
SB-RAWVec – A Semi-Blind Watermarking
Method for Vector Maps

Karina Magalhães
Instituto de Computação - UNICAMP

Campinas, SP, Brazil - 13084-971
Email: karina.magalhaes@students.ic.unicamp.br

Ricardo Dahab
Instituto de Computação - UNICAMP

Campinas, SP, Brazil - 13084-971
Email: rdahab@ic.unicamp.br

Abstract—RAWVec [1] is a private watermarking method
for vector maps that uses a raster image as watermark.
Visually recognizable watermarks can add extra information
like integrity and authentication, while blind watermarks do
not need the original data to be published for the detection.
This work presents a semi-blind version of RAWVec, i.e. a
method that uses the original vector map during the detection
without revealing it, but maintains the watermark as a raster
image.

I. INTRODUCTION

A watermark is some information added inconspicu-
ously to digital data, usually to assure copyright detec-
tion on multimedia data, like images, videos and audio.
Vector maps are images used in Geographic Information
Systems (GIS), especially because they are easily scalable,
have small file size and can be updated and maintained
easily.

The original data must be embedded with the water-
mark, thus resulting in the new, copyrighted marked data.
To test if some target data is an unauthorized copy of the
marked data, a watermark detection procedure should
be performed on the target data. This procedure usually
requires some extra information to which we refer as the
key.

Watermarks can be classified as private or blind ac-
cording to the information needed during the detection
algorithm. Private or non-blind watermarks use, along
with the key and the data to be tested, the original data
that was marked. Examples of non-blind watermarking
techniques for vector are found in [2] and [3].

Blind watermarks use only the data to be tested and
the key during the detection. Therefore, the detection
is public, because it does not reveal any additional
information and anyone can extract the watermark. Most
watermarking methods for vector maps are blind, as in
[4], [5], [6] and [7], because they usually have a wider
range of application, while private watermarks are more
efficient.

Another, less known, category [8] is that of Semi-Blind
watermarks, in which the original map is watermarked
and this marked version is used during the detection.
Note that the original map is used during the detection,
but it is not revealed.

In this paper we propose SB-RAWVec, an alternative
version for RAWVec [1], a method for watermarking vec-
tor maps in spatial domain, i.e. the embedding algorithm
modifies the coordinate of vertices. The main advantage
of the present proposal is that it is semi-blind, while the
original method uses a private technique.

This paper is organized as follows: in Section II some
functions and concepts used on the algorithms are pre-
sented; in Section III we describe the embedding and
detection algorithms for the original RAWVec method;
in Section IV we describe the embedding and detection
algorithms for SB-RAWVec; in Section V we analyze and
compare the two methods and discuss their robustness
against several attacks. Finally, in Section VI, we present
conclusions and discuss future work.

II. BASIC CONCEPTS

The original RAWVec method and its semi-blind alter-
native use two functions w() and v() and a Point Pattern
Matching Algorithm. These concepts are described in the
following sections.

A. Functions w() and v()
The function w() modifies a square matrix An×n by

shifting its elements. Let A be a square matrix of order
n; then B = w(A), has bij = auv , where u = n − i + 1
and v = n − j + 1. Figure 1 shows an example of an
application of function w.

A =

 1 2 3
4 5 6
7 8 9

 => w(A) =

 9 8 7
6 5 4
3 2 1


Figure 1. An example of function w(A)

It is important to notice some proprieties of function
w():

(a) Property 1: w(w(A)) = A, for A a square matrix.
(b) Property 2: c∗w(A) = w(c∗A), for c a real number,

and A a square matrix.
(c) Property 3: w(A) + w(B) = w(A + B), for A and B

squares matrices.
The watermark used in both methods is a bitmap

image represented by a bi-dimensional matrix whose



elements store the color information or intensity for each
pixel. The vector map must also be represented as a
matrix, which can be obtained using a function v(), that
calculates the point representation P from a vector map
M . Vector maps are formed by geometric structures and,
based on these structures’ points, it is possible to create
the point representation P = v(M). Thus, each structure
is decomposed into points, which are stored according
to their type:

• Punctual objects: Structures described by points, like
symbols and text. The coordinates of each point are
stored.

