
Lattice-Based Hierarchical Inner Product Encryption

Michel Abdalla1, Angelo De Caro2, and Karina Mochetti3

1 Département d’Informatique, École Normale Supérieure, France
Michel.Abdalla@ens.fr

http://www.di.ens.fr/users/mabdalla
2 Dipartimento di Informatica ed Applicazioni, Università degli Studi di Salerno, Italy

decaro@dia.unisa.it
http://www.dia.unisa.it/dottorandi/decaro/

3 Instituto de Computação, UNICAMP, Brazil
mochetti@ic.unicamp.br

http://www.ic.unicamp.br/˜mochetti/

Abstract. The notion of inner-product encryption (IPE), introduced by Katz, Sa-
hai, and Waters at Eurocrypt 2008, is a generalization of identity-based encryp-
tion in which ciphertexts and secret keys are associated to vectors in some finite
field. In an IPE scheme, a ciphertext can only be decrypted by a secret key if the
vector associated with the latter is orthogonal to that of the ciphertext. In its hier-
archical version, first proposed by Okamoto and Takashima (Asiacrypt’09), there
exists an additional delegation mechanism which allows users to delegate their
decryption capabilities to other users in the system. In this paper, we propose
the first construction of a hierarchical inner-product encryption (HIPE) scheme
based on lattices assumptions. To achieve this goal, we extend the lattice-based
IPE scheme by Agrawal, Freeman, and Vaikuntanathan (Asiacrypt’11) to the hi-
erarchical setting by employing basis delegation technics by Peikert et al. (Euro-
crypt’10) and by Agrawal et al. (Eurocrypt’10). As the underlying IPE scheme,
our new scheme is shown to be weak selective secure based on the difficulty of
the learning with errors (LWE) problem in the standard model, as long as the
total number of levels in the hierarchy is a constant. As an application, we show
how our new primitive can be used to build new chosen-ciphertext secure IPE and
wildcarded identity-based encryption schemes.

Keywords. Lattice-based cryptography, inner product, functional cryptography,
hierarchical.

1 Introduction

Functional encryption has become quite popular in the last few years because it pro-
vides the system administrator with a fine-grained control over the decryption capabil-
ities of its users. Such ability makes functional encryption schemes appealing in many
emerging applications such as cloud services where the notion of public-key encryption
reveals its inadequacy.

Even though several different flavors of functional encryption have appeared in the
literature (see [7,9,13]), it was only recently that a systematic study of this notion has

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 121–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 M. Abdalla, A. De Caro, and K. Mochetti

been proposed by Boneh, Sahai and Waters [8]. In their notion, each functional encryp-
tion scheme is associated with a functionality, which defines the set of admissible func-
tions of the plaintext to which a secret decryption key may be linked. More specifically,
in a functional encryption system for functionality F (·, ·), an authority holding a mas-
ter secret key msk , can generate a key dk that enables the computation of the function
F (k, ·) on the encrypted data. Then, using dk the decryptor can compute F (k, x) from
an encryption of x. Important examples of functional encryption are attribute-based
encryption (ABE) [20,12] and predicate encryption (PE) [9,13].

In this paper, we focus on the notion of inner-product encryption (IPE), introduced
by Katz, Sahai, and Waters at Eurocrypt 2008 [13], which is a generalization of identity-
based encryption. In an IPE scheme, ciphertexts and secret keys are associated to vec-
tors in some finite field and a ciphertext can only be decrypted by a secret key if the
vector associated with the latter is orthogonal to that of the ciphertext. In its hierar-
chical version (HIPE), first proposed by Okamoto and Takashima [16], there exists an
additional delegation mechanism which allows users to delegate their decryption ca-
pabilities to other users in the system. As pointed out in [13], IPE is a very powerful
primitive as it can be used to support conjunction, subset and range queries on encrypted
data as well as disjunctions, polynomial evaluation, and CNF and DNF formulas. More-
over, the delegation mechanism proposed by Okamoto and Takashima [16] extends even
further the capabilities of this primitive.

Since its introduction, there has been an extensive amount of work on the construc-
tion of IPE and HIPE schemes, most of them based on bilinear groups. The first IPE
scheme was proposed by Katz et al. [13]. They proved the security of their scheme in
the selective model, where the adversary must commit to the input on which it wishes to
be challenged before seeing the public parameters, under variants of the subgroup de-
cisional assumption in composite order bilinear groups. Later on, Okamoto et al. [16]
were able to move to prime order bilinear groups introducing at the same time the con-
cept of HIPE primitive. There the security was still proved in the selective model. More
recently, Okamoto et al. [17] presented a HIPE scheme that achieves full security under
the standard d-linear assumption on prime order bilinear groups.

In the lattice-based setting, the only known construction of an inner product scheme
is due to Agrawal et al. [3], which was shown to be weak selective secure based on the
difficulty of the learning with errors (LWE) problem. Informally, in a weak selective
secure IPE scheme, the set of secret keys to which the adversary can query is more
restricted than the one allowed in a standard selective secure definition.

Our Contributions. In this paper, we propose the first construction of a hierarchical
inner-product encryption scheme based on lattices assumptions. To achieve this goal,
we extend the lattice-based IPE scheme by Agrawal et al. [3] to the hierarchical setting
by employing basis delegation technics by Peikert et al. [10] and by Agrawal et al. [2].
As the underlying IPE scheme, our new scheme is shown to be weak selective secure
based on the difficulty of the learning with errors (LWE) problem in the standard model,
as long as the total number of levels in the hierarchy is a constant. As an application,
we show how our new primitive can be used to build new chosen-ciphertext secure IPE
and wildcarded identity-based encryption schemes based on lattices.

Lattice-Based HIPE 123

2 Definitions

In this section we introduce hierarchical inner-product encryption primitive and the
tools that we will use to implement it. In doing so, we adopt the same notation and
definition style used in [16,14,3].

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q
and we represent Zq as integers in (q/2, q/2]. We let Zn×m

q denote the set of n × m
matrices with entries in Zq . We use bold capital letters (e.g. A) to denote matrices,
bold lowercase letters (e.g. w) to denote vectors that are components of our encryption
scheme. The notation A� denotes the transpose of the matrix A. When we say a matrix
defined over Zq has full rank, we mean that it has full rank modulo each prime factor
of q. If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the
n×(m+m′) matrix formed by concatenatingA1 andA2. If w1 is a lengthm vector and
w2 is a lengthm′ vector, then we let [w1‖w2] denote the length (m+m′) vector formed
by concatenating w1 and w2. However, when doing matrix-vector multiplication we
always view vectors as column vectors. We say a function f(n) is negligible if it is
O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We
say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to denote a
polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1− negl(n). The function lg x is the base 2 logarithm of x. The notation
�x� denotes the nearest integer to x, rounding towards 0 for half-integers. The norm of
a matrix R ∈ R

k×m is defined as ‖R‖ := sup‖u‖=1 ‖Ru‖. The notation [d] denotes
the set of positive integers {1, 2, . . . , d}.

