE scheme. We show that this expansion has
the same security, based on the Learning With Errors Problem (LWE), as the original
scheme, while having the new feature which reduces the role of the Thrusted Third Part
in the scheme. We also show a version using ideal lattices, that has the advantages of
smaller key sizes and more efficient matrix multiplication, and how it affects the security
proof.

2. Definitions
For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent
Zq as integers in (q/2, q/2]. We let Zn×mq denote the set of n ×m matrices with entries
in Zq. We use capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. w)
to denote vectors. The notation A> denotes the transpose of matrix A. When we say a
matrix defined over Zq has full rank, we mean that it has full rank modulo each prime
factor of q. If A1 is an n ×m matrix and A2 is an n ×m′ matrix, then [A1|A2] denotes
the n × (m + m′) matrix formed by concatenating the columns of A1 and A2. If w1 is
a length-m vector and w2 is a length m′ vector, then we let [w1|w2] denote the length-
(m + m′) vector formed by concatenating w1 and w2. However, when doing matrix-
vector multiplication we always view vectors as column vectors. For a vector v we define
|v| =

√∑
x2
i as the norm of vector v, and for matrix A, we define |A| = max |Ax|,

for |x| = 1, as the norm of matrix A. We say a function f(n) is negligible if it is O(n−c)
for all c > 0, and we use negl(n) to denote a negligible function of n. We say that
function f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to denote
a polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1 − negl(n). Given a polynomial f(x) we say a ring Z[x]/〈f(x)〉 is the
set of all polynomials g(x) mod f(x) with coefficients in Z. The notation g(x) ⊗ h(x)
denotes the multiplication of polynomials g(x) and h(x) ∈ Z[x]/〈f(x)〉 modulo f(x).
The notation [d] denotes the set of positive integers {1, 2, . . . , d}.

2.1. Hidden Vector Encryption
Based on the definition of predicate encryption by [Katz et al. 2008], we have that a Hid-
den Vector Encryption Scheme consists of the following four algorithms:

Setup(1n). Takes as input security parameter λ and outputs public-key mpk and
master secret key msk .



KeyGen(mpk ,msk , v). Takes as input public-key mpk , master secret key msk
and a vector v ∈ {0, 1, ?}l and outputs a secret key sk .

Enc(mpk ,m,w). Takes as input public parameters, message m from some as-
sociated message space, public-key mpk , a vector w ∈ {0, 1}l and outputs a ciphertext
C .

Dec(mpk , sk ,C ). Takes as input public-key mpk , ciphertext C , secret key sk
and outputs the message m.

Suppose ciphertext C is obtained by running Enc on input mpk , message m and
vector w and that sk is a secret key obtained through a call of KeyGen using the same
mpk and vector v. Then Dec, on input mpk ,C and sk returns m, except with negligible
probability, if and only if vi = wi, for all i ∈ [l] such that vi 6= ?.

For a hierarchical scheme, the KeyGen algorithm is replaced by the Derive algo-
rithm:

Derive(mpk , sk t−1, v). Takes as input public-key mpk , secret key sk t−1 for
hierarchical level t− 1 and a vector v ∈ {0, 1, ?}l, and outputs a secret key sk t for level t.

Security is modelled by means of a game between a challenger B and a proba-
bilistic polynomial-time adversaryA. In this work, we achieve selective atribute security,
meaning that A must declare its challenge vectors before seeing the public-key.

Init. A outputs challenge vectors w?
0,w

?
1.

Setup. The challenger B runs the Setup algorithm to generate public-key mpk
which it gives to the adversary A.

Phase 1. The adversary A is given oracle access to KeyGen(mpk ,msk , ·).

Challenge. The adversary A gives a pair of messages (m0,m1) to the challenger
B. Then B chooses random η

$← {0, 1}, encrypts mη under wη and sends the resulting
ciphertext to A.

Phase 2. The same as Phase 1.

Guess. The challenger A must output a guess η′ for η.

If the advantage of every probabilistic polynomial time adversary A is defined
to be |Pr [ η′ = η ] − 1

2
|, then we say the scheme has indistinguishability under chosen-

plaintext attack under the selective model (IND-sAT-CPA for short).

