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Abstract—Data provenance is any information about the origin
of a piece of data and the process that led to its creation. Most
database provenance work has focused on creating models and
semantics to query and generate this provenance information.
While comprehensive, provenance information remains large and
overwhelming, which can make it hard for data provenance
systems to support data exploration.

We present a new approach to provenance exploration
that builds on data summarization techniques. We contribute
novel summarization schemes for the provenance of aggregation
queries. We conduct thorough experiments to show the feasibility
and relevance of our approaches.

Index Terms—provenance, relational databases, summariza-
tion, visualization, usability

I. INTRODUCTION

Provenance has been a focus of research in a number of
different areas. In the scientific work-flow context, provenance
is used to show the processes that data went through. Thus,
provenance work in work-flow management has included work
on presenting provenance information to users. In contrast, in
database research, most of the focus has been on finding the
sources that contributed to the results of a query. This has
included a lot of work on developing comprehensive models
and representations of data provenance. However, there is
little research that focuses on presenting database provenance
information in a way that is not overwhelming to users. Using
existing provenance database systems can be overwhelming
without prior knowledge of provenance models or the data
itself. Furthermore, provenance information can increase the
data size exponentially. This can have serious implications
on both storage and usability. We argue that data provenance
needs to be summarized to support broad exploration.

This paper studies provenance summarization and explo-
ration for aggregate query results in relational databases. We
focus on aggregate queries because they are common in
database applications and their provenance poses a greater
challenge compared to other types of queries since it is usually
large and difficult to explore. We use the following running
example to explain the problem and our solution.

Example 1. Consider a user who starts by posing the follow-
ing aggregate SQL query, Q1, over MoviesDirectors in Table I
that is a small subset of the IMDB dataset:1

Q1 : SELECT Gender, SUM(Rev) AS SumRev
FROM MoviesDirectors GROUP BY Gender

1https://developer.imdb.com

The query asks the sum of the revenue of movies directed
by directors of different genders. The result is in Table II.
For answer a2, highlighted in Table II, the provenance only
contains 10 tuples with all the male directors and the movies
that they directed. However, in practice, querying more than
4 million movies in the entire IMDB dataset would yield a
much larger number of tuples, which would hinder free-form
exploration. Thus, instead of the full provenance, the user
would benefit from a summary. 2

Our provenance summaries consist of rules from [1]. These
rules were introduced for summarizing relational data and are
applied in several frameworks for other purposes [2], [3], [4]
(see Section VII for detail). Before we explain our provenance
summaries, we briefly review these rules and the summaries
in [1]. We refer to those summaries as basic summaries.

Example 2. A summarization rule over a relation is a tuple of
the same schema with some wild-card values, ?s, that match
any value in the relation and enable the rule to cover and
summarize several tuples [1]. For example, rule s1 in Ta-
ble IV covers movies with rating 7 directed by male directors,
i.e. t1, t3, t5, t7, t11 in Table I. A basic summary of a relation is
a set of k rules, each of which summarizes some “interesting”
aspects of the relation. Table IV is a basic summary of Table I
with k = 3, where we omitted the attributes with ?s across
different rules, e.g. Title, Rev, and Director. The score of a
rule depends on its weight and coverage. The weight specifies
how informative the rule is and is measured by the number
of non-? values in the rule, whereas coverage is the number
of tuples in the relation covered by the rule [1]. For example,
the coverage and weight of s1 are 5 and 2, and its score is
5× 2. In Table IV, the coverage percentages are shown as an
attribute. 2

We will build on these basic summaries and the summariza-
tion rules in Example 2 and present two types of provenance
summaries, impact summaries and comparative summaries,
which we explain using the running example.

While basic summaries are effective in summarizing rela-
tional data in general, they are not as helpful in summarizing
provenance of aggregate queries. Specifically, the score of a
rule in a basic summary is independent of how much the tuples
covered by the rule contribute to the aggregate result in the
answer. We propose impact summaries to resolve this issue.

Example 3. Table V shows an impact summary of the



ID Title Year Genre Rating Rev (M$) Director Gender Country
t1 Lincoln 2012 Drama 7 275.3 Steven Spielberg Male US
t2 Sicario 2014 Drama 8 84.9 Denis Villeneuve Male US
t3 Crimson Peak 2014 Horror 7 74.7 Guillermo del Toro Male Mexico
t4 Bonjour Anne 2014 Comedy 5 8.9 Eleanor Coppola Female US
t5 The Terminal 2004 Comedy 7 219.4 Steven Spielberg Male US
t6 MMFR 2015 Action 8 378.9 George Miller Male Australia
t7 Pacific Rim 2013 Action 7 411.5 Guillermo del Toro Male Mexico
t8 La La Land 2015 Drama 8 446.1 Damien Chazelle Male US
t9 Mamma Mia 2008 Comedy 6 615.7 Phyllida Lloyd Female US
t10 Rogue One 2015 Action 8 1.056 B$ Gareth Edwards Male UK
t11 Superbad 2007 Comedy 7 169.9 Greg Mottola Male US
t12 Annabelle 2014 Horror 6 257.1 John R. Leonetti Male US

TABLE I: MoviesDirectors table

ID Gender SumRev (M$)
a1 Female 624.6
a2 Male 3.374 B$

TABLE II: Results of Q1

ID Gender Genre Count
a3 Male Drama 3
a4 Male Horror 2
a5 Female Comedy 2
a6 Male Comedy 2
a7 Male Action 3
a8 Male Comedy 2

TABLE III: Results of Q2

ID Year Genre Rating Gender Country Coverage
s1 ? ? 7 Male ? 41.67
s2 ? Drama ? Male US 25.00
s2 2014 ? ? Male ? 25.00

TABLE IV: A basic summary
ID Year Genre Rating Gender Country Coverage Impact
s4 ? Action 8 Male ? 20.00 43.49
s5 ? Comedy 7 Male US 20.00 11.53
s6 2015 ? ? Male ? 30.00 55.74

TABLE V: An impact summary

ID Rating Director Gender Country Cvg a3 Cvg a8

c1 ? Steven Spielberg Male US 33.34 50.00
c2 7 ? Male US 66.67 50.00

TABLE VI: A comparative summary

provenance of a2 from Table II. Rules in this summary are
preferred to the rules in the basic summary from Example 2
if we choose to consider the impact of movies’ revenues on
a2[SumRev]. For example, s1 covers more movies than s4,
though the movies in s4 have higher revenue. This means s4
covers movies with higher impact on the answer a2[SumRev]
compared to the movies covered by s1. In impact summaries,
the score of a rule depends on its weight, coverage, and a new
impact factor. The impact percentages of the rules in Table V
are shown with a new attribute. Impact summaries contain
rules that consider the impact of the provenance tuples on the
aggregate query answer, e.g. s4. They are different from basic
summaries with rules that cover more tuples, e.g. s1. 2

We also introduce a second type of provenance summaries,
comparative summaries, that highlight the similarities between
the provenance of two answers to an aggregate query and apply
the summarization rules.

Example 4. To explain comparative summaries, consider
the following aggregate query, Q2, that asks the number of
directors from each gender and movie genre.

Q2 : SELECT Gender, Genre, COUNT(*) AS CountM
FROM MoviesDirectors GROUP BY Gender, Genre

The result is shown in Table III. Consider two highlighted
answer tuples a3 and a8, that specify the number of male direc-
tors of drama and comedy movies. Table VI is a comparative
summary with rules that cover tuples from the provenance of
both answers. The score of a rule in such summaries depends
on how many tuples it summarizes from the provenance of
both selected answers. Comparative summaries can help users
find similar tuples that contributed to the query answers. In
Table VI, the new attributes show the coverage percentages of
the tuples from the provenance of a3 and a8, which helps the
user quickly identify directors who contribute to both genres.
For example, c1 is a rule that shows Steven Spielberg has
movies in both genres. Then the user could reason over if
such directors should be counted twice, removed, or counted
in only one genre. Comparative summaries differ from basic
summaries as they summarize provenance tuples from two sets
of tuples, unlike basic summaries that summarize a single set.
Note that comparative summaries cannot be reduced to basic
summaries by using the union of the two sets. In particular, if
the two sets are not of similar size, the basic summaries will
be dominated by rules that cover the larger set. 2

To present provenance summaries, i.e. impact and compara-
tive summaries, to the user we implement the interactive smart
drill-down operator in [1] that allows the user to explore data
by using data summarization. In our running example, the
user can select an answer for impact summary, or a pair of
answers for comparative summaries, and receive a summary.
Then the user can continue to explore the provenance data by
selecting one of the rules and apply the drill-down operator
that shows super-rules with fewer ?s and reveal more detail of
the provenance covered by the selected rule. Unlike [1] that
applies drill-down for basic summaries and over one relation,
we use them for provenance summaries that may involve
multiple relations (cf. Section V for detail).
Relationship with Other Work. The most similar work
to ours is [5] in which the provenance of an aggregate
query is represented as a polynomial expression, i.e. how-
provenance [6]. A provenance summary is a shorter polyno-
mial expression that highlights the important aspects of the
original provenance expression. The quality of a summary
depends on general measures such as its size and its distance



with the original expression [5]. The algorithm for generating
these summaries does not involve the user and fails to capture
her interest [5]. Also, the summaries are generated independent
of the impact of provenance tuples on the aggregate value in
the query answer. One can also argue that the expressions in
these summaries are hard to understand for non-expert users.