• Linear objects: Structures described by point se-
quences, such as lines and polygons. The coordi-
nates of each point in the sequence are stored.

• Parameterized objects: Structures described by pa-
rameters, like circles and ellipses. The object can be
segmented in a few points, and these are stored; or
the main points can be stored. If the object is a circle,
for example, we can store a few points of the circle,
or only its center.

Each coordinate must have a reference to its original
object, making it possible to rebuild all the structures
from the point representation.

B. Point Pattern Matching

A Point Pattern Matching algorithm compares two sets
of points and determines a transformation that maps
one set onto the other under a specified set of criteria.
That is, given two sets of points P and Q, it finds a
transformation T which takes P to Q; thus P = T (Q).
This transformation T can be found even if some random
noise is added or some points are removed from the sets
of points.

There are several types of Point Pattern Matching
algorithms, as described in [9]. These algorithms can
be used to detect and remove any geometric attacks
on marked vector maps, as well as attacks based on
object reordering and insertion. The main disadvantage
of these algorithms is their inefficiency. In contrast, the
methods presented in this paper use the algorithm de-
scribed in [10], in which the nearest neighbors of each
point are calculated and iteratively several transforma-
tions are tested until a global transformation is found.
This algorithm is the most efficient we have been able
to find in the literature.

III. THE ORIGINAL RAWVEC ALGORITHM

This section describes the original RAWVec method
[1]. The embedding algorithm marks the vector map
with the raster image by shifting the geometric struc-
tures’ coordinates. The detection algorithm uses the orig-
inal vector map to extract a raster image that is then
compared with the original one.

A. Watermark Embedding

Algorithm 1 shows the main steps for embedding a
raster image R in the vector map M producing the
marked vector map M ′. It uses a positive real constant C
that controls the maximum shifting of a pixel, so it will
stay within the maximum tolerable error of the vector
map. We discuss this issue in more detail in Section V-A.

Algorithm 1 Watermark Embedding
INPUT: raster image R, vector map M and constant C.
OUTPUT: marked vector map M ′.
1. Calculate the point representation P ← v(M).
2. Obtain matrices Ax and Ay from P .
3. Resize raster image R, creating the raster image E.
4. Calculate Bx ← CE + Ax; By ← Cw(E) + Ay ,
for C a real constant.
5. Build the marked vector map M ′ from matri-
ces Bx and By .

Steps 1 and 2 build two square matrices – Ax for the
x coordinate and Ay for the y coordinates – of point
representation P = v(M), as described on Section II-A.
Let t be the number of points stored in P , n be the order
of the matrices and pi = (xi, yi) be the points stored in
P . Then

n =
√

t, (1)

(Ax)ij = xn(i−1)+j and (Ay)ij = yn(i−1)+j (2)

Step 3 resizes the raster image R, creating a new raster
image E that has n× n pixels, as illustrated in Figure 2.

Figure 2. Resizing a raster image R, creating a new raster image E

Now that we have two matrices, Ax and Ay , repre-
senting the vector map M , and a matrix E, representing
the raster image, we are able to embed E in the vector
map. Therefore, Step 4 creates two matrices, calculating
Bx and By :

Bx = CE + Ax, and By = Cw(E) + Ay. (3)

Finally, in the last step, the marked vector map M ′ is
built from matrices Bx and By , as described in Section
II-A.



B. Watermark Detection

The detection algorithm consists in the extraction of
the watermark and its comparison with the original one.
It extracts the watermark S from the target vector map
N , the one that is going to be tested, using the constant
C, the original watermark R and the original vector map
M . Therefore, this is not a blind watermark method. The
basic steps are described below as Algorithm 2.

Algorithm 2 Watermark detection
INPUT: raster image R, vector map M , constant C and
the vector map to be tested N .
OUTPUT: watermark S.
1. Embed the watermark R on the vector map M , us-
ing the algorithm described in Section III-A and return-
ing the marked vector map M ′.
2. Calculate the point representations P ← v(M ′) and
Q ← v(N).
3. Compare the point representations P and Q us-
ing Point Pattern Matching, returning a transforma-
tion T , where Q = T (P ).
4. Build matrices Ax and Ay from v(M), and Bx and By

from T−1(Q).
5. Calculate Dx ← Bx−Ax

C ; Dy ← w(By)−w(Ay)
C .