2.2. Lattices

This section presents the collection of results from [Agrawal et al. 2011,
Lyubashevsky et al. 2010, Micciancio and Regev 2004, Cash et al. 2010] that we
will need for our construction and proof of security.

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ
is a linearly independent set of vectors whose span is Λ. We will focus on integer lattices
and among these we will focus on the q-ary lattices defined as follows: for any integer



q ≥ 2 and any A ∈ Zn×mq , we define

Λ⊥q (A) := {e ∈ Zm : Ae = 0 mod q}
Λu
q (A) := {e ∈ Zm : Ae = u mod q}

Λq(A) := {e ∈ Zm : ∃ s ∈ Zmq with A>s = e mod q}.

2.2.1. Ideal Lattices

Let I be an ideal of the ring R = Z[x]/〈f(x)〉, i.e., a subset of R that is closed under
addition and multiplication. The ideal I is a sublattice of Zn. For a ringR = Z[x]/〈f(x)〉
we can define the basis of the ideal lattice Λ⊥q (A), with A = rotf (g) ∈ Zn×nq , where each
row i of A is given by the coefficients of xig(x) mod f(x) for i ∈ {0, n− 1}.

For a polynomial g(x) ∈ R, we can represent it as a vector a where for each
i ∈ {0, n − 1}, ai is the coefficient of xi in g(x). We assume that any polynomial is a
vector, and a⊗ b is the multiplication of the polynomials represented by vectors a and b.
For a ringR , we have that ĝ ∈ Rk is a vector of k polynomials inR. Since polynomials
are easily represented as vectors, we denote by v̂ any concatenation of vectors, i.e., v̂ =
[v0| . . . |vk], with vi a vector.

Note that if f(x) = xn + 1, then the matrix A = rotf (g) ∈ Zn×nq is an anti-
circulant matrix and for f(x) = xn − 1, we have that the matrix A = rotf (g) ∈ Zn×nq

is a circulant matrix. These lattices are called cyclic lattices and they are a special class
of ideal lattices. The two main advantages of using ideal lattices are: The basis matrix
n×m can be built from a polynomial with degree m, which results in smaller key sizes.
The multiplication of a matrix that is a basis for an ideal lattice by a vector can be done in
an efficient way [Pan 2001].

For simplicity, we define the Rot() function, that takes a vector â ∈ Rk and also
expands it to a matrix as follows:

Rot(â) =
[
rotf (a0)|rotf (a1)| . . . |rotf (ak−1)

]
2.2.2. Sampling Algorithms

This section gives the main definitions and theorems over lattices used to generate trap-
door functions.

Definition 1. Let S = {s1, . . . , sk} be a set of vectors in Rm. Let |S| denotes the length
of the longest vector in S, i.e., max1≤i≤k |si|, and S̃ := s̃1, . . . , s̃k ⊂ Rm denotes the
Gram-Schmidt orthogonalization of the vectors s1, . . . , sk. We refer to |S̃| as the Gram-
Schmidt norm of S.

Definition 2. Let L be a discrete subset of Zn. For any vector c ∈ Rn and any positive
parameter σ ∈ R>0, let ρσ,c(w) := exp (−π|x− c|2/σ2) be the Gaussian function on
Rn with center c and parameter σ. Let ρσ,c(L) :=

∑
w∈L ρσ,c(w) be the discrete integral

of ρσ,c over L, and let DL,σ,c be the discrete Gaussian distribution over L with center c
and parameter σ. Specifically, for all v ∈ L, we have DL,σ,c(v) = ρσ,c(v)

ρσ,c(L)
. For notational



convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ respectively.

The following theorem shows how to sample an essentially uniform matrix A ∈
Zn×mq along with a basis S of Λ⊥q (A) with low Gram-Schmidt norm.

Theorem 1. [Alwen and Peikert 2009] Let q, n,m be positive integers with q ≥ 2 and
m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm TrapGen(q, n,m) that
outputs a pair (A ∈ Zn×mq ,S ∈ Zm×m) such that A is statistically close to uniform in
Zn×mq and S is a basis for Λ⊥q (A), satisfying |S̃| ≤ O(

√
n log q) and |S| ≤ O(n log q)

with overwhelming probability in n.