The impact summaries are related to the query explanation
work [7], [8], [9]. In particular, we define the impact of
summarization rules using sensitivity analysis [10], which is
similar to the notions of intervention [8], [9] and influence [7]
used in the query explanation literature. However, our work
is fundamentally different from the query explanation work
since our work focuses on data summarization and exploration,
whereas their objective is to explain a query result, such as
an unexpected answer or an outlier. More specifically, query
explanation is more related to the impact evaluation in our
summaries and does not consider the coverage of provenance
data and the interactive exploration that are fundamental in
having good provenance summaries.
Contributions. Our contributions are as follows:
• We define provenance summaries, impact summaries and

comparative summaries, for general form of aggregate SQL
queries. We formalize score functions for these summaries
and present the summarization problems for finding the best
provenance summaries (Section III).

• We present efficient algorithms for producing summaries
with high scores (Section IV).

• We present novel interaction methods and visualization
techniques in a user interface (Section V).

• We conduct thorough experiments and a user survey to
show that our proposed solutions are feasible and useful
(Section VI).

II. BACKGROUND

Our work builds on previous research in database prove-
nance and data summarization, which we review in this
section. We first present some preliminary notations. A relation
R with a set of attributes (relation schema) R = {A1, ..., Am}
is a finite set of m-ary tuples {t1, ..., tn}. Each relation
is represented as a table, each of which has columns and
contains rows. We occasionally abuse notation by saying that
tables contain tuples or have attributes. A database D with
database schema S = {R1, ...,RN} is a finite set of relations
R1, ..., RN with schemas Rj ∈ Rj . We denote the value in
the i-th position in tuple t in D as t[Ai]. Q(D) is the set of
answers to a query Q over database D. For attribute Ai ∈ R,
Dom(Ai) is the domain of values in Ai. Table VII summarizes
our symbols and notation.

A. Provenance

Data provenance is defined as provenance information re-
lated to the data itself. To show what we mean by data
provenance in the relational context, we introduce a running
example. Consider the following query:

Q3 : SELECT d.Gender, m.Genre FROM
Movies m JOIN Directors d ON m.Director = d.Name

TABLE VII: Summary of symbols and notations

Symbol Description

R,R relation and relational schema
A,B, ..., G relational attributes
t, r tuples
a, b tuples in query answer
Q,Q(D) database, query, query answer
D,S database (instance), database schema
s, c rules (c for comparative rules)
S set or list of rules
Dom(A) domain of attribute A
? wildcard character
Ra provenance of answer a in R
Qa query that returns aggregate value in a
mw maximum rule weight
mD,mq number of attributes, number of group-by attributes

Applying Q3 to the data in Tables VIII-IX results in Table X.

ID Title Year Genre Rating Rev (M$) Director
r1 Lincoln 2012 Drama 7 275.3 Steven Spielberg
r2 Sicario 2015 Drama 8 84.9 Denis Villeneuve
r3 Crimson Peak 2015 Horror 7 74.7 Guillermo del Toro
r4 Bonjour Anne 2016 Comedy 5 8.9 Eleanor Coppola
r5 The Terminal 2004 Comedy 7 219.4 Steven Spielberg

TABLE VIII: Movies table

ID Name Gender Country
r6 Steven Spielberg Male US
r7 Denis Villeneuve Male Canada
r8 Guillermo del Toro Male Mexico
r9 Eleanor Coppola Female US

TABLE IX: Directors table

ID Gender Genre
b1 Male Drama
b2 Male Horror
b3 Female Comedy
b4 Male Comedy

TABLE X: Q3’s answer

The goal of data provenance is finding the source of a piece
of data and the process it went through to make it into the
results of a query. More precisely, given a database D, a query
Q, and the result of applying the query to the database Q(D),
the provenance problem in databases is to find the sources in
D that contributed to Q(D) [11].

Different notions of provenance, including lineage, why-
provenance, where-provenance, and how-provenance, are pro-
posed and studied for databases queries [12]. We review
lineage, and why-provenance, which we use in this paper.

Intuitively, lineage lists the tuples that caused a tuple to
appear in the answer of a query [13]. In contrast, why-
provenance explains which tuples (witnesses) are necessary
to make a tuple appear in the answer [11]. To continue with
our running example, the lineage of b1 is {r1, r6, r2, r7}. The
why-provenance of b1 in Table X is r1, r6 or r2, r7, either of
which is sufficient to explain the presence of b1 in the results.

B. Data Summarization Rules

The work in [3], [1] introduces summarization rules to
summarize “interesting” aspects of a table. In Section III
we use them to summarize and explore the provenance of
aggregate queries. Here we review some concepts from [1].



Definition 1. [Summarization rules] A summarization rule s
over a relation R with schema R = {A1, ..., Am} is an n-ary
tuple in which for every Ai ∈ R, s[Ai] ∈ Dom(Ai)∪{?} and
? is a value not in Dom(Ai). 2

The value ? is a wildcard that matches every attribute value
and allows the rule to summarize multiple tuples.

Example 5. In Table IV, s1 = (?, ?, ?, 7, ?, ?,Male, ?) is a
summarization rule over MoviesDirectors that matches every
movie with rating 7 that is directed by a male director. 2

For clarity, we include attribute names in the rules, e.g. s1
in Example 5 is (Title : ?,Year : ?,Genre : ?,Rating : 7,Rev :
?,Director : ?,Gender : Male,Country : ?).

Definition 2. [Cover and count] Given a relation R, a sum-
marization rule s covers a tuple r ∈ R denoted by r ∈ s if for
every Ai, r[Ai] = s[Ai] or s[Ai] = ?. Cover(s) is the set of
tuples in R that are covered by s and Count(s) = |Cover(s)|
is the number of tuples covered by s. 2

Example 6. In Example 5, s1 covers t1, t3, t5, t7, t11,
Cover(s1) = {t1, t3, t5, t7, t11} and Count(s1) = 5. Rule
s2 = (Title : ?,Year : ?,Genre : Drama,Rating : ?,Rev :
?,Director : ?,Gender : Male,Country : US) in Table IV
covers the drama movies directed by male directors that are
born in US, Cover(s2) = {t1, t2, t8} and Count(s2) = 3. 2

Definition 3. [Marginal cover and marginal count] For a list
of rules S = (s1, s2, ...) over relation R, MCover(si, S) is
the marginal cover of si and is defined as the tuples that are
covered by si and not any sj ∈ S with j < i. MCount(si,
S) = |MCover(si, S)| is the marginal count of si. 2

Example 7. Considering S = (s1, s2), MCover(s1, S)
= {t1, t3, t5, t7, t11},MCover(s2, S) = {t2, t8},
MCount(s1, S) = 5, MCount(s2, S) = 2. 2

Definition 4. [Score function and marginal score] The score
of a list of rules S = (s1, s2, ...) is defined as follows:

Score(S) =
∑
si∈S

MCount(si, S)×Weight(si). (1)

Weight is a monotone function that returns a non-negative real
number. For si ∈ S, MCount(si, S)×Weight(si) is its marginal
score. 2

The weight function conveys how well a rule summarizes
the values in a table. We use the common weight function that
is introduced in [3]: the number of non-? values.

Example 8. For s1 and s2, Weight(s1) = 2 and Weight(s2) =
3. The score of S = (s1, s2) is 5 × 2 + 2 × 3 = 16 and the
score of S′ = (s2, s1) is 3 × 3 + 4 × 2 = 17. The marginal
scores of s1 and s2 are subsequently 10 and 6 in S, and 9 and
8 in S′. 2

Definition 5. [Summary] A summary over a relation R is a
set of summarization rules over R. The score of a summary is
the maximum score between all the possible lists containing
the rules in the summary. 2

Example 9. In Example 8, {s1, s2} is a summary with score
max(Score((s1, s2)), Score((s2, s1))) = max(16, 17). 2

Definition 6. [The summarization problem] Given a relation
R and a fixed value k, the summarization problem is to find
a summary S with |S|=k and maximum Score(S). 2

The summarization problem is NP-hard [1]. The authors
in [1] present a greedy algorithm called Best Rule Set (BRS)
that finds a sub-optimal set of rules efficiently. At a high
level, BRS has k steps. It starts with an empty rule set S
and at each step it adds the best rule that maximizes the
score function. In order to find the rule s to add in each
step, the algorithm computes the impact of every possible
rule on the score function. The algorithm prunes some of the
rules without computing the score function. The authors also
suggest a data sampling scheme for finding the best rule when
only a limited number of tuples can be processed in memory.
The approximation guarantee in the algorithm is based on the
fact that the score function (Definition 4) is sub-modular [1,
Lemma 3].

III. FORMALIZING PROVENANCE SUMMARIZATION
PROBLEMS

In this section, we define impact summaries and compara-
tive summaries and we formalize the summarization problems
for finding these summaries. The key challenge is to define
new score functions that specify these provenance summaries
while preserving the sub-modularity property for the efficient
computation of them. Our new score function for impact sum-
maries computes an accumulative impact of the provenance
records on the query answer in Section III-B. We present
an extension of the score function in Section III-B1 to solve
a problem that occurs when summarizing the provenance of
some aggregate queries, such as queries with MIN and MAX
aggregate functions and queries with joins. We show how this
extension works for queries with join in Section III-B2. We
then define a score function for comparative summaries by
extending the coverage of summarization rules to a pair-wise
coverage of the provenance of two answers in Section III-C.