2.1 Hierarchical Inner-Product Encryption

Let μ be a tuple of positive integers μ = (�, d;μ1, . . . , μd) such that
∑

i∈[d] μi = �.
We call μ an hierarchical format of depth d. Let Σ|h = (Σ1 × . . .×Σh) where h ≤ d
and Σi = F

μi

N for finite field FN of order N . A hierarchical predicate fv, with v =
(v1, . . . ,vh) ∈ Σ|h, is defined as follows: fv(w) = 1, with w = (w1, . . . ,wt) ∈ Σ|t,
if and only if h ≤ t and for all i ∈ [h] we have that 〈vi,wi〉 = 0. An hierarchical inner-
product encryption with hierarchical format μ is defined by the following algorithms:

Setup(1λ, μ). Takes as input security parameter λ and hierarchical format μ and
outputs public parameters mpk and master secret key msk .

Derive(mpk , dv, vt). Takes as input the master public key mpk , the secret key for
the vector v = (v1, . . . ,vt−1) ∈ Σ|t−1, and a vector vt ∈ Σt, and outputs a secret key
dv′ for the vector v′ = (v1, . . . ,vt−1,vt).

Enc(mpk ,m, w = (w1, . . . , wt) ∈ Σ|t)). Takes as input public parameters m in
some associated message space, public parameters mpk and an attribute vector w and
outputs a ciphertext C .

Dec(mpk ,C , dv). Takes as input public parameters mpk , ciphertext C and secret
key dv and outputs the message m. We make the following consistency requirement.
Suppose ciphertext C is obtained by running Enc on input mpk , message m and at-
tribute vector w and that dv is a secret key for attribute vector v obtained through a

124 M. Abdalla, A. De Caro, and K. Mochetti

sequence of Derive calls using the same mpk . Then Dec, on input mpk ,C and dv ,
returns m, except with negligible probability, if and only if fv(w) = 1.

Security Definition. Security is modeled by means of a game between a challenger C
and a PPT adversary A. In this work, we achieve selective attribute security, meaning
that A must declare its challenge attribute vectors (w0,w1) before seeing the public
key. Moreover, A is allowed to ask queries before and even after seeing the challenge
ciphertext but it is required A to ask for keys of predicates v that cannot decrypt the
challenge ciphertext; that is, for which fv(w0) = fv(w1) = 0. This notion is called
weak attribute hiding. Specifically, the game is defined in the following way:
Init. A is given hierarchical format μ of depth d and outputs challenge vectors w0,
w1 ∈ Σ|h.

Setup. The challenger C runs the Setup algorithm to generate public parameters mpk
which it gives to the adversaryA.

Phase 1. A is given oracle access to Derive(mpk ,msk , ·). Then,A can delegate secret
keys directly by invoking the Derive algorithm.

Challenge. A gives a pair of message (m0,m1) to C. We require that for all attribute
vectors v derivable from any revealed secret key in Phase 1, fv(w0) = fv(w1) = 0.
Then C chooses random η

$← {0, 1}, encrypts mη under wη and sends the resulting
ciphertext to A.

Phase 2. The same as Phase 1 with the same restriction of the Challenge phase.

Guess. A must output a guess β′ for β. The advantage of A is defined to be
Pr [η′ = η]− 1

2 .

Definition 1. An hierarchical inner-product encryption scheme is weak attribute hiding-
selective attribute secure (IND-wAH-sAT-HIPE-CPA for short), if all polynomial time
adversaries achieve at most a negligible (in λ) advantage in the previous security
game.

2.2 Lattices

In this section we collect results from [2,3,5,15,11,10] that we will need for our con-
struction and the proof of security.

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is
a linearly independent set of vectors whose span is Λ. We will focus on integer lattices
and among these we will focus on the q-ary lattices defined as follows: for any integer
q ≥ 2 and any A ∈ Z

n×m
q , we define

Λ⊥
q (A) := {e ∈ Zm : A · e = 0 mod q}

Λu
q (A) := {e ∈ Zm : A · e = u mod q}

Λq(A) := {e ∈ Zm : ∃ s ∈ Z
m
q with At · s = e mod q}.

The lattice Λu
q (A) is a coset of Λ⊥

q (A); namely, Λu
q (A) = Λ⊥

q (A) + t for any t such
that A · t = u mod q.

Lattice-Based HIPE 125

Gram-Schmidt Norm. Let S = {s1, . . . , sk} be a set of vectors in R
m. Let ‖S‖ de-

notes the length of the longest vector in S, i.e., max1≤i≤k ‖si‖, and S̃ := s̃1, . . . , s̃k ⊂
R

m denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk. We refer to
‖S̃‖ as the Gram-Schmidt norm of S.

Gaussian Distributions. Let L be a discrete subset of Zn. For any vector c ∈ R
n

and any positive parameter σ ∈ R>0, let ρσ,c(w) := exp
(−π‖x− c‖2/σ2

)
be the

Gaussian function on R
n with center c and parameterσ. Let ρσ,c(L) :=

∑
w∈L ρσ,c(w)

be the discrete integral of ρσ,c overL, and letDL,σ,c be the discrete Gaussian distribution
over L with center c and parameter σ. Specifically, for all v ∈ L, we haveDL,σ,c(v) =
ρσ,c(v)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ

respectively. The following lemma captures standard properties of these distributions.

Lemma 2. Let q ≥ 2 and let A be a matrix in Z
n×m
q with m > n. Let TA be a basis

for Λ⊥
q (A) and σ ≥ ‖T̃A‖ · ω(

√
logm). Then for c ∈ R

m and u ∈ Z
n
q :

1. Pr
[
‖w − c‖ > σ

√
m : w

$← DΛ,σ,c

]
≤ negl(n)

2. A set of O(m logm) samples from DΛ⊥
q (A),σ contains a full rank set in Z

m, except
with negligible probability.

3. There is a PPT algorithm SampleGaussian(A,TA, σ, c) that returns x ∈ Λ⊥
q (A)

drawn from a distribution statistically close to DΛ,σ,c.
4. There is a PPT algorithm SamplePre(A,TA,u, σ) that returns x ∈ Λ⊥

q (A) sam-
pled from a distribution statistically close to DΛu

q (A),σ, whenever Λu
q (A) is not

empty.