6. Calculate D ← Dx+Dy

2 .
7. Resize the watermark D to its original size, return-
ing the watermark S.

The first step of the detection algorithm is to embed
the watermark R on the vector map M , resulting on
the marked map M ′. This marked vector map must be
compared with the vector map N , using the Point Pattern
Matching Algorithm [10], so that any transformation T
used in an attack is found and removed from the vector
map N .

Now we are able to build four matrices Ax and Ay

from v(M) and Bx and By from T−1(N)1. Matrices Ax

and Ay represent the original vector map and matrices
Bx and By represent the vector map N that may be M ′.
So, we must calculate the watermark in vector map N
and compare it with the original one. The watermark D
is calculated using the four matrices Ax, Ay , Bx and By ,
the constant C and the function w:

D =
Dx + Dy

2
, (4)

where

Dx =
Bx −Ax

C
and Dy =

w(By)− w(Ay)
C

. (5)

Finally, the watermark D, with size n × n, must be
resized to its original size – the size of watermark R –

1T−1(N) here means the set of points of P which are pre-images of
points of Q under T

producing watermark S. Watermarks S and R must be
compared using a probabilistic algorithm and the human
eye. According to this comparison we can conclude
whether or not the vector map N was marked.

IV. SB-RAWVEC ALGORITHM

This section presents the modifications made on the
original RAWVec method, resulting in a semi-blind alter-
native. Two marked vector maps are created, one must
be published as the marked vector map, referred as public
map, and the other is only used during the detection
algorithm, referred as the detection map. The original
vector map is not needed during the detection and a
new constant I is added to help control the maximum
shifting of a pixel along with the C constant.

A. Watermark Embedding
Algorithm 3 shows the steps for the watermark em-

bedding of the new method. The main difference appears
on the Step 4, in which the raster image is divided in two
matrices, resulting in two marked vector maps.

Algorithm 3 Watermark Embedding
INPUT: raster image R, vector map M and two constants
C and I .
OUTPUT: public marked vector map M1 and detection
marked vector map M2.
1. Calculate the point representation P ← v(M).
2. Obtain matrices Ax and Ay from P .
3. Resize raster image R, creating the raster image E.
4. Decompose matrix E into random matrices E1 and
E2 such that E = E1 + E2, and 0 ≤ z ≤ I for
each z an element of E1.
5. Calculate B1x ← Ax + CE1; B1y ← Ay + Cw(E1),
for C a real constant.
6. Calculate B2x ← Ax − CE2; B2y ← Ay − Cw(E2),
for C a real constant.
7. Build the public marked vector map M1 using matri-
ces B1x and B1y .
8. Build the detection marked vector map M2 using ma-
trices B2x and B2y .

Steps 1 to 3 are exactly the same as in the original
method. A point representation for the vector map M is
created, as well as two matrices Ax and Ay , representing
the x and y coordinates respectively. These two matrices
must be square and have the same size. Next, the raster
image is resized, in order to obtain a square matrix E
with the same size as Ax and Ay .

Matrices Ax and Ay represent the positions for the
objects in the vector map, and matrix E represents the
color for each pixel in the raster image.

Step 4 represents the creation of two matrices E1 and
E2, using the positive integer constant I and the matrix
E. This step is based on Visual Cryptography [11], in



which an image is divided in two, and can be recreated
by superimposing the two shares. In our case, the image
can be reconstructed by adding the two shares. Note
that the image E2 is not visual, as it can have negative
elements.

Using Ax, Ay and E1, it is possible to obtain two
matrices B1x and B1y , and therefore build the public
marked vector map M1:

B1x = Ax + CE1, and B1y = Ay + Cw(E1). (6)

And, using Ax, Ay and E2, it is possible to obtain
two other matrices B2x and B2y , and build the detection
marked vector map M2:

B2x = Ax − CE2, and B2y = Ay − Cw(E2). (7)

Note that the sum used in the calculation of the public
map M1 is replaced by a subtraction in the calculation
of the detection map M2.