A. Basics and Problem Setting

To define the provenance summarization problem, we as-
sume a general aggregate SQL query Q over a database
schema S as in Listing 1.
Q: SELECT G1, ..., Gm, f(G∗) AS G FROM table references

WHERE conditions GROUP BY G1, ..., Gm

Listing 1: The general form of aggregate queries

In Q, Gj , 1 ≤ j ≤ m and G∗ are attributes in the from clause
and f is an aggregate function, i.e. either a built-in function,
such as COUNT and AVG, or a user-defined function. In our
problem definition we assume no restriction on the from clause
and the where clause in Q, e.g. table references and condition
may contain sub-queries over S.

Consider a database D of the schema S. For a ∈ Q(D),
we define Qa in Listing 2 as a query that returns a[G].



Qa: SELECT f(G∗) FROM table references WHERE
conditions AND G1 = a[G1] AND ... Gm =a[Gm]

Listing 2: A query that returns the aggregate value in t

Example 10. For Q1 in Example 2, G1 = Gender, G =
SumRev, G∗ = Rev, and f is the SUM aggregate function.
For a2 ∈ Q1(MoviesDirectors), Qa2

1 is the following query:

Qa2
1 : SELECT SUM(Rev) FROM MoviesDirectors

WHERE Gender=Male

It returns a2[SumRev] = 3.374 B$ which is the sum of the
revenue of the movies directed by male directors. 2

For a ∈ Q(D) and R ∈ D, we use Ra ⊆ R to refer to
the lineage of Qa(D) in R. For example MoviesDirectorsa2

for a2 ∈ Q1(MoviesDirectors) contains all the tuples in
MoviesDirectors excluding t4, t9.

B. The Impact Summarization Problem

As motivated in Section I, an impact summary summarizes
the provenance of a tuple in the result of an aggregate query.
It does a better job compared to the basic summaries in
Section II-B. To define impact summaries and the impact
summarization problem, we specify the new score function,
IScore. Similar to the score in Definition 4, we define IScore
(impact score) for a list of summarization rules S.

Consider a tuple a ∈ Q(D) and a relation R ∈ D with
schema R and the lineage Ra 6= ∅. Let S be a set of rules
over R. The impact score of S is the maximum impact score
between every possible list that contains the rules in the set:

IScorea,R(S) =
∑
si∈S

Impacta,R(si, S)×Weighta(si), (2)

The attribute values in a may also appear in si. For example
in s1 from Section I, s1[Gender] = a2[Gender]. Therefore the
weight function Weighta(si) is the number of non-? values in
si that are not in a. Note that this weight function is different
from Weight is Definition 4. For example, Weighta2(s1) =
1,Weighta2(s4) = 2 because each rule has two non-? values
including Male that does not count in the weight function since
it also appears in a2.

The IScore function considers the impact of the provenance
tuples in Ra covered by rules in S on tuple a in the query
result. This is noted by the superscript a,R in IScorea,R and
is applied by replacing MCount(si, S) with Impacta,R(si, S),

Impacta,R(si, S) =
∑

t∈MCover(si,S)

|Qa(D)−Qa(D \ {t})|. (3)

The impact factor in Equation 3 measures the impact of a rule
si using sensitivity analysis. It is a technique that measures the
sensitivity of a query to a tuple or a set of tuples by comparing
the answers to the query with and without the tuple(s) in
the database [10], [7]. In Equation 3, we apply this analysis
w.r.t. the tuples in the marginal cover set MCover(S, si) and
considering Qa. We omit relation names, e.g. R in Equations 3
and 2, in the superscripts when they are clear from context.

Example 11. Consider Q1, a2 ∈ Q1(MoviesDirectors) and
summaries S = {s1} and S′ = {s4} with s1 and s4
from Section I. Based on the score function in Definition 4,
Score(S) = 10 and Score(S′) = 6. The new scores based on
Equation 2 are IScorea2(S) = Impacta2(s1)×Weighta2(s1) =
(t1[Rev]+ t3[Rev]+ t5[Rev]+ t7[Rev]+ t11[Rev])×1 = 1, 150.8
and IScore(S′) = Impacta2(s3)×Weighta2(s4) = (t6[Rev] +
t10[Rev])×1 = 1434.9 because s1 covers t1, t3, t5, t7, t11 and
s4 matches t6, t10 from the provenance of a2. Therefore, S′

is preferred over S w.r.t. IScore. 2

Definition 7. [Impact summary and the impact summarization
problem] Given relation R ∈ D, query Q over D, a tuple a in
the answer Q(D), and a constant k, the impact summarization
problem is to find a summary S of size k with maximum
IScorea(S). S is an impact summary. 2

The impact summarization problem is NP-hard because it
extends the summarization problem [1] (Section II), which has
been proved to be NP-hard. The BRS baseline algorithm relies
on sub-modularity of Score in Definition 4. In Section IV, we
present the IPS algorithm for finding impact summaries. To
guarantee the algorithm’s approximation, we need to verify
whether IScore is sub-modular.

Theorem 1. IScore in Equation 2 is sub-modular.

The proof of Theorem 1 is based on that the marginal
impact of every tuple a ∈ Q(D) in Equation 3, i.e. |Qa(D)−
Qa(D \ {t})|, is independent of the selected rules in S and
it is only considered in the marginal score of one rule in S
(see Appendix B for the complete proof). As a result of this
theorem, we can efficiently generate approximately optimal
impact summaries w.r.t. our score function.

1) Impact Summaries with Contingency: We now explain
a shortcoming of the impact definition in Equation 3 and we
present our solution to extend the impact with contingency.

Example 12. Consider the following query that asks the
maximum rating of movies from each genre.

Q4 : SELECT Gendre, MAX(Rating) AS MaxR
FROM MoviesDirectors GROUP BY Genre

According to Table I, a = (Drama, 8) is an answer to
Q4 with provenance Ra = {t2, t8}, which contains all the
drama movies. There is no meaningful impact summary for
Ra using the score function in Equation 2 and the impact
value in Equation 3. This is because IScore is 0 for every
summary. This happens because there are two tuples t2 and
t8 with the maximum rating 8 and removing each one from
MoviesDirectors does not change a. As a result, Impacta is 0
for every rule and score is 0 for every summary. 2

Example 12 shows that the sensitivity analysis used in
the definition of Impact in Equation 3 is not effective for
certain queries, e.g. some queries with MIN or MAX aggregate
functions. To solve this problem, we define a new Impact
that is based on the notion of the contingency set. It is more



general and extends the Impact in Equation 3 to address the
shortcoming in Example 12.

Definition 8. [Contingency Set] Consider a query Q in List-
ing 1 over a database D, a tuple a ∈ Q(D), the query Qa as
defined in Listing 2, and Ra (the provenance of a in R). The
contingency set for t ∈ Ra denoted by Ca(t) is a minimal set
of tuples in Ra such that Qa(D) 6= Qa(D \Ca(t)∪ {t}) and
Qa(D) = Qa(D \ Ca(t)) = Qa(D \ {t}). 2

Intuitively, the contingency set Ca(t) is a minimal subset
of Ra that must be removed from R before Qa becomes
sensitive to a. A particular case is when Ca(t) = ∅ which
means removing a immediately changes Qa(D). The notion
of contingency is first introduced in causal inference in AI
to specify the degree of responsibility [14], [15]. In data
management Meliu et al. use contingency set of a tuple
to define its responsibility w.r.t. a query answer [16], [17].
Definition 8 is adapted from [17, Definition 2.1].

Example 13. In Example 12, Ca(t2) = {t8} and Ca(t8) =
{t2}. This is because removing either t2 or t8 does not change
the answer but removing both does. 2

We now define a new Impact by extending Equation 3 with
consistency set:

Impacta(si, S) =
∑

t∈MCover(si,S)

|Qa(D)−Qa(D \ Ca(t) ∪ {t})|
|Ca(t)|+ 1

. (4)

In Equation 4, similar to Equation 3, the impact of si is the
sum of the impacts of tuples a in the marginal cover of si.
For every tuple a, its impact is the the total impact of its
contingency set, i.e. |Qa(D)−Qa(D\Ca(t)∪{t})| multiplied
by 1
|Ca(t)|+1 . This ratio is called the responsibility of a for the

answer Qa(D) [16].