The following theorem shows an adaptation of Ajtai’s trapdoor key generation
algorithm for ideal lattices.

Theorem 2. [Stehlé et al. 2009] Let n, σ, q, k be positive integers with q ≡ 3 mod 8,
k ≥ dlog q + 1e, let n be a power of 2 and let f(x) = xn + 1 be a degree n polynomial in
Z[x]. Then, there is a probabilistic polynomial-time algorithm IdealTrapGen(q, n, k, σ, f)

that outputs a pair (~̂a ∈ Rk,S ∈ Zkn×kn) such that ~̂a is statistically close to uniform in
Rk and S is a basis for Λ⊥q (A), for A = Rotf (~̂a), satisfying |S| = O(n log q

√
ω(log n))

with overwhelming probability in n.

The following theorems give a few sample algorithms used in lattice-based
schemes.

Theorem 3. [Gentry et al. 2008] Let A ∈ Zn×mq be a full rank matrix, let S be a short
basis of Λ⊥q (A) and let σ be the Gaussian parameters. For q,m, n integers such that
q > 2 andm > n and σ > ‖S‖·ω(

√
logm), there is a probabilistic polynomial algorithm

SamplePre(A,S,u, σ) that outputs a vector e ∈ Zm statistically close to DΛuq (A),σ.

Theorem 4. [Gentry et al. 2008] Let σ,~c be Gaussian parameter, let A ∈ Zn×m be a ma-
trix and let n,m be integers such that σ ≥ ‖A‖ ·ω(

√
log n). Then there is a probabilistic

polynomial algorithm SampleGaussian(A, σ) that outputs a vector e ∈ Zm statistically
close to DΛ(A),σ.

Theorem 5. [Agrawal et al. 2010] Let A ∈ Zn×mq be a full rank matrix, let S be a short
basis of Λ⊥q (A), let B ∈ Zn×m1

q be a matrix and let σ be a Gaussian parameter. For
q,m, n be integers such that q > 2 and m > 2n log q and σ > ‖S‖ · ω(

√
log(m+m1)),

there is a probabilistic polynomial algorithm SampleBasisLeft(A,B,S, σ) that outputs
a new basis T ∈ Zn×m+m1 for lattice Λ⊥q (F ), with F = (A|B).

Theorem 6 ([Agrawal et al. 2010]). Let A ∈ Zn×mq and B ∈ Zn×m1
q be full rank ma-

trices, let S be a short basis for Λ⊥q (B), let R ∈ {−1, 1}m×m1 be a uniform random
matrix and let σ be a Gaussian parameter. Let q,m, n be integers such that q > 2 and
m > n and let σ > ‖S‖ ·

√
m · ω(

√
logm). Then there is a probabilistic polynomial

algorithm SampleBasisRight(A,B,R,S, σ) that outputs a new basis T ∈ Zn×m+m1 for
lattice Λ⊥q (F ), with F = (A|AR + B).



2.2.3. Learning With Errors Problem

The Learning With Errors problem, or LWE, is the problem of determining a secret vector
over Fq given a polynomial number of noisy inner products. The decision variant is
to distinguish such samples from random. More formally, we define the (average-case)
problem as follows:

Definition 3. [Regev 2005] Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability
distribution on Zq. For r ∈ Znq , let Ar,χ be the probability distribution on Znq × Zq
obtained by choosing a vector a ∈ Znq uniformly at random, choosing e ∈ Zq according
to χ, and outputting (a, 〈a, r〉 + e). The decision-LWEq,n,χ problem is: for uniformly
random r ∈ Znq , given a poly(n) number of samples that are either (all) from Ar,χ or
(all) uniformly random in Znq × Zq , output 0 if the former holds and 1 if the latter holds.

The hardness of the LWE problem is summarized in the following

Definition 4. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability distribu-
tion over Zq obtained by choosing x ∈ R according to the normal distribution with mean
0 and standard deviation α/

√
2π and outputting bqxe.