The Norm of a Random Matrix. The following lemmata can be used to bound the
norm of a random matrix in {−1, 1}m×m.

Lemma 3. ([2, Lemma 15]) Let R be a k × m matrix chosen at random from
{−1, 1}k×m. Then Pr

[‖R‖ > 12
√
k +m

]
< e−(k+m) .

Lemma 4. ([2, Lemma 16]) Let u ∈ R
m be some vector of norm 1. Let R be a k ×

m matrix chosen at random from {−1, 1}k×m. Then Pr[‖Ru‖ >
√
kω(
√
log k)] <

negl(k).

Sampling Algorithms. Following [2,10,4,5] we will need the following algorithms to
sample short vectors and random basis from specific lattices.

Algorithm ToBasis. Micciancio and Goldwassser [31] showed that a full-rank set S
in a lattice Λ can be converted into a basis T for Λ with an equally low Gram-Schmidt
norm.

Lemma 5. ([31, Lemma 7.1]) Let Λ be an m-dimensional lattice. There is a deter-
ministic polynomial-time algorithm that, given an arbitrary basis of Λ and a full-
rank set S = s1, . . . , sm in Λ, returns a basis T of Λ satisfying ‖T̃ ‖ ≤ ‖S̃‖ and
‖T‖ ≤ ‖S‖√m/2

126 M. Abdalla, A. De Caro, and K. Mochetti

Algorithm TrapGen. Ajtai [4] and later Alwen and Peikert [5] showed how to sample
an essentially uniform matrix A ∈ Z

n×m
q along with a basis S of Λ⊥

q (A) with low
Gram-Schmidt norm.

Theorem 6. ([5, Theorem 3.2] with δ = 1/3) Let q, n,m be positive integers with q ≥
2 andm ≥ 6n lg q. There is a probabilistic polynomial-time algorithmTrapGen(q, n,m)
that outputs a pair (A ∈ Z

n×m
q ,S ∈ Z

m×m) such that A is statistically close to

uniform in Z
n×m
q and S is a basis for Λ⊥

q (A), satisfying ‖S̃‖ ≤ O(
√
n log q) and

‖S‖ ≤ O(n log q) w.o.p. in n.

We let σTG = O(
√
n log q) denote the maximum with high probability Gram-Schmidt

norm of a basis produced by TrapGen.

Algorithm ExtendBasis. Peikert et al. [10] shows how to construct a basis for
Λ⊥
q (A‖B‖C) from a basis for Λ⊥

q (B).

Theorem 7. For i = 1, 2, 3 let Ai be a matrix in Z
n×mi
q and let A := (A1‖A2‖A3).

Let T 2 be a basis of Λ⊥
q (A2). There is deterministic polynomial time algorithm

ExtendBasis(A1,A2,A3,T 2) that outputs a basis T for Λ⊥
q (A) such that ‖T̃ ‖ =

‖T̃ 2‖
Algorithm SampleLeft. The algorithm takes as input a full rank matrix A ∈ Z

n×m
q ,

a short basis TA of Λ⊥
q (A), a matrix B ∈ Z

n×m1
q , a vector u ∈ Z

n
q , and a Gaussian

parameter σ. Let F := (A‖B), then the algorithm outputs a vector e ∈ Z
m+m1 in the

coset Λu
q (F).

Theorem 8. ([2, Theorem 17], [10, Lemma 3.2]) Let q > 2,m > n and σ > ‖TA‖ ·
ω(

√
log(m+m1)). Then SampleLeft(A,B,TA,u, σ) outputs a vector e ∈ Z

m+m1

statistically close to DΛu
q (F),σ.

Algorithm SampleRight. The algorithm takes as input matrices A ∈ Z
n×k
q and R ∈

Z
k×m, a full rank matrix B ∈ Z

n×m
q and a short basis TB of Λ⊥

q (B), a vectoru ∈ Z
n
q ,

and a Gaussian parameter σ. Let F := (A‖AR + B), then the algorithm outputs a
vector e ∈ Z

k+m in the coset Λu
q (F).

Often the matrix R given to the algorithm as input will be a random matrix in
{−1, 1}m×m. Let Sm be the m-sphere {x ∈ R

m+1 : ‖x‖ = 1}. We define sR :=
‖R‖ = supx∈Sm−1 ‖R · x‖.
Theorem 9. ([2, Theorem 19]) Let q > 2,m > n and σ > ‖TB‖·sR·ω(

√
log(k +m)).

Then SampleRight(A,B,R,TB,u, σ) outputs a vector e ∈ Zk+m distributed statis-
tically close to DΛu

q (F),σ.

The LWE Problem. The Learning with Errors problem, or LWE, is the problem of
determining a secret vector over Fq given a polynomial number of noisy inner products.
The decision variant is to distinguish such samples from random. More formally, we
define the (average-case) problem as follows:

Definition 10. ([19]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability
distribution on Zq . For r ∈ Z

n
q , let Ar,χ be the probability distribution on Z

n
q × Zq

obtained by choosing a vector a ∈ Z
n
q uniformly at random, choosing e ∈ Zq according

to χ, and outputting (a, 〈a, r〉+ e).

Lattice-Based HIPE 127

(a) The search-LWEq,n,χ problem is: for uniformly random r ∈ Z
n
q , given a poly(n)

number of samples from Ar,χ, output r.
(b) The decision-LWEq,n,χ problem is: for uniformly random r ∈ Z

n
q , given a poly(n)

number of samples that are either (all) from Ar,χ or (all) uniformly random in
Z
n
q × Zq , output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algo-
rithms A, the probability that A solves the decision-LWE problem (over r and As ran-
dom coins) is negligibly close to 1/2 as a function of n.

The hardness of the LWE problem is summarized in the following:

Definition 11. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability
distribution over Zq obtained by choosing x ∈ R according to the normal distribution
with mean 0 and standard deviation α/

√
2π and outputting �qx�.

Theorem 12. ([19]) Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and
αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves decision-

LWEq,n,Ψα
, then there exists an efficient quantum algorithm that approximates SIVP

and GapSVP to within Õ(n/α) in the worst case.

Theorem 13. ([18]) Let n, q be integers and α ∈ (0, 1), and q =
∑

i qi ≤ 2n/2,
where the qi are distinct primes satisfying ω(logn)/α ≤ qi ≤ poly(n). If there exists
an efficient (classical) algorithm that solves decision-LWEq,n,Ψα

, then there exists an

efficient (classical) algorithm that approximates GapSVP to within Õ(n/α) in the worst
case.