Example 14. Consider summary {s} for a = (Drama, 8) ∈
Q4(MoviesDirectors) in Example 12 where s = (Title :
?,Year : 2014,Genre : Drama,Rating : ?,Rev : ?,Director :
?,Gender : Male,Country : ?). The rule only covers t2,
which is the only drama movie from a male director released
in 2014, i.e. MCover(s, {s}) = {t2}. The score of {s} is
0 if we use the impact function in Equation 3. According
to Equation 4, the new impact value is IScorea({s}) =
Impacta(s, {s})×Weighta(s) = ((8−7)×1/2)×1 = 1. This
is because the contingency set of t2 is {t8}, the responsibility
of t2 is 1/2 and removing t8 and t2 from MoviesDirectors
changes the answer to Qa

4 from 8 to 7. Weighta(s) = 2 because
s5 has three non-? values including Drama from a. 2

The new impact definition in Equation 4 is compatible with
the impact in Equation 3 in the sense that the former reduces
to the latter when the aggregate function is SUM or COUNT.
This is because the contingency set of every tuple with a
positive impact value according to Equation 3 will be empty,
its responsibility is 1, and therefore Equation 4 reduces to
Equation 3. The score function with the new impact value is
sub-modular which can be proved similar to Theorem 1 (see
Appendix B).

2) Impact Summaries for Queries with Joins: The class of
queries we considered in Listing 1 are general and cover a
wide range of aggregate queries, such as queries with joins
and nested queries. Here, we showcase and discuss in detail
how these summaries work for queries with joins.

Consider queries of the following general form that is
defined over a database D including relations R and T
with schemas R = {A1, A2, ...} and T = {B1, B2, ...},
respectively:
Q: SELECT G1, ..., Gm, f(G∗) AS G FROM R JOIN T

ON Ai = Bj WHERE conditions GROUP BY G1, ..., Gm

Listing 3: The general form of aggregate queries with join

In Listing 3, we assume {G1, ..., Gm} ⊆ R ∪ T , G∗ ∈ R
and Ai is a foreign key and Bj is the key attribute in T . Our
discussion extends to queries with multiple joins and joins on
multiple attributes.

For a tuple a ∈ Q(D), we define Qa similar to Listing 2
but over R and T . We also define Ra and T a subsequently as
the lineage (provenance) of Qa(D) in R and T .

Example 15. Consider Q5 over Movies and Directors in
Tables VIII and IX that asks the sum of the revenues of the
movies directed by directors of different genders.
Q5: SELECT d.Gender, SUM(m.Rev) FROM

Movies m JOIN Directors d ON m.Director = d.Name

For the answer a = (Male, 654.3M$), Qa
5 is the following

query that returns 654.3M$:
Qa

5 : SELECT SUM(Rev) FROM Movies m JOIN Directors d
ON m.Director = d.Name WHERE d.Gender = Male

The provenance of a contains its lineage tuples in both
Movies and Directors: Moviesa = {r1, r2, r3, r5} contains
every movie directed by a male director, and Directorsa =
{r6, r7, r8} are male directors with at least one movie. 2

The impact summary of an answer a to an ASPJ query Q
contains two sets of rules over R and T , e.g. the impact sum-
mary of a is two sets of rules over Movies and Directors. This
makes these summaries different from the impact summaries
over the join result, e.g. MoviesDirectors, since those could
be dominated by important tuples in just one relation.

Example 16. Consider SM = {sm} and SD = {sd} as
sets of rules over Movies and Directors. sm = (Title :
?,Year : ?,Genre : ?,Rating : 7,Rev : ?,Director : ?) is
a rule that summarises movies with rating 7, i.e. r1, r3, r5,
and sd = (Name : ?,Gender : Male,Country : US) covers
male directors from the US, i.e. r6. The impact of sm is
r1[Rev] + r3[Rev] + r5[Rev] = 569.4 and the score of SM

is Impacta(sm)×weighta(sm) = 569.4×1. The impact of sd
only depends on r6, i.e. Steven Spielberg. Since he directed
two movies in the Movies relation with revenues 275.3 and
219.4, the impact of sd that covers him is 275.3 + 219.4 and
that is also the score of SD since the weight of sd is 1. 2

C. The Comparative Summarization Problem
As motivated in Section I, comparative summaries best

summarize the similarities between the sets of provenance Ra



and Ra′ for a, a′ ∈ Q(D). To define the comparative summa-
rization problem, we present the following score function that
measures how well rules si ∈ S summarise Ra and Ra′ (we
omitted R is the superscripts similar to Equation 3 and 2):

CScorea,a
′
(S) =

∑
si∈S

MPCounta,a
′
(si, S)×Weighta,a

′
(si), (5)

In CScore (the comparative score), MPCounta,a
′
(si, S) is the

marginal number of tuple-pairs from Ra and Ra′ that are
covered by si. It is marginal because it does not count the
pairs that are already covered by previous rules sj , j < i. The
weight function Weighta,a

′
(si) returns the number of non-?

values in si that do not appear in a and a′. Using the standard
marginal count function for the provenance of two tuples a
and a′ where Ra is much bigger than Ra′ would result in a
summary where Ra would dominate. CScore gives a summary
that covers both Ra and Ra′ in a balanced way.

Example 17. In our example, the comparative score of
{s2} for summarizing the similarities between the provenance
of a3, a8 in Q3(MoviesDirectors) is CScorea3,a8({s2}) =
MPCounta3,a8(s2, {s2}) × Weighta3,a8(s2) = 0 × 1. The
marginal pair count MPCount is 0 because s2 does not cover
any pair from the provenance of a3, a8. The weight function
returns 1 since there is only one non-? value, i.e. 2014, that do
not appear in a3, a8. For the set of rules {c1}, the score is the
following: CScorea3,a8({c1}) = MPCounta3,a8(c1, {c1}) ×
Weighta3,a8(c1) = 1× 2. MPCount is 1 since c1 covers a pair
of tuples t1, t5 from the provenance of a3 and a8 respectively.
The weight of c1 is 2 because it has 3 non-? values including
Male that appears in a3 and a8 and does not count. 2

Definition 9. [The comparative summarization problem]
Given database D, relation R, query Q, tuples a, a′ in Q(D),
and a constant k, the comparative summarization problem is
to find a summary S of size k with maximum CScorea,a

′
(S).

2

Theorem 2. CScorea,a
′

in Equation 5 is sub-modular.

Theorem 2 holds because every pair of tuples in Ra, Ra′

are counted once in MPCounta,a
′
. As a result if S ⊇ S′

then MPCounta,a
′
(ci, S) ≤ MPCounta,a

′
(ci, S

′). The detailed
proof of the theorem is in Appendix B. We present a greedy
algorithm to find comparative summaries in Section IV. As
a result of Theorem 2, we can claim the algorithm gives an
approximately optimal set of rules w.r.t. our score function in
Equation 5. We study extensions of comparative summaries
considering the difference between the provenance tuples and
with joins in Appendix C.

IV. SUMMARIZATION ALGORITHMS

In this section, we present the impact provenance sum-
marization algorithm (IPS) and the comparative provenance
summarization algorithm (CPS) for finding impact summaries
and comparative summaries. These algorithms extend the BRS
algorithm in [1] to summarize the provenance of queries using
the new score functions in Section III. In our description of

IPS and CPS, we omit the optimization details of the BRS
algorithm to focus on the extension for summarizing prove-
nance, but we apply those optimizations in our experiments.

Algorithm 1 shows the detail of IPS that takes as input D,
R ∈ D, Q, an answer a ∈ Q(D), and value k and computes
an impact summary S of Ra with k rules. First, it generates
the provenance tuples Ra ⊆ R using an existing provenance
framework, such as Perm [18] (Line 1). Then it computes the
impact of each tuple in Ra on Q(D) (Line 2). The algorithm
uses Ra and the impacts to find the k best marginal rules by
calling BestMarginalRule k times and returns the results as S.
The best marginal rule s maximizes the score of S ∪ {s}.

Algorithm 1: The IPS Algorithm
Input: Database D, relation R, query Q, a ∈ Q(D), k.
Output: A set of rules S.

1 S := ∅, Ra := Provenance(D,R,Q, a)
2 foreach t in Ra do I(t) := |Qa(D)−Qa(D \ {t})|;
3 for i from 1 to k do
4 s := BestMarginalRule(Ra, a, S, I)
5 S := S ∪ {s}
6 return S

Algorithm 2 shows the main steps of BestMarginalRule.
To find the best marginal rule, s, the procedure maintains two
sets of new and old candidate rules, Sn and So respectively. At
the j-th iteration of the main loop, it generates every possible
candidate rule of weight j, stores them in Sn, and computes
their marginal scores in M . For j > 1, the procedure generates
the new rules in Sn using the rules with weight j − 1 in
So (Line 4). For example, if so = (A : ?,B : b) is in So,
sn = (A : a,B : b) will be added to Sn. Here sn is a super-
rule of so and so is a sub-rule of sn.

Before computing the scores (Lines 11-14), the procedure
prunes some candidate rules that cannot beat the best rule s
from the previous iterations without computing their scores
(Lines 5-10). For each sn, the procedure computes an upper
bound Un using the scores of its sub-rules so that are computed
in the previous iteration. The value (M(so)/Weighta(so)) ×
|R| in Line 8 is an upper bound for the marginal score of sn,
since the impact of sn is always less than M(so)/Weighta(so),
which is the impact of its sub-rule so, and the weight of sn
can never exceed |R|. The procedure removes the candidate sn
from Sn if its score’s upper bound is still less than the current
best marginal rule s. In line 10, if no candidate remains after
pruning Sn = ∅, the procedure stops and returns the best
marginal rule s.