Theorem 7. [Regev 2005] Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and
αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves decision-

LWEq,n,Ψα , then there exists an efficient quantum algorithm that approximates SIVP and
GapSVP to within Õ(n/α) in the worst case.

The ideal-LWE Problem is the same as described above, but with a chosen uni-
formly in Zq[x]/f(x). The hardness of the ideal-LWE problem is summarized in the
following:

Theorem 8 ([Lyubashevsky et al. 2010]). Let n, q be integers and α > 0 such that q ≥ 2,
q = 1 mod m and q be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). If there

exists an efficient (possibly quantum) algorithm that solves decision-ideal-LWEq,n,Υα ,
then there exists an efficient quantum algorithm that solves γ-SIVP and γ-SVP for
γ = Õ(n/α) in the worst case.

2.3. Shamir’s Secret Sharing

Shamir’s Secret Sharing [Shamir 1979] is a threshold scheme, i.e., a scheme to divide
data into n parts in a way that it is only possible to recover the data with at least r parts,
for r ≤ n. The scheme is based on polynomial interpolation, i.e., for data d we create
shares by choosing a random polynomial p of degree r−1 with p(0) = d, then each share
piece di, for i ∈ [n] will be a point defined by the polynomial, so di = p(i)

To recover the data, the polynomial is rebuilt using r points. Several algorithms
for polynomial evaluation and interpolation are known and can be used. One of the most
efficient method known is the Lagrange Algorithm, which calculates r polynomials lj(x),
called Lagrangian coefficients, based on the r given points (xj, yj) = (i, di) and recon-
struct the polynomial p(x) calculating



p(x) =
k∑
j=0

yjlj(x)

where,

lj(x) =
k∏

m=0

x− xm
xj − xm

.

The data will, therefore, be d = p(0) =
∑k

j=0 yjlj(0).

Lemma 1. ([Agrawal et al. 2012, Lemma 3]) Let β = (l!)2. Given k ≤ l numbers
x1, · · · , xk ∈ [1, l] define the lagrangian coefficients

lj =
∏
i 6=j

−xi
xj − xi

.

Then, for every 1 ≤ j ≤ k, the value βlj is an integer, and |βlj| ≤ β2 ≤ (l!)4.

3. Hierarchical Lattice-Based HVE Scheme
In this section we provide our hierarchical HVE scheme, with its correctness and security
proof.

3.1. Our Construction

Let n be the security parameter, σ be the Gaussian parameter, l be the length of vectors v
and w, r the threshold value and h the hierarchical depth.

Setup(1n). On input of security parameter n, the algorithm generates the public
and secret keys as follows:

(i) run the TrapGen(n, q, σ) algorithm to select uniformly l matrices Ai ∈ Zn×m (for
i ∈ [l]), with a short basis TAi

∈ Zm×m for Λ⊥q (Ai);
(ii) choose uniformly random vector u ∈ Znq ;

(iii) choose random matrices Ai,b,j and Bi (for i ∈ [l], b ∈ {0, 1} and j ∈ [h]);
(iv) output mpk = ({Ai},u, {Ai,b,j}, {Bi}) and msk = {TAi

}.

Derive(mpk , sk t−1, v1, · · ·, vt). On input of public-key mpk , secret key for the
hierarchical level t− 1 and vectors v1, · · · ,vt, the algorithm generates a secret key sk t as
follows:

(i) sample a new short basis for each lattice Λ(F i||Ai,vt,i,t + Bi)
u
q , for

F i = [Ai||Ai,v1,i,1 + Bi||...||Ai,vt−1,i,t−1 + Bi] by involving Si ←
SampleBasisLeft(F i,Ai,vt,i,t + Bi,S

′
i, σ), where S′i ∈ sk t−1;

(ii) output sk t = {Si}.