The following lemma will be used to show correctness of decryption.

Lemma 14. ([2, Lemma 12]) Let e be some vector in Z
m and let v ← Ψ

m

α . Then the
quantity |〈e,v〉| when treated as an integer in (−q/2, q/2] satisfies |〈e,v〉| ≤ ‖e‖ ·(
qα · ω(√logm) +

√
m/2

)
w.o.p. (in m).

3 Hierarchical Inner Product Encryption Scheme

This section describes our hierarchical inner-product encryption scheme based on [3].

Intuitions. For hierarchical format μ = (�, d;μ1, . . . , μd), the public parameters will
contain random matrices (A, {Ai,j,γ}) in Z

n×m
q . The master secret key is a trapdoor

TA for A. To generate a secret key for vector v = (v1, . . . ,vt) at depth t ≤ d we use
the matrix:

Fv =

⎛

⎝A‖
∑

j∈[μ1]

k∑

γ=0

v1,j,γ ·A1,j,γ‖ . . . ‖
∑

j∈[μt]

k∑

γ=0

vt,j,γ ·At,j,γ

⎞

⎠ ∈ Z
n×(t+1)m
q

(1)
where each vi,j is r-decomposed for a certain fixed r and k = �logr q�. Then the secret
key for v is a short basis for the lattice Λ⊥

q (Fv). By using the short basis for Λ⊥
q (Fv) is

128 M. Abdalla, A. De Caro, and K. Mochetti

possible to generate a random short basis for Λ⊥
q (Fv‖vt+1

). This provides the delegation
mechanism.

Let us sketch briefly the security reduction. For challenge vector w
 = (w

1, . . . ,

w

t�), the simulator chooses the matrices A and B uniformly at random in Z

n×m
q and

construct the matrices Ai,j,γ as follows:

Ai,j,γ = ARi,j,γ − rγw

i,jB

where Ri,j,γ ∈ {−1, 1}m×m. Since the matrices A, {Ri,j,γ} are uniform and inde-
pendent in Z

n×m
q , we have that the Ai,j,γ’s are uniform in Z

n×m
q as in the real system.

Moreover the simulator has a trapdoor TB for Λ⊥
q (B) but no trapdoor for Λ⊥

q (A). To
generate a secret key for vector v = (v1, . . . ,vt), the simulator must produce a short
basis for Λ⊥

q (Fv) where

Fv =
(
A‖AR1 − 〈v1,w

1〉B‖ . . . ‖ARt − 〈vt,w

t 〉B

)

Then let

Ri =
∑

j∈[μi]

k∑

γ=0

vi,j,γ ·Ri,j,γ ∈ Z
m×m
q

R =
[
R1‖ . . . ‖Rt

] ∈ Z
m×t·m
q

Bv = [−〈v1,w

1〉B‖ . . . ‖ − 〈vt,w

t 〉B] ∈ Z

n×t·m
q

Thus Fv can be written as:

Fv =
(
A‖AR +Bv

) ∈ Z
n×(t+1)m
q . (2)

When v is not a prefix of w meaning that there exists an index i such that 〈vi,w

i 〉 �= 0,

the simulator can then extend TB to a short basis for the entire lattice Λ⊥
q (Bv). The

simulator can now generate short vectors in Λ⊥
q (Fv) using algorithm SampleRight,

which is sufficient for constructing a short basis for Λ⊥
q (Fv), as required. When v is

a prefix of w, meaning that for each i = 1, . . . , t, 〈vi,w

i 〉 = 0, then the matrix Fv

no longer depends on B and the simulators trapdoor disappears. Consequently, the
simulator can generate secret keys for all vectors other than prefixes of w
. As we will
see, for w
 the simulator can produce a challenge ciphertext that helps it solve the given
LWE challenge.

3.1 Sampling a Random Basis

In this Section we describe the algorithms that we will use to realize the delegation
mechanism and for the simulation. Following [2,10], let Λ be an m-dimensional lattice
and letO(Λ, σ) be an algorithm that generates independent samples from a distribution
statistically close to DΛ,σ . The following algorithm called SampleBasisO(Λ, σ) usesO
to generate a basis T of Λ in the following way:

Lattice-Based HIPE 129

1. For i = 1, . . . ,m, generate v
$← O(Λ, σ), if v is independent of {v1, . . . , vi−1},

set vi ← v, if not, repeat.
2. Convert the set of independent vectors v1, . . . , vm to a basis T using Lemma 6 (and

using some canonical basis of Λ) and output T .

The following theorem summarizes properties of this algorithm.

Lemma 15. For σ > b̃l(Λ)ω(
√
logm) algorithm SampleBasisO(Λ, σ) satisfies the

following properties:

1. Step 1 requires at most O(m logm) w.h.p and 2m samples in expectation.
2. With overwhelming probability ‖T̃‖ ≤ ‖T ‖ ≤ σ

√
m.

3. Up to a statistical distance, the distribution of T does not depend on the implemen-
tation of O. That is, the random variable SampleBasisO(Λ, σ) is statistically close
to SampleBasisO

′
(Λ, σ) for any algorithmO′ that samples from a distribution sta-

tistically close to DΛ,σ .

Algorithm SampleBasisLeft. We are interested in the lattice Λ⊥
q (Fv) where Fv is

defined in (1) for v = (v1, . . . ,vt). Write Fv = (A|M) for some matrices A and
M , then given a short basis TA for Λ⊥

q (A) we can implement algorithm O(Fv , σ)

by invoking SampleLeft(A,M ,TA, 0, σ). When σ > ‖T̃A‖ · ω(
√
log((t+ 1)m)),

Theorem 8 shows that the resulting vector is distributed statistically close to DΛ⊥
q (Fv),σ

as required for SampleBasis. Using the above algorithm in algorithm SampleBasis leads
to an algorithm to sample a random basis of Λ⊥

q (Fv) given a short basis of A. We refer
to this algorithm as SampleBasisLeft and summarize its properties in the following
corollary.

Corollary 16. Algorithm SampleBasisLeft(A,M ,TA, σ) outputs a basis of Λ⊥
q (Fv)

satisfying the three properties in Lemma 15 provided that A is rank n and σ > ‖T̃A‖ ·
ω
(√

log((t+ 1)m)
)

.

Algorithm SampleBasisRight. In the simulation, the matrix Fv is defined as in (2).
In this case, given a short basis TB for Λ⊥

q (B) we can implement algorithmO(Fv , σ)
as follows:

1. Using Theorem 7, extend basis TB for Λ⊥
q (B) to a basis TBv for Λ⊥

q (Bv) such

‖T̃Bv
‖ = ‖T̃B‖.