The procedure computes the marginal score of candidate
rule sn in Sn in Line 14 by adding the impact of every tuple
t in Ra to M(s) if t is not covered by any rule in S. At the end
of each iteration in Line 15, the procedure checks for the best
marginal rule s in Sn and then updates So for next iteration.
The procedure returns s after checking every candidate rule.

Algorithm 3 details CPS, which takes R, Q, k, and a1, a2 ∈
Q(D) and returns a comparative summary S with k rules. The



Algorithm 2: BestMarginalRule(Ra, a, S, I)

Output: A rule s with maximum marginal score.
1 for j from 1 to |R| do
2 if j = 1 then Sn := all rules with weight 1;
3 else
4 Sn := all weight-j super-rules of rules in So

5 foreach sn ∈ Sn do
6 Un :=∞
7 foreach so ∈ So i.e. a sub-rule of sn do
8 Un := min(Un,

M(so)
Weighta(so)

× |R|)
9 if Un<M(s) then Sn := Sn \ {sn} break;

10 if Sn = ∅ then break;
11 foreach sn ∈ Sn do M(sn) := 0 ;
12 foreach t ∈ Ra not covered by rules in S do
13 foreach sn ∈ Sn that covers t do
14 M(sn) := M(sn) + I(t)×Weighta(sn)
15 s := argmaxsn∈Sn

(M(sn)), So := Sn

16 return s

algorithm first computes the provenance of a1, a2, then uses
it to find the top k marginal rules by calling BestCompara-
tiveMRule (Algorithm 4) k times. This procedure takes the
provenance sets Ra1 , Ra2 , and the set of rules S, and finds
the rule that best summarizes Ra1 and Ra2 . It computes the
marginal score of all rules except those that are already in
S and returns the one with the highest score. However, to
compute the marginal scores, it only adds to the score of a
rule if it covers pairs of tuples t1, t2 from Ra1 , Ra2 that are
not covered by any rule in S (Line 7).

Algorithm 3: The CPS Algorithm
Input: Database D, relation R, query Q,

a1, a2 ∈ Q(D), value k.
Output: A set of rules S.

1 S := ∅
2 Ra1 :=Provenance(D,R,Q, a1);

Ra2 :=Provenance(D,R,Q, a2)
3 for i from 1 to k do
4 c := BestComparativeMRule(Ra1 , Ra2 , a1, a2, S)
5 S := S ∪ {c}
6 return S

IPS is different from the BRS algorithm (as detailed in [3])
since IPS generates provenance and considers the impact val-
ues while it computes the marginal scores. The BRS algorithm
prunes candidate rules similar to IPS with the difference that
IPS uses impact values that can help prune rules faster when
the numerical attribute that is aggregated has skewed data.
The CPS algorithm is also different from the BRS algorithm
because CPS generates provenance and computes the score
function considering pairs of tuples.

Algorithm 4: BestComparativeMRule(Ra1 , Ra2 , a1, a2, S)

Output: A rule s with maximum marginal score.
1 Ms := 0
2 Sn := all possible rules that are not in S
3 foreach cn ∈ Sn do
4 M := 0
5 foreach t1 ∈ Ra1 , t2 ∈ Ra2 covered by cn do
6 if no rule in S covers t1 and t2 then
7 M := M + Weighta1,a2(cn)
8 if Ms < M then c := cn,Ms := M ;
9 return s

A. Computing Impacts and Contingency Sets

So far, in our problem definition in Section III and the
summarization algorithms in Section IV, we considered the
general class of aggregate SQL queries in Listing 1. However,
in our experiments we focus on the sub-class of Aggregate-
Select-Project-Join (ASPJ) queries with built-in aggregate
functions for two reasons. First, they cover a wide range of
queries that are used in practice, and second, we can compute
the provenance summaries for these queries efficiently as we
discuss in Section IV-B. Note that computing the impact of
tuples on the general class of aggregate queries in Listing 1 is
intractable since finding the contingency set for the provenance
tuples is NP-hard in general [16]. In addition, computing the
impact of the provenance tuples t on a general query Q with
user-defined aggregate functions requires running Qa(D\{t})
for every tuple t which can be costly. We can avoid this costly
query execution for ASPJ queries as we will explain next.

In Line 2, IPS computes the impacts of provenance tuples
t in Ra and stores them in I . For queries in our experiments,
we can compute impacts of tuples without running queries.
For example for an Aggregate-Select-Project (ASP) query Q
with SUM, the impact of t ∈ Ra is |t[G∗]|, and it is |t[G

∗]|
|Ra| for

queries with AVG. In Example 11, the impact of the movie
t1 on the sum of revenues in Qa2

2 is the movie’s revenue,
i.e. t1[Rev] = 275.3M$. For an ASP query with MIN or
MAX, computing the impact in Equation 4 requires finding the
contingency set Ca(t). Although computing the contingency
set is proved to be NP-hard for general SQL queries [16], we
can efficiently compute it for queries of the general form in
Listing 1. If t[G∗] = a[G], which means t[G∗] is the min
or max value in the answer, the contingency set is the set
of all tuples t′ such that t′[G∗] = t[G∗]. In Example 12,
a[MaxR] = t2[Rating] and Ca(t2) = {t8}. The impact of t
is |t[G

∗]−m|
|Ca(t)|+1 in which m is the second min or max value in

Ra. In Example 12, the impact of t2 is 8−7
2 . If t[G∗] 6= a[G],

the impact of t is 0, e.g. the impact of t1 is 0 in Example 12.
For an ASPJ query of the general form in Listing 3, we com-

pute the impact of t ∈ Ra as we explained above for queries
without joins. If t ∈ T a, the impact of t depends on values
all the tuples t′ ∈ Ra that join with t, e.g. t′[Ai] = t[Bj ].
We compute the impact of t using t′[G∗] for every t′. For



example, for ASPJ queries with the SUM aggregate function,
the impact of t is

∑
(|t′[G∗]|).

B. Analysis of Summarization Algorithms

The cost of running IPS is divided into (a) generating Ra,
(b) computing the impacts in I , and (c) finding the best
marginal rules. We only analyse the cost of (b) and (c) since
(a) depends on the provenance framework. For the queries in
our experiments, the cost of (b) is O(n) with n = |R| because
the impact of each tuple can be computed in O(1) as noted in
Section IV-A. The cost of (c) is at most O(k×n2× 2m) with
m = |R| since there are at most n2 × 2m possible rules, and
the cost of computing the marginal score of each rule is n. The
rule pruning technique helps reduce the cost to O(k×n2×m)
(the detail of its analysis is in [3]). Therefore, the total cost of
IPS is at most O(k×n2×m). The cost of CPS only consists of
the cost of generating Ra1 , Ra2 , which we omit, and the cost of
finding the best marginal rules in Line 4 of Algorithm 4. That
cost is n2 since BestComparativeMRule iterates over pairs of
tuples in Lines 5-7 of Algorithm 4. That means the total cost
of CPS is O(k × n3 ×m).

IPS and CPS only incur the approximation caused by the
greedy rule selection. The score functions in both algorithms
are monotone since the marginal scores are non-negative. They
are also sub-modular as we proved in Theorems 1 and 2. As a
result, the algorithms have the approximation ratio α = 1− 1

e ,
i.e. the score of a result summary is greater than the optimal
score multiplied by α [19].

V. USER INTERFACE AND VISUALIZATION

The user interface and visualizations provide users with all
the facilities they need to explore the provenance summariza-
tion rules. Rules are presented to the user in a way that helps
them uncover insights about the data.

The user starts by writing a query and seeing the results of
the query. The user then clicks on one or more tuples and asks
to see a summary of the provenance. We offer two different
interfaces depending on the type of query or question: (a)
Impact summaries if the user clicks on a single tuple; this
includes impact summaries for the results of queries with joins.
(b) Comparative summaries if a user clicks on multiple tuples.

For impact summaries, rules are presented as rows in a table
(or multiple tables when the query involves multiple tables)
with a quality measure for each rule. This quality measure is
one of the following. Score: the score of a rule according to
Equations 2 and Equations 5, which reflect the contribution of
each rule to the summary’s total score. Coverage: the fraction
of provenance tuples that are covered by a rule. Impact: the
impact of a rule normalized by the total possible impact.
The impact and coverage values are not marginal and do not
depend on the other rules in the summary.

For impact summaries for queries that involve multiple
tables, the interface shows separate summaries for each table
in the join. The user can click on a rule in one summary to
see how it relates to the rules in the other summary. Figure 1
shows an example with three lines denoting different values

for the relationship between the rules. The thicker the line the
stronger the connection between the tuples.

Fig. 1: User interface for summaries for queries with join.

For comparative summaries, we offer a similar interface.
The difference is the horizontal bars show how balanced each
rule is in covering the provenance of the two tuples.

In all our interfaces the rules offer the following interactions.
The user can click on a rule to expand it and see a set of
super-rules contained within a rule (see Section IV for the
definition of super-rule). The user can also contract the list
to hide any sets of super-rules. In a list of rules, there can
be trivial attributes that have all their values as ? in all rules.
For example, the attribute Title in Figure 1. These attributes
can all be collapsed into a single attribute named ? to reduce
clutter as seen in Figures 1

VI. EXPERIMENTAL EVALUATION

In this section, we have three objectives: (a) to evaluate
the performance of our algorithms and show they can gen-
erate summaries in real-time (Section VI-B), (b) to compare
provenance summaries with basic summaries and show prove-
nance summaries have higher quality w.r.t. our new metrics
(Section VI-C), (c) to show the relevance of impact and other
related metrics such as diversity for provenance summarization
using a user survey (Section VI-D).