The error added to M1 can be controlled by the
constants C and I , thus forcing the error added to M2;
therefore, M2 can only be used during the detection
algorithm. This is detailed in Section V-A.

B. Watermark Detection

Although it does not use the original map M , the de-
tection algorithm uses a Point Pattern Matching algorithm
to detect and remove attacks. This is possible due to the
information hidden on the detection map M2. Algorithm
4 shows the basic steps for this algorithm.

The first two steps are simple, they only create the
point representations and the respective matrices for the
two maps: B2x and B2y for the detection map M2 and Bx

and By for the target map N . The first main difference
between this algorithm and Algorithm 2 is Step 4, in
which the hidden information from the detection map is
obtained.

From the embedding algorithm, described in IV-A, we
have that B2x = Ax − CE2, B2y = Ay − Cw(E2) and
E = E1 + E2, so we can extract the information needed
for the Point Pattern Matching algorithm from B2x and
B2y , as follows:

B′2x = B2x + CE
= Ax − CE2 + CE
= Ax + C(E − E2)
= Ax + CE1

= B1x

B′2y = B2x + Cw(E)
= Ay −Cw(E2)+Cw(E)
= Ay + Cw(E − E2)
= Ay + Cw(E1)
= B1y

If the target map N is a tampered version of public
map M1, we can compare it with M1 using a Point
Pattern Matching algorithm. This algorithm will find any
transformation or modification that maps N onto M1,

Algorithm 4 Watermark detection
INPUT: raster image R, detection marked vector map M2,
constant C and the vector map to be tested N .
OUTPUT: watermark S.
1. Calculate the point representation P ← v(M2) of de-
tection map M2 and the point representa-
tion Q ← v(N) of target map N .
2. Build matrices B2x and B2y from P , and Bx and By

from Q.
3. Resize raster image R, creating ma-
trix E that has the same size as B2x.
4. Calculate B′2x ← B2x + CE and B′2y ← B2y + Cw(E)
5. Compare the points represented by the matri-
ces B′2x and B′2y with the points represented by the ma-
trices Bx and By using a Point Pattern Match-
ing algorithm.
6. Remove the transformation returned by the Point Pat-
tern Matching algorithm from the matri-
ces Bx and By , creating B′x and B′y .

7. Calculate Dx ← B′
x−B2x

C ; Dy ←
w(B′

y)−w(B2y)

C .
8. Calculate D ← Dx+Dy

2 .
9. Resize the watermark D to its original size, return-
ing the watermark S.

comparing matrices B′2x and B′2y with matrices Bx and
By .

Step 6 removes the transformation and modification
found by the Point Pattern Matching algorithm from Bx

and By , resulting in two new matrices B′x and B′y . Now
we are able to calculate the extract watermark and verify
if the target map N has been stolen:

D =
Dx + Dy

2
, (8)

where

Dx =
B′x −B2x

C
and Dy =

w(B′y)− w(B2y)
C

. (9)

Since the target map N is M1 tampered, B′x and B′y
will be equivalent to B1x and B1y , so:

Dx =
B′x −B2x

C

=
B1x −B2x

C

=
(Ax + CE1)− (Ax − CE2)

C

=
CE1 + CE2

C
= E1 + E2

= E
The calculation of Dy is more complex because the w()

function is used; therefore the three properties described
in II-A are essential:



Dy =
w(B′y)− w(B2y)

C

=
w(B1y)− w(B2y)

C

=
w(Ay + Cw(E1))− w(Ay − Cw(E2))

C

=
(w(Ay) + w(Cw(E1)))− (w(Ay)− w(Cw(E2)))

C

=
Cw(w(E1)) + Cw(w(E2))

C
= E1 + E2

= E
The matrix D must be resized to its original size and a

raster image S must be built from it. The two images, R,
representing the original watermark and S, representing
the extracted watermark can be compared using the
human eye or a comparison algorithm like the Pearson
correlation [12]. This fact will be analyzed in Section V-A.

V. EXPERIMENTS AND RESULTS

This section shows two analyses of the methods pre-
sented in this work, one for the algorithm complexity
and the other for the maximum shifting of a pixel i.e., the
error added to the vector map. Furthermore, an attack
analysis of the two methods is also shown.