2. Then run SampleRight(A,Bv,R,TBv
, 0, σ) and output the result. When Bv

is rank n and v is not a prefix of w
 the matrix Bv is rank n as required for
SampleRight.

Let sR := ‖R‖ be the norm of the matrixR. When σ > ‖T̃B‖·sR·ω(
√
log((t+ 1)m)),

Theorem 9 shows that the resulting vector is distributed statistically close to DΛ⊥
q (Fv),σ

as required for SampleBasis. Using the above algorithm in algorithm SampleBasis leads
to an algorithm to sample a random basis of Λ⊥

q (Fv) for Fv defined in (2) given a short
basis of B. We refer to this algorithm as SampleBasisRight and summarize its proper-
ties in the following corollary.

130 M. Abdalla, A. De Caro, and K. Mochetti

Corollary 17. Algorithm SampleBasisRight(A,Bv ,R,TB, σ) outputs a basis of
DΛ⊥

q (Fv),σ satisfying the three properties in Lemma 15 provided that B is rank n, that

v is not a prefix of w
 and σ > ‖T̃B‖ · sR · ω(
√
log((t+ 1)m)).

3.2 Our Construction

Let n > 0 be the security parameter and μ = (�, d;μ1, . . . , μd) the hierarchical format.
Let q = q(n,μ) and m = m(n,μ) be positive integers. Let r = r(n,μ) ≥ 2 be and
integer and define k = k(n,μ) := �logr q�. Our hierarchical inner-product encryption
for hierarchical format μ consists of the following algorithms.

Setup(1n, μ). On input a security parameter n, and an hierarchical format of depth d
μ = (�, d;μ1, . . . , μd), the algorithm generates public and secret parameters as follows:
Use algorithm TrapGen(q, n,m) to select a uniformly random n × m-matrix A ∈
Z
n×m
q with a basis TA ∈ Z

m×m for Λ⊥
q (A) such that ‖T̃A‖ ≤ O(

√
n log q). For

i ∈ [d], j ∈ [μi] and γ = 0, . . . , k, choose uniformly random matrices Ai,j,γ ∈ Z
n×m
q .

Select a uniformly random vector u ∈ Z
n
q . Output mpk = (A, {Ai,j,γ},u) and msk =

TA.

Derive(mpk , dv, vt). On input the master public key mpk , the secret key for the
vector v = (v1, . . . ,vt−1), and the vector vt, the algorithm generates a secret key
for the vector v′ = (v1, . . . ,vt) as follows: Construct short basis for Λ⊥

q (Fv′) by
invokingS ← SampleBasisLeft(Fv,

∑
j∈[μi]

∑
γ∈k vt,j,γ ·At,j,γ , dv , σt) where Fv′ =

[
Fv‖

∑
j∈[μi]

∑k
γ=0 vt,j,γ ·At,j,γ

]
and dv is a short basis for Λ⊥

q (Fv). By Corollary

16, when σt > ‖d̃v‖ · ω(
√
log((t+ 1)m)) then ‖d̃v′‖ ≤ ‖dv′‖ ≤ σt ·

√
(t+ 1)m.

Output dv′ = S. Notice that, for the special case of the first level secret keys when v is
the empty vector ε, we define Fε := A and dv = msk .

Enc(mpk , w,m). On input the master public key mpk , the vectorw = (w1, . . . ,wt),
and the message m ∈ {0, 1}, the algorithm generates a ciphertext C as follows: Choose
a uniformly random matrix B

$← Z
n×m
q and s

$← Z
n
q . Choose a noise vector x← Ψ

m

αt

and a noise term x ← Ψαt . Compute c0 = A�s + x ∈ Z
m
q . For i ∈ [t], j ∈ [μi]

and γ = 0, . . . , k choose a random matrix Ri,j,γ ∈ {−1, 1}m×m and compute ci,j,γ =

(Ai,j,γ + rγwi,jB)�s +R�
i,j,γx ∈ Z

m
q . Compute c′ = u�s + x + m · �q/2� ∈ Zq .

Output C = (c0, {ci,j,γ}, c′).

Dec(mpk , dv,C). On input the master public key mpk , the secret key for the vec-
tor v = (v1, . . . ,vt), and a ciphertext C = (c0, {ci,j,γ}, c′), the algorithm does the
following: For i ∈ [t] define the r-ary expansion of the vector vi and compute cvi

=
∑

j∈[μi]

∑k
γ=0 vi,j,γ · ci,j,γ . Let c = [c0‖cv1

‖ . . . ‖cvt
]. Set τt := σt ·

√
(t+ 1)m ·

ω(
√
(t+ 1)m). Then τt ≥ ‖d̃v‖ · ω(

√
(t+ 1)m). Compute ev = SamplePre(Fv , dv ,

u, τt) and z = c′ − e�v · c.
Interpreter z as in integer in (−q/2, q/2], then output 0 if |z| < q/4 and 1 otherwise.

Lattice-Based HIPE 131

3.3 Correctness

Lemma 18. For hierarchical format μ = (�, d;μ1, . . . , μd) of depth d, suppose the
parameters q and αt, for each t ∈ [d], are such that q/ log q = Ω(σt · μ · r

log r ·m3/2)

andαt ≤ (t·log q·σt ·μ· r
log r ·m·ω(

√
logm))−1, where μ = maxi∈[d] μi. Moreover, for

vectors v = (v1, . . . ,vt) and w = (w1, . . . ,wh), let dv be the basis of the lattice Fv

obtained through a sequence of calls to the Derive algorithm, let C ← Enc(mpk ,w,m)
and m′ ← Dec(mpk , dv,C).

Then, if fv(w) = 1, namely 〈vi,wi〉 = 0 (mod q) for each i ∈ [t], then with
overwhelming probability we have m′ = m.

Proof. Just for notation simplification, let

Ãi =

⎛

⎝
∑

j∈[μ]

k∑

γ=0

vi,j,γAi,j,γ

⎞

⎠ and R̃i =
∑

j∈[μ]

k∑

γ=0

vi,j,γR
�
i,j,γx .

Then, for each i ∈ [t], the decryption algorithm computes:

cvi
=

∑

j∈[μ]

k∑

γ=0

vi,j,γ · ci,j,γ

=
∑

j∈[μ]

k∑

γ=0

vi,j,γ ·
[
(Ai,j,γ + rγwi,jB)�s+R�

i,j,γx
]

= Ãi

�
s+

⎛

⎝
∑

j∈[μ]

k∑

γ=0

rγvi,j,γwi,j

⎞

⎠

︸ ︷︷ ︸
〈vi,wi〉

B�s+ R̃i .