A. Experimental Setup

The performance of our summarization algorithms and their
result summaries vary depending on the selected tuples in the
query answer. Since there are no restrictions over these user
selected tuples, for each experiment we produced summaries
for a large number of randomly selected answers and reported
the results as the distribution of those answers.

The results of our summarization algorithms also depend
on the query. We ran our experiments for different queries.
To analyse the algorithms on queries with different aggregate
functions, we used the same queries and replaced the aggregate
function. We reported the results for all functions only if there
is significant difference between the results. We used IAGG
and CAGG to refer to the IPS and CPS with AGG as the
aggregate function, e.g. ISUM is IPS with SUM.

We implemented our algorithms in Python and ran the
experiments on a machine with 3.3GHz Intel CPU and 16 GB
RAM that uses PostgreSQL 9.4. The provenance generation
component is Perm [18].

Datasets We used three datasets. Table XI gives the data
characteristics, showing a range of data sizes w.r.t. the number



GLEI IMDB TPC-H

|D| 250k 181k+323k 60k - 3m
N 1 2 8
mD 12 15 61
q 5 6 6

TABLE XI: Datasets characteristics.

of tuples (|D|), the number of tables (N ), the total number of
attributes in the tables (mD), and the number of queries (q):

Global Legal Entity Identifier (GLEIs). This is a real world
financial dataset collected from various sources for financial
institutions [20] to create a single, universal identifier for
entities that are involved in any financial transaction. We used
this dataset for performance analysis (Exp-3 in Section VI-B).
In those experiments, we ran the following query over a single
table, GLEI, with varying number of attributes G1, G2, ... and
aggregate functions f :
SELECT G1, G2, ..., f (Dist) FROM GLEI GROUP BY G1, G2, ...

Dist is a numerical attribute describing the distance between
each entity and the center of the city where it is located.

IMDB. We used a subset of the IMDB dataset with two tables,
Movies and Directors. The movies table includes revenue
for which we calculated the aggregate results. We used this
dataset for performance analysis (Exp-2 and 4) and quality
experiments (Exp-6 and 7). In those experiments, we ran
the following query with different number of attributes and
different aggregate functions.

SELECT G1, G2, ..., f (Rev) FROM Movies m, Directors d
WHERE m.Director = d.Name GROUP BY G1, G2, ...

TPC-H. As far as we know, there is no standard benchmark
for provenance systems or summarization. We used TPC-H
for performance experiments and to show how our methods
handle queries with multiple types of aggregation and multiple
complex joins.2 We varied the database size as follows: 60k,
300k, 600k, and 3m. In the TPC-H experiments, we ran five
queries, Q1, Q3, Q5, Q6, Q10, as generated by the TPC-H tool.
We chose those queries because they contain features covered
by our summarization algorithm.

Parameters The default value of k, the size of provenance
summaries, is 8, which we decided based on survey results in
Section VI-D. The value mw specifies the maximum weight of
rules and its default value is 4, higher values of mw make the
rules too verbose for a summary of our datasets. The number
of group-by attributes in the queries, mq , has the default value
of 1, we assume for users unfamiliar with a dataset they would
start their analysis with a single group-by attribute query.

B. Runtime Performance

To evaluate performance of IPS, we compared its runtime
with BRS while changing |D| and k in Exp-1 and Exp-2, and
mq and mw in Exp-3, respectively. We studied the runtime of
IPS for queries with joins in Exp-4 and CPS in Exp-5.

2http://www.tcp.org/hspec.html

Exp-1: Effects of |D|. Figure 2a shows the effect of |D| on
the runtime of IPS for the queries in the TPC-H dataset. As
we expected, the runtime increases for larger |D|. However,
IPS scales differently for each query. For example, while the
increase in the runtime of IPS for Q3, Q10 is hardly noticeable,
there is a clear jump in the runtime of Q1. This is because
the provenance of Q1 involves a portion of D that increases
as we increase |D|, while Q3 and Q10 access almost a fixed
part of D. This experiment shows that IPS scales w.r.t. |D|
but its actual runtime highly depends on the query.
Exp-2: Effects of k. Figure 2b shows the effect of k on the
runtime of IPS. We see an increase in runtime as we increase
k for all algorithms. The increase in runtime is linear because
the main loop of IPS (cf. Algorithm 2) runs k times. We
also observe that IMAX runs faster than the other algorithms
since it only summarizes a small subset of the provenance
set. ISUM, BRS, and IAVG perform similarly. IAVG performs
slightly worse because of the extra computations.

1

100

60k 300k 600k 3m
|D|

R
un

tim
e 

(lo
g)

 Q1 Q3 Q5 Q6 Q10

(a) Effect of |D| in TPC-H.

4 8 16

10

100

1000

R
un

tim
e 

(lo
g)

BRS ISUM IAVG IMAX

k

(b) Effect of k in IMDB.

1 2 3

10

1000

R
un

tim
e 

 (
lo

g)

BRS IAVG IMAX

mq

(c) Effect of mq in GLEI.

2 3 4

10

1000

R
un

tim
e 

(lo
g)

BRS IAVG IMAX

mw

(d) Effect of mw in GLEI.

60k 300k 600k 3m

10

1,000

100,000

R
un

tim
e 

(lo
g)

JOIN NO JOIN

|D|

(e) Effect of join in TPC-H.

C
P

S
C

P
S

_O
P

T

4 8 12 16

0
500

1000
1500

2

4

6

k

R
un

tim
e

CPS CPS_OPT

(f) Effect of opt. on CPS.

Fig. 2: Effect of different parameters on Runtime, in seconds,
of IPS. CPS experiments used the IMDB dataset.

Exp-3: Effects of mq and mw. According to Figure 2c, the
runtime of IPS greatly decreases as the number of group-
by attributes mq increases. In the experiments on the GLEI
dataset, the average size of a provenance set is 9, 000 tuples,
4, 500 tuples, and 922 tuples for mq = 1, 2, 3 respectively.
This shows that the more variables used to aggregate the data,
the faster the summaries can be produced. As expected, mw

has the inverse effect with runtime increasing as mw increases.
The main loop for Algorithm 2 runs mw times.



Exp-4: Effects of join in queries. We considered TPC-H
queries that contain joins and generated the same queries
without joins by materializing the join result. Figure 2e shows
the runtime of IPS for all queries. IPS performs similarly
for all queries when data size is small. The join queries
slightly outperform those without join because the summaries
for queries with join have smaller number of attributes as a
the shared join attributes appear only once in the join result.
However, we see a more pronounced effect of join for larger
data sizes, because finding contingency sets, which is costly.

Exp-5: CPS and optimized CPS. As we discussed in
Section IV-B, CPS is more costly compared to IPS since
it compares pairs of tuples. Therefore, we implemented an
optimization of CPS that prunes the rules with low coverage
on either provenance sets using a coverage threshold. We
evaluated the effect of this optimization in Figure 2f by
comparing the runtime of CPS and optimized CPS using
the IMDB dataset. The optimized version runs 250% faster
because many tuples have a low coverage on at least one
provenance set. While this is shown to be very effective for
IMDB, it might not be as effective in other datasets.

C. Quality of Provenance Summaries

Measuring the quality of a summary of this type is a
challenging task. We chose four objective metrics from and
used them to evaluate summaries produced using the BRS
algorithm and IPS. We also conducted a user survey to study
users’ expectations for such summaries to show the relevance
of our metrics.

We define the following summary quality metrics for a
summary: Impact is the distribution of impact values for rules
in the summary. Sum and average of impact for a summary
do not give the full picture. A good impact summary needs to
have all rules of high impact. Coverage is the total number of
provenance tuples that are covered by the rules in the summary.
Weight is the total weight (the number of non-? values) of the
rules in a summary. Higher weight represents summaries that
are more descriptive. Diversity is the number of unique values
for attributes present in the summary. Diversity is used in [2]
to optimize a summary using a distance function. We used it as
a quality measure where a more diverse summary would cover
more attribute values. We argue that a single measure by itself
is not sufficient to evaluate the quality of a summary. A high
quality summary would have high impact rules, high coverage,
high diversity, and its rules would have higher weights.

Exp-6: Coverage and impact. Figures 3a and 3b respectively
show the coverage and the impact of the rules generated
by different algorithms. Figure 3a shows that BRS generates
rules with higher coverage, which was expected. Surprisingly,
Figure 3b reveals that BRS also generates rules with high
impact. This can be explained by looking at the distribution of
the impact values, which shows a wide range of impact values
in the basic summaries. This is because the basic summaries
in BRS achieve high impact with a few high-coverage rules
that have low weight and are not very informative. The rest

of the rules in a basic summary do not have high impact.
However, the impact summaries, e.g. ISUM, gain high impact
with informative rules with high weights. This confirms that
IPS finds rules with high impact that are also informative.
Exp-7: Diversity and weight. Figures 3c also supports the
fact that IPS consistently picks higher weight rules than the
BRS algorithm. ISUM generates rules with higher weights
than IAVG due to the higher values of impact multiplied
by weight. In terms of diversity, IPS outperforms the BRS
algorithm (Figure 3d). With higher diversity values, we can say
that the higher weight rules of IPS are also more informative.
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Fig. 3: The effect of k on summaries’ quality metrics. Results
are reported from experiments on the IMDB data.