Enc(mpk ,m,w1, · · ·,wt). On input of master public-key mpk , vectors
w1, · · · ,wt, and message m ∈ {0, 1}, the algorithm generates a ciphertext C as follows:

(i) choose a uniformly random vector s $← Znq , random matrices Ri,j ∈ {−1, 1}m×m
and let β = (l!)2;



(ii) choose a noise vector xi ← Ψ
m

αt and a noise term x← Ψαt;
(iii) calculate F i = [Ai||Ai,v1,i,1 + Bi||...||Ai,vt,i,t + Bi];
(iv) create l shares of vector s such that si = [p1(i), ..., pn(i)], for n random polyno-

mials pi(x) of degree r − 1, with pi(0) = si
(v) compute ci = F>i si + β[xi||R>i xi] ∈ Z(t+1)m

q , where Ri = [Ri,1||...||Ri,t] and
c′ = u>s + β · x+ m · bq/2e ∈ Zq;

(vi) output C = ({ci}, c′).

Dec(mpk , sk t,C ). On input of master public key mpk , secret key sk t, and
ciphertext C , the algorithm does the following:

(i) let J be the set of matching bits where vγ,i = wγ,i for all γ ∈ [t] and calculate
each polynomial lj(x) =

∏
i∈J

x−i
j−i ;

(ii) the fractional Lagrangian coefficients will be lj = lj(0) for j ∈ J so that∑
lju
>sj = u>s;

(iii) calculate each ej by calling SamplePre(F j,Sj, lju, σ), where Sj ∈ sk t and σ =

σt
√
m(t+ 1)ω(

√
log(tm));

(iv) compute z = c′−
∑

e>j cj (mod q); for z ∈ (−q/2, q/2], output 0 if |z| < q/4 and
1 otherwise. Note that the threshold now is done between all vectors hierarchical,
i.e., r must be the matching lines between matrices V = [v>1 |...|v>t ] and W =
[w>1 |...|w>t ].

3.2. Correctness
If vγ,i = wγ,i, for all vγ,i 6= ?, we have:

z = c′ −
∑

e>j cj (mod q)

= u>s + βx+ m · bq/2e −
∑

e>j (F>j sj + β[xj||R>j xj]) (mod q)

= u>s + βx+ m · bq/2e −
∑

(F jej)
>sj −

∑
e>j β[xj||R>j xj] (mod q)

= u>s + βx+ m · bq/2e −
∑

lju
>sj −

∑
e>j β[xj||R>j xj] (mod q)

= u>s + βx+ m · bq/2e − u>s−
∑

e>j β[xj||R>j xj] (mod q)

= m · bq/2e+ β · x−
∑

e>j β[xj||R>j xj]︸ ︷︷ ︸
error term

(mod q)

3.3. Security Reduction
In this section we prove the following theorem.

Theorem 9. If the decision-LWEq,n,χ problem is infeasible, then the HVE scheme de-
scribed on Section 3.1 is IND-sAT-CPA .

Proof.

Init. B is given lm LWE challenge pairs (yi,j, zi.j) ∈ Znq × Zq and a pair (y, z) ∈
Znq × Zq where, either [zi,1|...|zi,m] = [yi,1|...|yi,m]>s + βxi and z = 〈y, s〉 + βx for a
random s ∈ Znq , and noise terms x ← Ψαt and xi ← Ψ

m

αt , or zi,j and z are uniformly
random.



Setup. The public key is constructed using the vectors of the challenge pairs, as
follows: Ai will be βY , where Y = [yi,1|...|yi,m], Ai,b,j will be AiRi,j −Bi, each Ri,j

is random in {−1, 1}m, matrices Bi will be computed using TrapGen and u will be y.

Secret keys. All private-key extraction queries are answered by using the trapdoor
TBi

and the SampleBasisRight algorithm. It will output sk t = {Si}, where Si is a short
basis for Λ⊥q (Ai‖AiRi + Bi) by invoking

Si ← SampleBasisRight(Ai,Bi,Ri,TBi
,u, σ).

Note that the distribution of the public parameters and keys in the real scheme
is statistically indistinguishable from that in the simulation, as in [Agrawal et al. 2010]
and [Abdalla et al. 2012].

Challenge Ciphertext. The algorithm now chooses a s′? ∈ Znq at random and
calculates s? such that all shares s?i = s′?, i.e., it solves the equation s?i = s+

∑
aji

j for
s?i = s′?, i ∈ [1, l] and j ∈ [0, r − 1].