If 〈vi,wi〉 = 0 then we have:

cvi
= Ãi

�
s+ R̃i (mod q) .

Thus, if for each i ∈ [t], 〈vi,wi〉 = 0 then c can be written as:

c =[c0‖cv1
‖ . . . ‖cvt

]

=
[
A‖Ã1‖ . . . ‖Ãt

]�
s +

[
x‖R̃1‖ . . . ‖R̃t

]�
(mod q)

= F�
v · s+

[
x‖R̃1‖ . . . ‖R̃t

]�
(mod q) .

At this point, the short vector ev = SampleLeft(Fv , dv,u, τt) is computed by the
decryption algorithm such that by Theorem 8, Fv · ev = u (mod q). It follows that

e�v c = u�s+ e�v
[
x‖R̃1‖ . . . ‖R̃t

]�
(mod q) .

132 M. Abdalla, A. De Caro, and K. Mochetti

Finally, the decryption algorithm computes:

z = c′ − e�v c (mod q)

=
(
u�s+ x+m · �q/2�)− u�s− e�v

[
x‖R̃1‖ . . . ‖R̃t

]�
(mod q)

= m · �q/2�+
(

x− e�v
[
x‖R̃1‖ . . . ‖R̃t

]�)

︸ ︷︷ ︸
noise term

(mod q) .

Thus, to have a successful decryption, it suffices to set the parameters so that with
overwhelming probability,

⏐
⏐
⏐
⏐x− e�v

[
x‖R̃1‖ . . . ‖R̃t

]�⏐⏐
⏐
⏐ <

q

4
.

Let us write ev = [ev,0‖ev,1‖ . . . ‖ev,t] with ev,i ∈ Z
m for i = 0, . . . , t. Then the

noise term can be rewritten as

x−
⎛

⎝ev,0 +
∑

i∈[t]

∑

j∈[μ]

k∑

γ=0

vi,j,γRi,j,γev,i

⎞

⎠

�

x .

By Lemma 2, we have ‖ev‖ < τt
√
(t+ 1)m with overwhelming probability. Moreover

by Lemma 3, we have ‖Ri,j,γ ·ev,i‖ ≤ 12
√
2m·‖ev,i‖with overwhelming probability,

and since vi,j,γ ∈ [0, r − 1] it follows that
∥
∥
∥
∥
∥
∥
ev,0 +

∑

i∈[t]

∑

j∈[μ]

k∑

γ=0

vi,j,γRi,j,γev,i

∥
∥
∥
∥
∥
∥
= O(t · μ · k · r · σt ·m) .

Finally, by Lemma 14, the error term has absolute value at most:
(
qαt · ω(

√
logm) +

√
m/2

)
· O (t · μ · k · r · σt ·m) .

3.4 Security Reduction

In this section we prove the following theorem.

Theorem 19. If the decision-LWEq,n,χ problem is infeasible, then the predicate en-
cryption scheme described above is weak attribute hiding-selective attribute secure.

Following [2,3], we define additional algorithms. These will not be used in the real
scheme, but we need them in our proofs.

Sim.Setup(1n, μ, w�). The algorithm choses random A, R

i,j,k and u, it uses

TrapGen to generate B
 and defines Ai,j,γ ← AR

i,jγ − rγw

i,jB

. Specifically,

on input a security parameter n, an hierarchical format of depth d μ = (�, d;μ1,

Lattice-Based HIPE 133

. . . , μd), and a challenge vector w
 = (w

1, . . . ,w

d), the algorithm generates pub-

lic and secret parameters as follows: Choose random matrix A ∈ Z
n×m
q . For i ∈ [d],

j ∈ [μi] and γ = 0, . . . , k, choose uniformly random matrices R

i,j,γ ∈ Z

n×m
q . Se-

lect a uniformly random vector u ∈ Z
n
q . Use algorithm TrapGen(q, n,m) to select

a uniformly random n × m-matrix B
 ∈ Z
n×m
q with a basis TB� ∈ Z

m×m for

Λ⊥
q (B

) such that ‖T̃B�‖ ≤ O(
√
n log q). For i ∈ [d], j ∈ [μi] and γ = 0, . . . , k,

set Ai,j,γ ← AR

i,j,γ − rγw

i,jB

.

Output mpk = (A, {Ai,j,γ},u) and msk = ({R

i,j,γ},B
,TB�).

Sim.Derive(mpk , dv, vt). Secret keys are now created by using the trapdoor TB� ,
sampled by Sim.Setup, and the SampleBasisRight algorithm. Specifically, on input the
master public key mpk , the secret key for the vector v = (v1, . . . ,vt−1), and the
vector vt, the algorithm generates a secret key for the vector v′ = (v1, . . . ,vt) by
constructing a short basis for Λ⊥

q (Fv′), as defined by Equation 2, by invoking S ←
SampleBasisRight(A,B

v′ ,R
,TB� , σt). Output dv′ = S.

Sim.Enc(mpk , w,m). The algorithm differs from Enc in the sense that it uses matri-
ces R

i,j,γ andB
 instead of matricesRi,j,γ and B. Specifically, on input master public
key mpk , vector w = (w1, . . . ,wt), and message m ∈ {0, 1}, the algorithm generates

a ciphertext C as follows: Choose a uniformly random vector s
$← Z

n
q , a noise vector

x ← Ψ
m

αt
and a noise term x ← Ψαt . Compute c0 = A�s + x ∈ Z

m
q . For i ∈ [t],

j ∈ [μi] and γ = 0, . . . , k compute ci,j,γ = (Ai,j,γ + rγwi,jB

)�s+R
�

i,j,γx ∈ Z
m
q .

Compute c′ = u�s+ x+m · �q/2� ∈ Zq . Output C = (c0, {ci,j,γ}, c′).
For a probabilistic polynomial-time adversary A, our proof of security will consist

of the following sequence of 6 games between A and C. The six games are defined as
follows:
Game0. C runs the Setup algorithm, answers A’s secret key queries using the Derive
algorithm, and generates the challenge ciphertext using the Enc with vector w0 and
message m0.

Game1. In this game C uses the simulation algorithms. Specifically, C runs the
Sim.Setup algorithm with w
 = w0, answers A’s secret key queries using the
Sim.Derive algorithm, and generates the challenge ciphertext using the Sim.Enc with
vector w0 and message m0.

Game2. It is the same as the Game1 except that the challenge ciphertext is randomly
chosen from the ciphertext space.

Game3. It is the same as the Game2 except that C runs the Sim.Setup algorithm with
w
 = w1.