D. User Survey
We conducted an online survey to ask computer science

students about their expectations of a data summarization sys-
tem. We designed our questionnaire to be generic, presenting
a use-case scenario that general users would be familiar with.
We tried to minimise bias by giving a very generic example
of the IMDB dataset.

We presented participants with a scenario where a user
posed a query to the system, looked at an aggregate answer,
and received a short summary of the data that contributed to
the answer. We asked users to evaluate this summary then
asked them about their thoughts for what type of information
should be included in such a summary. We asked users to
rank: rules covering movies with high revenue, rules covering
a lot of movies, and rules with surprising information using
Likert scales from not important (1) to essential (5). These
rules represent impact, coverage, and a surprise factor respec-
tively. We also asked users what size of summary would be
appropriate and asked them to justify their choices. We use
those qualitative answers to filter the survey responses with
low quality responses and as evidence of the quality metrics
users prefer.

17 participants completed the survey. Results show partic-
ipants favor high impact rules over rules with high coverage.



They also favor surprising rules the most (Figure 4a). In
their evaluation of the summaries, most users picked the
high impact, low coverage rules, and high weight rule as
the most interesting. Results also show that participants favor
summaries of small sizes, i.e. 5-8. Only one user picked the
summaries of size > 12 as seen in Figure 4b.

Users wrote out qualitative answers to justify their choices.
Notably, users commented that high impact rules were most
interesting and that they preferred shorter summaries. We
present some quotes from the survey participants: “Row 2 was
most interesting showing that only 25% of movies collected
78% of revenue which is significant.” “I care about ranking
rules based on the impact factor.” “More than 5 rows is not a
summary”.
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Fig. 4: Survey results show how users ranked the various
metrics (5 essential - 1 not important) and summary sizes.

VII. RELATED WORK

Provenance Database Systems. Data provenance is studied
extensively in the database literature. While there are different
notions of provenance in databases [11], e.g. lineage, why-
provenance, how-provenance and where-provenance, in this
work we started from lineage. Summarizing other types of
provenance is one of our future research directions.

There are several frameworks for generating and managing
provenance data in data management [13], [18]. Perm [18] is
a common provenance framework that manages provenance
information using easily optimizable SQL. The semantics of
Perm are similar to why- and where-provenance. We use Perm
to generate the provenance we summarize. More approaches
are explored in data provenance surveys such as [12].

Query Explanation. In Section I, we noted that our work is
built on the query explanation work to generate the impact of
summaries [7], [8], [9]. Our work is different since it focuses
on summarization rather than finding the best explanation.
Here, we review the recent work on query explanation.

Scorpion [7] is a framework that helps users understand
outliers in aggregate query answers. It provides explanations
in the form of predicates over the attributes of tuples that
contribute to the outliers. The framework uses the notion of
influence to compute the effect of tuples the on query answer;
this is similar to the sensitivity analysis in our solution. In [9],
the authors present an approach for explaining answers to SQL
queries based on the notion of intervention, i.e. removing of

tuples from the database and measuring their effect on query
answers. They focus on answering user questions in the form
of (Q, high) or (Q, low), where a user seeks an explanation
for an unexpected high or low result. The explanation is in
the form of a set of predicates or conditions that specify
the tuples that have major contribution to the answer to the
query in the user’s question. [8] extends [9] to explain more
general questions and user questions using intervention. This
approach is different in the kind of questions it answers and
the explanations it provides.
Summarization rules. There are several frameworks that
apply summarization rules similar to those we use: [2], [1],
[3], [4]. However, their purposes are different from ours. The
work in [1], [3] summarizes a relation and does not consider
the query or its provenance. The interactive summarization
framework in [2] applies these rules to summarize the top k
answers of an aggregate query but not their provenance. The
data summarization technique in [4] solves a different prob-
lem: given a relation with an outcome attribute, it constructs
a summary of the factors affecting the outcome attribute in
a prediction task. Our approach is the only framework that
extensively uses these informative and interpretable rules for
provenance of queries.

VIII. CONCLUSION

In this paper we looked at provenance and summarization
research. We implemented new summarization techniques,
impact summaries and comparative summaries. Our sum-
maries are ideal for users with little knowledge of provenance
semantics or the data itself. We validated our techniques with
thorough experiments and a user survey to show they present
summarized information that is relevant to users. We intend
to extend our solution to support more general use cases and
conduct a usability study to further validate our findings.
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APPENDIX

A. Alternative Score Functions

We present two alternative score functions, agglomera-
tive impact score for impact summaries and entropy-based
score for comparative summaries. While these score functions
specify meaningful summaries that are different from the
summaries in Section III, they are non-submodular functions
and do not allow efficiently computing sub-optimal summaries.

1) Accumulative Impact Summaries: We present AImpactt

(accumulative impact) as an alternative for Impactt in Equa-
tion 3 that computes the impact of a tuples covered by a rule
as a group:

AImpactt(si, S) = |Qt(R)−Qt(R \MCover(si, S))|. (6)

Using this impact function, we define a new score function in
Equation 7:

AIScoret(S) =
∑
si∈S

AImpactt(si, S)×Weightt(si), (7)

The following example applies this new score function
and compares it with the score function used in the impact
summaries in Section III.

Example 18. Consider the following query on MoviesDirec-
tors that returns two answers, w1 = (Female, 312.3 M$) and
w2 = (Male, 337.3 M$):

Q : SELECT Gender, AVG(Rev) AS AvgRev
FROM MoviesDirectors GROUP BY Gender

Let assume the user requests an impact summary for w2.
Consider summaries S = {s1} and S′ = {s3} with s1 =
(Title : ?,Year : ?,Genre : ?,Rating : 7,Rev : ?,Director :
?,Gender : Male,Country : ?) and s3 = (Title : ?,Year :
?,Genre : Action,Rating : ?,Rev : ?,Director : ?,Gender :
Male,Country : ?), we compute the score functions w.r.t. the
score functions in Equations 2 and 7 as follows:

IScorew2(S) = Impactw2(s1)×Weightw2(s1) =

(|337.3− 344.2|+ |337.3− 366.5|+ |337.3− 350.4|+
|337.3− 329.1|+ |337.3− 355.9|)× 1 = 76.03.

IScorew2(S′) = Impactw2(s3)×Weightw2(s3) = (|337.3−
332.7|+ |337.3− 329.1|+ |337.3− 257.5|)× 1 = 92.7.

AIScorew2(S) = AImpactw2(s1)×Weightw2(s1) =

= |337.3− 444.6| × 1 = 107.2.

IScorew2(S′) = Impactw2(s3)×Weightw2(s3)

= |337.3− 218.2| × 1 = 119.18

The rule s1 covers t1, t3, t5, t7, t11 and s3 covers t6, t7, t10. In
both types of summaries, S′ = {s3} is preferred to S = {s1}
because it has a higher score. 2

Proposition 1. The score function AIScore in Equation 7 is
sub-modular if the aggregate function in Q is monotone (e.g.
COUNT, MIN, MAX) and it is not sub-modular if the aggregate
function is non-monotone (e.g. SUM or AVG). �

2) Entropy-based Comparative Summaries: We presented
comparative summaries in Section ?? based on a new score
function that measures the balance between the tuples covered
by a summarization rule from two provenance sets. Now, we
suggest an alternative score function that gives a different
measure of the balance between the covered tuples using
binary entropy function:

ECScoret,t
′
(S) =

∑
si∈S

MCountt,t
′
(si, S)×Weight(si), (8)

This comparative score function is different from the sore
function in Definition 4 in its marginal count function. Unlike
MCount that counts the number of remaining records covered
by si, MCountt,t

′
counts records from the provenance of both

t and t′. We define MCountt,t
′

as follows:

(MCountt(si, S)+MCountt
′
(si, S))×Entropyt,t

′
(si, S). (9)

Here, MCountt(si, S) + MCountt(si, S) is a marginal count
of the tuples in the provenance of t or t′ that are covered by
si (MCountt and MCountt

′
are defined in Definition 3). The

binary entropy function 0 ≤ Entropyt,t
′
(si, S) ≤ 1 measures

the balance between the coverage from the provenance of t and
t′. It is 0 if either MCountt(si, S) = 0 or MCountt(si, S) = 0
meaning all the covered provenance records are from one side,
and it is 1 if exactly the same number of records are covered
from the provenance of t and t′. More precisely, the binary
entropy function is defined as follows:

Entropyt,t
′
(si, S) = H(p(si, S)t) = H(p(si, S)t

′
). (10)



in which H(p) = −p × log p − (1 − p) × log(1 − p) is the
binary entropy function, p(si, S)t is defined as follows,

p(si, S)t =
MCountt(si, S)

MCountt(si, S) + MCountt(si, S)
,

while p(si, S)t
′

is defined analogously. We define
MCountt,t

′
= 0 if MCountt(si, S) = 0 and

MCountt(si, S) = 0 when si has no marginal coverage
from from Rt ∪Rt′ .