The construction of ciphertext C = ({ci}, c′) is based on the terms of the LWE
challenges pairs, c′ = βw+mbq/2e and ci is a concatenation of vectors βR>i,j[zi,0|...|zi,m].
If [zi,0|...|zi,m] = Y >s′? + xi and w = 〈u, s〉 + x on the LWE challenges, then we have
that the ciphertext is genuine:

ci = F>i s
′? + β[xi||R>i xi]

ci = [Ai||Ai,v1,i,1 + Bi||...||Ai,vt,i,t + Bi]
>s′? + β[xi||R>i xi]

ci = [Ai||AiRi,1 −Bi + Bi||...||AiRi,t −Bi + Bi]
>s′? + β[xi||R>i xi]

ci = [Ai||AiRi,1||...||AiRi,t]
>s′? + β[xi||R>i xi]

ci = [A>i s
′? + βxi||R>i,1(A>i s

′? + βxi)||...||R>i,t(A>i s′? + βxi)]

ci = [β(Y >s′? + xi)||βR>i,1(Y >s′? + xi)||...||βR>i,t(Y >s′? + xi)]

If zi,j and z are uniformly random, then the ciphertext is randomly generated.

Guess. A must guess whether it is interacting with a genuine or with a randomly
generated ciphertext. The answer to this guess is also the answer to one of the LWE
challenges. We showed that if z and all zi,j are uniformly random, then the ciphertext is
randomly generated and if [zi,1|...|zi,m] = [yi,1|...|yi,m]>s + βxi and w = 〈y, s〉 + βx,
then the ciphertext is genuine. Therefore, B’s advantage in solving LWE is the same as
A’s advantage in distinguishing whether the ciphertext is genuine or not.

4. Conclusion

In this paper we expand the basic fuzzy IBE scheme proposed by [Agrawal et al. 2012]
into a hierarchical HVE scheme, in which users can generate secret keys, thus relieving
the task of the Trusted Third Part. Our scheme is as secure as the original one based on
the Learning With Errors Problem, while having the new feature. We also show a version
using ideal lattices, that has the advantages of smaller key sizes and more efficient matrix
multiplication, and how it affects the security proof.
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A. Ideal Lattice-Based HVE Scheme
In this section we provide the HVE scheme using ideal lattice, detailing the security proof
and showing how it is affected by this change.

A.1. Our Construction

Let n be the security parameter, σ be the Gaussian parameter, l be the length of vectors v
and w, r the threshold value andR = Zq[x]/〈xn + 1〉.

Setup(1n). On input of security parameter n, the algorithm generates the public
and secret keys as follows:

(i) run the IdealTrapGen(n, k, q, f, σ) algorithm to select uniformly 2l vectors âi,b ∈
Rk (for i ∈ [l] and b ∈ {0, 1}), with a short basis T âi,b ∈ Zkn×kn for Λ⊥q (Ai,b),
such that Ai,b = Rotf (âi,b);

(ii) choose uniformly random vector u ∈ R;
(iii) output mpk = ({âi,b},u) and msk = {T âi,b}.

KeyGen(mpk ,msk , v). On input of public-key mpk , master key msk and vec-
tor v, the algorithm generates a secret key sk as follows:

(i) choose n random polynomials pi(x) of degree r − 1, with pi(0) = ui;
(ii) create l shares of vector u such that ui = [p1(i), ..., pn(i)];

(iii) sample vectors for lattice Λ(Ai,vi)
ui
q , with Ai,vi = Rotf (âi,vi) by invoking ei ←

SamplePre(Ai,vi ,T âi,vi
,ui, σ) ∈ Zkn (for all i where vi = ?, choose random

b ∈ {0, 1} and use âi,b);
(iv) output sk = {ei}.

Enc(mpk ,m,w). On input of master public-key mpk , vector w, and message
m ∈ {0, 1}, the algorithm generates a ciphertext C as follows:

(i) choose a uniformly random vector s $← Znq and let β = (l!)2;

(ii) choose a noise vector x̂i ← Ψ
kn

αt and a noise term x← Ψαt;



(iii) compute ci = Rotf (âi,wi)
>s + βx̂i ∈ Zknq and c′ = u>s + βx+ m · bq/2e ∈ Zq;

(iv) output C = ({ci}, c′).