Game4. It is the same as the Game3 except that C generates the challenge ciphertext
using the Sim.Enc with vector w1 and message m1.

Game5. C runs the Setup algorithm, answers A’s secret key queries using the Derive
algorithm, and generates the challenge ciphertext using the Enc with vector w1 and
message m1.

We defer the proof that, for i = 0, . . . , 4,Gamei is indistinguishable formGamei+1

under the appropriate assumptions, to the full version of this paper.

134 M. Abdalla, A. De Caro, and K. Mochetti

Parameters. From the previous sections we can extract the parameters required for
correctness and security of the system.

– We need to ensure that for each t ∈ [d], correctness holds. Specifically, Lemma 18
requires q/ log q = Ω(σt · μ · r

log r ·m3/2) and αt ≤ (t · log q · σt · μ · r
log r ·m ·

ω(
√
logm))−1.

– By Theorem 6, algorithm TrapGen requires q > 2 and m > 6n lg q to work.
– By Corollary 16, to have algorithm SampleBasisLeft working correctly in the
Derive algorithm, we need for each t ∈ [d], σt > ‖d̃v‖ · ω(

√
log((t+ 1)m)).

Thus, we have σt > σTG · ω((logm)t/2).
– By Corollary 17, to have algorithm SampleBasisRight working correctly in

the Sim.Derive algorithm, we need for each t ∈ [d], σt > ‖T̃B‖ · sR ·
ω(

√
log((t+ 1)m)). Thus, by Theorem 6, ‖T̃B‖ < σTG and, by Lemma 3,

sR = ‖R‖ = O(t · μ · (logr q + 1) · √(t+ 1)m) due the particular structure
of R, where μ = maxi∈[d] μi. Thus, σt > O(

√
n log q) · O(μ · (logr q + 1) ·

√
(t+ 1)m) · ω(√(t+ 1)m).

– Regev’s reduction must apply: q > 2
√
n/αt

3.5 Wrapping Up

Proof of Theorem 19. From the previous sections and lemmata, we have shown that
our hierarchical inner-product encryption is weak attribute hiding-selective attribute se-
cure assuming decision-LWEq,n,χ problem is infeasible.

4 Application

4.1 Identity-Based Encryption with Wildcards

One of the main applications of IBE and HIBE schemes is email encryption, where
users can encrypt a message to the owner of the email address without having to obtain
a certified copy of the owner’s public key first. Motivated by the fact that many email
addresses correspond to groups of users rather than single individuals, Abdalla et al.
[1] introduced the concept of identity-based cryptography with wildcards (WIBE). In a
WIBE scheme, decryption keys are issued exactly as in a standard HIBE scheme and
the main difference lies in the encryption process. More specifically, in a WIBE scheme,
the sender can encrypt messages to more general patterns consisting of identity strings
and wildcards so that any identity matching the given pattern can decrypt.

Next we show how to convert any HIPE scheme in a WIBE one by using an encoding
first introduced in [13]. This let us to obtain the first WIBE scheme based on lattice
assumptions.

Let us start with some notation. A pattern is described by a vectorP = (P1, . . . , P�) ∈
({0, 1}
⋃{*})�, where * is a special wildcard symbol. We say that identity ID =
(ID1, . . . , ID�′) matches P , denoted ID ∈* P , if and only if �′ ≤ � and for all
i = 1, . . . , �′ we have that ID i = Pi or Pi = *. Note that under this definition,
any ancestor of a matching identity is also a matching identity. This is reasonable for

Lattice-Based HIPE 135

our purposes because any ancestor can derive the secret key of a matching descendant
identity anyway. If P = (P1, . . . , P�) is a pattern, then we define W(P) to be the set
of wildcard positions in P , i.e. W(P) = {1 ≤ i ≤ � : Pi = *}. Formally, a WIBE
scheme is a tuple of algorithms (Setup,Derive,Enc,Dec) providing the following func-
tionality. The Setup and Derive algorithms behave exactly as those of a HIPE scheme.
To create a ciphertext of a message m ∈ {0, 1}
 intended for all identities matching
pattern P , the sender computes C ← Enc(mpk , P,m). Any of the intended recipients
ID ∈* P can decrypt the ciphertext using its own decryption key as m← Dec(dID ,C).

Let HIPE = (SetupH, DeriveH, EncH, DecH) be a Hierarchical inner-product en-
cryption. We can construct the scheme WIBE = (SetupW, DeriveW, EncW, DecW) as
follows:

SetupW(1λ, 1�). The algorithm returns the output of SetupH(1
λ,μ = (2�, �; (μi =

2)i∈[�])). So the hierarchy μ is of depth � and each level has dimension 2.

DeriveW(msk , ID). For a pattern ID = (ID1, . . . , ID�), the key generation algo-
rithm constructs vector y ∈ Σ by setting, for each i ∈ [�], yi = (1, Pi). We denote
this transformation by y = KEncode(ID). Then the key generation algorithm returns
dP = DeriveH(msk ,y).

EncW(mpk , P). The algorithm constructs vector x ∈ Σ in the following way: For
each i ∈ [�] the algorithms sets xi = (−ri ·Pi, ri) if Pi �= *, xi = (0, 0) otherwise. We
denote this transformation by x = CEncode(z). Then the encryption algorithm returns
C = EncH(mpk ,x).

DecW(dP ,C). The algorithm returns the output of DecH(dP ,C).

Correctness. Correctness follows from the observation that for identity ID and pattern
P , we have that fKEncode(ID)(CEncode(P)) = 1 if and only if ID ∈* P .

Security. Let A be an adversary for WIBE that tries to break the scheme for an hierar-
chy of depth � and consider the following adversaryB for HIPE that usesA as a subrou-
tine and tries to break a HIPE with hierarchy format μ = (2�, �; (μi = 2i)i∈[�]) by in-
teracting with challenger C. B receives a mpk for HIPE and passes it toA. WheneverA
asks for the key for identity ID , B constructs y = KEncode(P) and asks C for a key dy
for y and returns it toA. WhenA asks for a challenge ciphertext by providing (m0, P

0)

and (m1, P

1), B simply computes x0 = CEncode(P

0) and x1 = CEncode(P

1) and

gives the pair (m0,x0), (m1,x1) to C. B then returns the challenge ciphertext obtained
from C toA. Finally,B outputsA’s guess. Notice that, B’s simulation is perfect. Indeed,
we have that if for all A’s queries satisfy the game constraint, then all B’s queries have
the same property. Thus B’s advantage is the same as A’s.