Example 19. In our running example, considering t = g1, t
′ =

g4 and s1, ..., s4, the score of {s1, ..., s4} is 0 because each
si only covers records from the provenance of g4. The score
of a set of rules {s5} is 6 because MCountt,t

′
(s5, {s5}) =

2×H(0.5) = 2 and Weight(s5) = 3. 2

Proposition 2. The score function ECScore in Equation 8 is
not sub-modular. �

The proof of this proposition is based on a similar counter
example in the proof of Proposition 1.

B. Proofs

Proof of Theorem 1. Given a set of rules S that summarize the
provenance of t ∈ Q(R), and a tuple r ∈ R in the provenance
of Qt(R), let L(r, S) be the first rule in S that covers r (the
rule that covers r and has the maximum score). Let ∆t(r) =
|Qt(R)−Qt(R\{r})| be the impact of r on Qt(R). The score
can be rewritten as the following:

IScoret(S) =
∑
r∈R

Weightt(L(r, S))×∆t(r). (11)

Assuming a set of rules S′ such that S ( S′ and a rule s 6∈
S′, we prove IScoret is submodular by showing the following
always holds: IScoret(S ∪ {s}) − IScoret(S) ≥ IScoret(S′ ∪
{s}) − IScoret(S′). The marginal score for s w.r.t. S and S′

can be written using Equation 11. For example for S, the
marginal score IScoret(S ∪ {s})− IScoret(S) can be written
as the following:∑

r∈R
[Weightt(L(r, S ∪ {s}))−Weightt(L(r, S))]×∆t(r).

Since ∆(r) is a positive value that only depends on r,Qt and
R, we can consider the following cases for every r ∈ R:

Case 1. Weightt(L(r, S′∪{s}))−Weightt(L(r, S′)) > 0 which
means r is in the marginal cover set of s which has the highest
weight between the rules that cover r and L(r, S ∪ {s}) = s.
Since S ( S′, we can claim that Weightt(L(r, S ∪ {s})) ≥
Weightt(L(r, S)) and L(r, S) = s which means

Weightt(L(r, S ∪ {s}))−Weightt(L(r, S)) ≥
Weightt(L(r, S′ ∪ {s}))−Weightt(L(r, S′)).

Case 2. Weightt(L(r, S′ ∪ {s}))−Weightt(L(r, S′)) = 0 and

Weightt(L(r, S ∪ {s}))−Weightt(L(r, S)) ≥
Weightt(L(r, S′ ∪ {s}))−Weightt(L(r, S′))

because Weightt(L(r, S ∪ {s}))−Weightt(L(r, S)) ≥ 0. This
means for every r ∈ R

Weightt(L(r, S ∪ {s}))−Weightt(L(r, S)) ≥
Weightt(L(r, S′ ∪ {s}))−Weightt(L(r, S′))

which proves the theorem. This proof is based on the proof
of [1, Lemma 3]. 2

Proof of Theorem 2. Similar to the proof of Theorem 1,
consider S, t1, t2 ∈ Q(R), r1 ∈ Rt1 , r2 ∈ Rt2 in the
provenance of t1 and t2. Let L(〈r1, r2〉, S) be the first rule
in S that covers 〈r1, r2〉 (the rule that covers both r1 and r2
and has the maximum score). The CScore function can be
rewritten as the following:

CScoret1,t2(S) =
∑

〈r1,r2〉∈Rt1×Rt2

Weightt1,t2(L(〈r1, r2〉, S)).

(12)

Assuming a set of rules S′ such that S ( S′ and a rule s 6∈ S′,
we prove CScoret1,t2 is submodular by showing the follow-
ing always holds: CScoret1,t2(S ∪ {s}) − CScoret1,t2(S) ≥
CScoret1,t2(S′∪{s})−CScoret1,t2(S′). The marginal score for
s w.r.t. S and S′ can be written using Equation 12. For example
for S, the marginal score CScoret1,t2(S∪{s})−CScoret1,t2(S)
can be written as the following:

∑
〈r1,r2〉∈Rt1×Rt2

[Weightt1,t2(L(〈r1, r2〉, S ∪ {s})) −

Weightt1,t2(L(〈r1, r2〉, S))].

Similar the proof of Theorem 1, we can consider two cases
for every 〈r1, r2〉 ∈ Rt1 ×Rt2 :

Case 1. Weightt1,t2(L(〈r1, r2〉, S ∪{s}))−Weightt1,t2(L(〈r1,
r2〉, S)) > 0 which means s covers both r1, r2 and
has the highest weight between the rules that cover them
and L(〈r1, r2〉 , S ∪ {s}) = s. Since S ( S′,
we can claim that Weightt1,t2(L(〈r1 , r2〉, S ∪ {s})) ≥
Weightt1,t2(L(〈r1, r2〉, S)) and L(〈r1, r2〉, S) = s which
means

Weightt1,t2(L(〈r1, r2〉, S ∪ {s}))−Weightt1,t2(L(〈r1, r2〉, S)) ≥
Weightt1,t2(L(〈r1, r2〉, S′ ∪ {s}))−Weightt1,t2(L(〈r1, r2〉, S′)).

Case 2. Weightt1,t2(L(〈r1, r2〉, S ∪ {s})) −
Weightt1,t2(L(〈r1, r2〉 , S)) = 0 and



Weightt1,t2(L(〈r1, r2〉, S ∪ {s}))−Weightt1,t2(L(〈r1, r2〉, S)) ≥
Weightt1,t2(L(〈r1, r2〉, S′ ∪ {s}))−Weightt1,t2(L(〈r1, r2〉, S′)).

because Weightt1,t2(L(〈r1, r2〉, S ∪{s}))−Weightt1,t2(L(〈r1,
r2〉, S)) ≥ 0. This means for every 〈r1, r2〉 ∈ Rt1 ×Rt2 ,

Weightt1,t2(L(〈r1, r2〉, S ∪ {s}))−Weightt1,t2(L(〈r1, r2〉, S)) ≥
Weightt1,t2(L(〈r1, r2〉, S′ ∪ {s}))−Weightt1,t2(L(〈r1, r2〉, S′))

which proves the theorem. 2

Proof of Proposition 1. The proof of sub-modularity for
COUNT is given in [1, Lemma 3] which can be extended to
any monotone aggregate function. For sets of rules S1 ⊆ S2

that summarize relation R and a new rule s 6∈ S1 ∪ S2, the
proof is based on the fact that the marginal score w.r.t. every
tuple t ∈ R after adding s is greater for S1 compared to S2.
For the second part of the proposition, we apply the following
counter-example that shows the score function in (2) is not
sub-modular when the aggregate function is SUM. Similar
counter examples can be generated for any non-submodular
function such as AVG.

Let R = {(a, b,−1), (c, b, 1)} be a relation with attributes
A1, A2, A3. Consider Q as the following query: SELECT SUM
(A3) FROM R. Let S1 = ∅ and S2 = {(a, b, ?)} be sets of
summarization rules and s = (?, b, ?) be a summarization
rule. We compute the following score values using the score
function in (2) for the only tuple t in Q(R): IScoret(S1) = 0,
IScoret(S2) = 2, IScoret(S1 ∪ {s}) = 0, IScoret(S2 ∪ {s}) =
3. Therefore, IScoret(S1 ∪ {s}) − IScoret(S1) = 0 and
IScoret(S2 ∪ {s}) − IScoret(S2) = 1 which shows S1 ⊆ S2

does not imply IScoret(S2∪{s})−IScoret(S2) ≤ IScoret(S1∪
{s})− IScoret(S1) and proves the claim. 2

C. Extensions

In this section, we briefly discuss two extensions: one
for summarizing differences and one for handling joins in
comparative summaries.

In Section III-C, we focused on comparative summaries for
capturing the similarities between two provenance sets. The
differences can also be summarised using a new score function
similar to the function in Equation 5. The change is that the
marginal pair count (MPCount) in Equation 5 will be replaced
with a function that counts the number of tuples si covers from
Rt and penalizes si if it covers tuples from Rt′ . The definition
of such a score function is in A where we also prove it is
sub-modular. The following example illustrates the problem of
summarizing the differences in the provenance of two tuples:

Example 20. In Table III, consider the provenance of
a3, a5 ∈ Q2(MoviesDirectors). A rule s5 = (Title : ?,Year :
?,Genre : Comedy,Rating : 7,Rev : ?,Director : ?,Gender :
Male,Country : US) provides a comparative summary for the
differences between the provenance of c1 and c6 since the

rule summarizes t5, t11 in the provenance of c6 but it does
not cover any tuple from the provenance of c1. 2

In Appendix A , we present other score functions for
comparative summaries using the notion of binary entropy
function that measure the balance between the coverage of
the provenance tuples. However, we show that those score
functions do not preserve the sub-modularity property.

The comparative summarization problem can be extended
for queries with join operators. For example, if the user selects
two tuples e1 and e2, we can summarize similarities and
differences between the provenance tuples in both Movies and
Directors.

The main difference with the comparative summaries in
Section III-C is that the provenance sets for two selected
tuples might overlap and this has to be considered in the score
function for such comparative summaries.
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