A. Algorithm Analysis
The embedding algorithm for both methods has com-

plexity O(t), where t is the number of points in the vector
map. All the new steps of the alternative embedding
algorithm have complexity O(t) at most, so the total
complexity is increased only by a constant.

The detection algorithms are more complex due to the
steps for detection and attack removal. The Point Pattern
Matching algorithm fulfils this role, and its complexity
is O(t(log t)3/2). All the other steps have complexity
O(t) at most, so the total complexity of the two detection
algorithms is O(t(log t)3/2). Hence, the original and the
new method have the same complexity.

It is also important to analyze the quality of the
marked vector map returned, i.e. the maximum shifting
of a point on the marked vector map must not be greater
than the tolerable maximum error for the original vector
map.

Figure 3 shows the maximum shifting of a point for
the two methods. In the original RAWVec method, this
shifting is controlled only by the constant C, and some
manipulation of the intensities of pixels in the raster
image (like normalization) may be needed as seen in [1].
The maximum shifting of a pixel is given by ±CRmax

√
2,

where Rmax = max(e) and e ∈ R.
On the other hand, in the SB-RAWVec method, this

property can be controlled by the constants, C and I ,
and no change on the intensities of the pixels of the raster
image is needed. The maximum shifting of a pixel in this
case is given by ±CI

√
2. This control refers only to the

public map M1; the error added to the detection map M2

cannot be controlled, so this map cannot be published,
as it can be visually degraded by the watermark.

Figure 3. The maximum shift of pixel for the two methods presented.

The comparison between the original watermark R
and the extracted watermark S uses two coefficients: r,
the Pearson correlation coefficient [12] and h, the quality
coefficient. The quality coefficient h is based on human
observation. It can vary from 0 to 5 and it represents the
answer from 5 people to the question ”Do you think that
the image R is the image D after some modifications?”
Each positive answer represents 1 and each negative
answer represents 0, and h is the sum of the answers. The
Pearson correlation coefficient r is based on the pixels
intensities and it is calculated as follows:

Let ImR
and ImS

be the average intensity of images R
and S, respectively, and Irij

and Isij
be the intensity of

pixels rij ∈ R and sij ∈ S, respectively. Then

r =

∑
i

∑
j

(Irij − ImR
)(Isij − ImS

)√
(
∑

i

∑
j

(Irij
− ImR

)2)(
∑

i

∑
j

(Isij
− ImS

)2)
. (10)

B. Attacks

Most attacks on watermarks for vector maps are based
on the objects and vertex information of the vector maps
[13]. Geometric attacks consist on transformations, such
as rotations and translations, on the marked vector map
with the goal of removing or degrading the watermark
without damaging the vector map. Other attacks consist
of: reordering or removal of some objects of the vector
map; reordering and removal of vertices of some objects
of the vector map; and adding random noise.

All these attacks can be detected and removed, to a
certain extent, by a Point Pattern Matching algorithm that
compares the vector map to be tested with a marked
vector map. The transformations are found and returned
by the algorithm, as well as added random information
and points or objects removed from one of the maps.
Therefore, the Point Pattern Matching is essential to the
robustness of these methods.



Figures 5 and 6 show the extracted watermark of a
simple test, without any attacks, for the original RAWVec
method and the SB-RAWVec method, respectively. Fig-
ures 7 and 8 show the extracted watermark of a test
with a combined attacked vector map for the same
two methods. In this case, the marked vector map was
rotated 10o, translated, scaled to double of its original
size, 11% of its points were cropped, 37% of its objects
were reordered, and some random noise was added. The
coefficients r and h are calculated for all the tests, as
described in V-A. Figure 4 shows the original watermark
used during the tests. Several other tests can be found
in [14] (in portuguese).

Figure 4. The original watermark used during the tests.

Figure 5. Test without attacks us-
ing the original RAWVec method.
r = 99.9648% h = 5

Figure 6. Test without attacks us-
ing the SB-RAWVec method. r =
99.9637% h = 5

Figure 7. Test with a combined
attack using the original RAWVec
method. r = 98.1838% h = 5

Figure 8. Test with a combined
attack using the SB-RAWVec
method. r = 89.6466% h = 4

The original images used as watermarks showed in
Figures 4, 5, 6, 7 and 8 are small (60 × 68 pixels), so
that several copies can be added to a single map as
pictured in Figure 2. This redundancy allows for an
easier retrieval of the right information about a pixel,
because during the extraction, more than one copy of
each pixel is analyzed.