Dec(mpk , sk ,C ). On input of master public key mpk , secret key sk , and ci-
phertext C , the algorithm does the following:

(i) let J be the set of matching bits between vectors v and w, if |J| ≥ r; calculate
each polynomial lj(x) =

∏
i∈J

x−i
j−i ;

(ii) the fractional Lagrangian coefficients will be lj = lj(0) for j ∈ J so that∑
ljAj,wjej = u (mod q);

(iii) compute z = c′ −
∑
lje
>
j cj (mod q); for z ∈ (−q/2, q/2], output 0 if |z| < q/4

and 1 otherwise.

A.2. Correctness

If vi = wi, for all vi 6= ?, we have:

z = c′ −
∑

lje
>
j cj (mod q)

z = u>s + βx+ m · bq/2e −
∑

lje
>
j (Rotf (âj,wj)

>s + βx̂j) (mod q)

z = u>s + βx+ m · bq/2e −
∑

lj(Rotf (âj,wj)ej)
>s−

∑
lje
>
j βx̂j (mod q)

z = u>s + βx+ m · bq/2e − u>s−
∑

lje
>
j βx̂j (mod q)

z = m · bq/2e+ βx−
∑

lje
>
j βx̂j︸ ︷︷ ︸

error term

(mod q)

We have from Lemma 1 that |βlj| ≤ β2, so we need to set the parameters in a way
to guarantee that

β|x|+
∑

β2|e>j x̂j| < q/4

A.3. Security Reduction

In this section we prove the following theorem.

Theorem 10. If the decision-ideal-LWEq,n,χ and decision-LWEq,n,χ problems are infeasi-
ble, then the HVE scheme described on Section A.1 is IND-sAT-CPA .

Proof.

Init. B is given ideal-LWE l challenge pairs (ŷi, ẑi) ∈ Rk × Rk and a LWE pair
(v, w) ∈ Znq ×Zq where, either ẑi = Rotf (ŷi)

>s+βx̂i and z = 〈y, s〉+βx for a random

s ∈ Znq , and noise terms x← Ψαt and x̂i ← Ψ
kn

αt , or ẑi and z are uniformly random.

Setup. The public key is constructed using the vectors of the challenge pairs, as
follows: âi,wi will be βŷi, âi,wi will be computed using IdealTrapGen and u will be y.

Secret keys. All private-key extraction queries are answered using the following
algorithm: (i) let J be the set of matching bits between vectors v and w and |J| < r; (ii)
for all j ∈ J, use algorithm SampleGaussian(Rotf (âj,wj), σ) to find vector ej , such that
uj = Rotf (âj,wj)ej; (iii) choose randomly r − 1 − |J| vectors ui; (iii) represent each



vector ui as ui = u + a1i + ... + ar−1i
r−1, since we already calculated r vectors, it is

possible to compute all vectors ui, for all i ∈ [l]. (iv) find the remaining vector ei by
calling the SamplePre(Rotf (âi,wi),T âi,wi

,ui, σ) algorithm.

Note that the distribution of the public parameters and keys in the real scheme is
statistically indistinguishable from that in the simulation.

Challenge Ciphertext. The ciphertext C = ({ci}, c′) is constructed based on
the terms on the ideal-LWE challenges pairs, c′ = βz + mbq/2e and ci = βẑi. If ẑi =
Rotf (ŷi)

>s + x̂i on the ideal-LWE challenge and z = 〈u, s〉 + x on the LWE challenge,
then the ciphertext is genuine; if ẑi and z are uniformly random, then the ciphertext is
randomly generated.

Guess. A must guess whether it is interacting with a genuine or with a randomly
generated ciphertext. The answer to this guess is also the answer to one of the LWE
challenges. We showed that if z and all ẑi are uniformly random, then the ciphertext
is randomly generated and if ẑi = Rotf (ŷi)

>s + βx̂i and z = 〈y, s〉 + βx, then the
ciphertext is genuine. Therefore, B’s advantage in solving ideal-LWE is the same as A’s
advantage in distinguishing whether the ciphertext is genuine or not.