4.2 Chosen-Ciphertext Security

As we have seen in the previous section, given an HIPE scheme is possible to construct
a WIBE scheme. Thus, to apply the techniques of [6] to obtain an �-level HIPE scheme
secure against chosen-ciphertext attacks we will face the same issues faced by [1].

Thus, following [1], we show that we may use a IND-wAH-sID-HIPE-CPA-
secure HIPE of depth 2d + 2 and a strongly unforgeable signature scheme

136 M. Abdalla, A. De Caro, and K. Mochetti

(SigGen, Sign,Verify) to construct an IND-wAH-sID-HIPE-CCA-secure HIPE of
depth d. We adapt the encoding function Encode defined in [1] to the HIPE case
in the following way: For a HIPE scheme for hierarchical format μ = (�, d;μ1,
. . . , μd), we define two encoding functions, one to encode secret keys and one to
encode ciphertext. Specifically, for any two values a and b in Z

N such that a �=

b, the encode function for secret keys KEncode works as follow: KEncode(v) =
((1, a),v1, . . . , (1, a),vt), for any vector v = (v1, . . . ,vt) with t ≤ d and
KEncode(v, vk) = ((1, a),v1, . . . , (1, a),vt, (1, b), (1, vk)). On the other hand,
the encode function for ciphertext CEncode works as follow: CEncode(w) =
((a,−1),w1, . . . , (a,−1),wt), for any vector w = (w1, . . . ,wt) with t ≤ d and
CEncode(w, vk) = ((a,−1),w1, . . . , (a,−1),wt, (b,−1), (vk ,−1)).
Construction. Given a HIPE scheme HIPE = (Setup,Derive,Enc,Dec) for hierarchi-
cal format μ = (�, 2d + 2; 2, μ1, 2, μ2, . . . , 2, μd, 2, 2), consider the following HIPE
scheme HIPE′ = (Setup′,Derive′,Enc′,Dec′) for hierarchical format μ = (�, d;μ1,
μ2, . . . , μd).

Key Derivation. The secret key for vector v = (v1, . . . ,vt), with t ≤ d under HIPE′

is the secret key corresponding to identity KEncode(v) under HIPE.

Encryption. To encrypt a message m under a vector w = (w1, . . . ,wt) and using a
master public key mpk , the following steps are performed: First, generate a signature
key pair (sk , vk)

$← SigGen. Then compute C
$← Enc(mpk ,CEncode(w, vk),m) and

σ
$← Sign(sk ,C). The final ciphertext is (vk ,C , σ).

Decryption. To decrypt a ciphertext (vk ,C , σ) using a private key dv for a vector
v, first check that Verify(vk ,C , σ) = valid. If not, output ⊥. Otherwise, compute
d = Derive(dv , ((1, b), (1, vk))) and output Dec(d ,C). Note that in this case d is the
decryption for the identity KEncode(v, vk) in HIPE.

Proof Sketch. Let A be an IND-wAH-sID-HIPE-CCA adversary against the HIPE′

scheme. Then there exists an IND-wAH-sID-HIPE-CPA attacker C against HIPE that
uses A as a subroutine. C can simulate A’s environment in a straight forward way.
Then C wins the game whenever A does as long as C does not make any illegal key
derivation queries. We will argue this fact briefly. First consider the queries that C
makes to respond to A’s key derivation query v. Let v′ = KEncode(v) and let w

′
 =
CEncode(w
, vk
). We have the following:

1. If |v′| > |w′
| then fv′(w
′
) = 0.

2. If |v| = |w′
| then still fv′(w
′
) = 0 because v′ and w

′
 are different on the next
to last level (v′ contains (1, a) there, while w

′
 contains a (b,−1) and they are not
orthogonal).

3. If |v′| < |w′
| then the only way to have fv′(w
′
) = 1 is if also fv(w

) = 1,
which are illegal queries in A’s game as well.

Second, consider the key derivation queries that C makes in order to respond to A’s
decryption queries. If A makes decryption query (v, (vk ,C , σ)), then C makes a key
derivation query for v′ = KEncode(v, vk). Let w

′
 = CEncode(w
, vk
). Then we
have two cases:

Lattice-Based HIPE 137

1. If vk �= vk
 then fv′(w
′
) = 0 either because v has a (1, a) where w

′
 has a
(b,−1), or because they differ on the last level.

2. If vk = vk
, then we have the following three sub-cases:
(a) If |v′| > |w′
| then fv′(w

′
) = 0.
(b) If |v′| < |w′
| then still fv′(w

′
) = 0 because v′ and w
′
 are different on

the next to last level (v′ contains (1, a) there, while w
′
 contains a (b,−1) and

they are not orthogonal).
(c) If |v| = |w′
| then the only way to have fv′(w

′
) = 1 is if also fv(w) = 1
but this case can be proved to have negligible probability under the one-time
security of the signature scheme.

Acknowledgments. This work was supported by the French ANR-09-VERS-016 BEST
Project, by the Brazilian CAPES Foundation, and by the European Commission through
the ICT Program under Contract ICT-2007-216676 ECRYPT II and the FP7-ICT-2011-
EU-Brazil Program under Contract 288349 SecFuNet.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-
Based Encryption Gone Wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg
(2010)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Prod-
uct Predicates from Learning with Errors. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: ACM STOC
Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM Press (May 1996)

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009,
pp. 75–86 (2009)

6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Key-
word Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

9. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice
Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer,
Heidelberg (2010)

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC Annual ACM Symposium
on Theory of Computing, pp. 197–206. ACM Press (May 2008)

138 M. Abdalla, A. De Caro, and K. Mochetti

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS
2006: 13th Conference on Computer and Communications Security, pp. 89–98. ACM Press
(October/November 2006)

13. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial
Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 146–162. Springer, Heidelberg (2008)

14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional
Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg
(2010)

15. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS Annual Symposium on Foundations of Computer Science, pp.
372–381. IEEE Computer Society Press (October 2004)

16. Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-Products. In: Mat-
sui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)

17. Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner Product En-
cryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
591–608. Springer, Heidelberg (2012)

18. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC Annual ACM Symposium on Theory
of Computing, pp. 333–342. ACM Press (May/June 2009)

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC Annual ACM Symposium on Theory of
Computing, pp. 84–93. ACM Press (May 2005)

20. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

	Lattice-Based Hierarchical Inner Product Encryption
	Introduction
	Definitions
	Hierarchical Inner-Product Encryption
	Lattices

	Hierarchical Inner Product Encryption Scheme
	Sampling a Random Basis
	Our Construction
	Correctness
	Security Reduction
	Wrapping Up

	Application
	Identity-Based Encryption with Wildcards
	Chosen-Ciphertext Security