The original vector map used in this paper was pro-
duced by Robert Ford, which can be found in http://
www.go.dlr.de/pdinfo dv/xfig Examples/transit.fig.

VI. CONCLUSIONS AND FUTURE WORK

In this work, the RAWVec method for watermarking
vector maps is revised and an alternative SB-RAWVec
method is presented. The new method is as efficient and
robust as the original one, since they both make use of

a Point Pattern Matching algorithm and redundancy to
detect and remove attacks.

This new method has the same advantages as the
original one - such as the use of an image as the wa-
termark - with the addition of the semi-blinding feature.
Although it may seem a marginal improvement, blind
and semi-blind schemes are more practical, since the
original map may not be available for a number of rea-
sons, limiting the application of the non-blind method.
Another advantage of our new method is a better control
of the maximum shifting of a pixel, i.e. the quality of the
marked vector map, now controlled by two constants.

Other types of attacks on SB-RAWVec remain to be
studied; such as those more commonly seen in water-
marking for other medias like video, audio and bitmap
images.

REFERENCES

[1] D. A. Marques, K. M. de Magalhães, and R. Dahab, “Rawvec – a
method for watermarking vector maps,” in SBSeg 2007: Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais,
2007.

[2] R. Ohbuchi, H. Ueda, and S. Endoh, “Robust watermarking of
vector digital maps,” in Proc. IEEE Conference on Multimedia and
Expo 2002, 2002.

[3] ——, “Watermarking 2d vector maps in the mesh-spectral do-
main,” in SMI ’03: Proceedings of the Shape Modeling International
2003. Washington, DC, USA: IEEE Computer Society, 2003, p.
216.

[4] H. Kang, K. Kim, and J. Choi, “A vector watermarking using the
generalized square mask,” vol. 00. Los Alamitos, CA, USA: IEEE
Computer Society, 2001, p. 0234.

[5] M. Voigt and C. Busch, “Watermarking 2d-vector data for geo-
graphical information systems,” in Proc. SPIE, Security and water-
marking of Multimedia Content, 2002, pp. 621–628.

[6] G. Schulz and M. Voigt, “A high capacity watermarking system
for digital maps,” in MM&Sec ’04: Proceedings of the 2004 workshop
on Multimedia and security. New York, NY, USA: ACM Press, 2004,
pp. 180–186.

[7] V. Solachidis, N. Nikolaidis, and I. Pitas, “Fourier descriptors
watermarking of vector graphics images,” in ICIP00, 2000, pp.
Vol III: 9–12.

[8] R. Ohbuchi, A. Mukaiyama, and S. Takahashi, “A frequency-
domain approach to watermarking 3d shapes,” in EUROGRAPH-
ICS 2002, vol. 21, 2002.

[9] G. Cox and G. de Jager, “A survey of point pattern matching
techniques and a new approach to point pattern recognition.”
[Online]. Available: citeseer.ist.psu.edu/96624.html

[10] P. van Wamelen, Z. Li, and S. Iyengar, “A fast expected time
algorithm for the point pattern matching problem,” Louisiana
State University, Dept. of Mathematics, Tech. Rep., 1999.

[11] M. Naor and A. Shamir, “Visual cryptography,” Lecture Notes in
Computer Science, vol. 950, pp. 1–12, 1995. [Online]. Available:
citeseer.ist.psu.edu/naor95visual.html

[12] E. K. Yen and J. G. Roger, “The ineffectiveness of the correlation
coefficient for image comparisons.”

[13] X. Niu, C. Shao, and X. Wang, “A survey of digital vector
map watermarking,” International Journal of Innovative Computing,
Information and Control (IJICIC), vol. 02, pp. 1301–1316, 2006.

[14] K. M. de Magalhães, “Uma alternativa pública para o método
de marcas d’Água raster em mapas vetoriais (rawvec),” Master’s
thesis, UNICAMP, 2009.


