A Toolbox of Level Set Methods

Ian Mitchell

Department of Computer Science University of British Columbia

http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca

research supported by the Natural Science and Engineering Research Council of Canada

Level Set Methods

- Numerical algorithms for dynamic implicit surfaces and Hamilton-Jacobi partial differential equations
- Applications in
 - Graphics, Computational Geometry and Mesh Generation
 - Differential Games
 - Financial Mathematics and Stochastic Differential Equations
 - Fluid and Combustion Simulation
 - Image Processing and Computer Vision
 - Robotics, Control and Dynamic Programming
 - Verification and Reachable Sets

Implicit Surface Functions

- Surface S(t) and/or set G(t) are defined implicitly by an isosurface of a scalar function $\phi(x,t)$, with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

$$\phi : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$$
$$\mathcal{G}(t) = \{ x \in \mathbb{R}^n \mid \phi(x, t) \leq 0 \}$$
$$\mathcal{S}(t) = \partial \mathcal{G}(t) = \{ x \in \mathbb{R}^n \mid \phi(x, t) = 0 \}$$

Ian Mitchell, UBC Computer Science

Implicit Surface Benefits

- Easy to represent a variety of shapes
- Unified framework for many types of motion
- Surface parameters easily approximated
- Topological changes are automatic
- Conceptual complexity independent of dimension
- Easy to visualize
- Easy to implement (?)

Hamilton-Jacobi Equations $D_t \varphi(x,t) + G(x,t,\varphi,\nabla\varphi,D_x^2\varphi) = 0$ $\varphi(x,0) = g(x)$ bounded and continuous $G(x,t,r,p,\mathbf{X}) \leq G(x,t,s,p,\mathbf{Y}), \text{ if } r \leq s \text{ and } \mathbf{Y} \leq \mathbf{X}$

- Time-dependent partial differential equation (PDE)
 - With second derivative terms: degenerate hyperbolic PDE
- In general, classical solution will not exist
 - Viscosity solution φ will be continuous but not differentiable
- For example, classical Hamilton-Jacobi-Bellman
 - Finite horizon optimal cost leads to terminal value PDE

$$\varphi(x(t),t) = \min_{u(\cdot)} \left[g(x(T)) + \int_t^T \ell(x(s), u(s)) ds \right]$$
$$D_t \varphi(x,t) + \min_u \left[\nabla \varphi(x,t) \cdot f(x,u) + \ell(x,u) \right] = 0$$

Viscosity Solution

- Well defined weak solution of HJ PDE
 - Limit of vanishing viscosity solution, where it exists
 - Kinks form where characteristics cross
- Example

 $D_t\phi(x,t) + (1 - b\kappa(x,t)) \|\nabla\phi(x,t)\| = 0$

Ian Mitchell, UBC Computer Science

The Toolbox: What Is It?

- A collection of Matlab routines for level set methods
 - Fixed Cartesian grids
 - Arbitrary dimension (computationally limited)
 - Vectorized code achieves reasonable speed
 - Direct access to Matlab debugging and visualization
 - Source code is provided for all toolbox routines
- Underlying algorithms
 - Solve various forms of Hamilton-Jacobi PDE
 - First and second spatial derivatives
 - First temporal derivatives
 - High order accurate approximation schemes
 - Explicit temporal integration

The Toolbox: What Can It Do?

$$\begin{split} 0 = & D_t \phi(x,t) & \text{temporal derivative} \\ &+ v(x,t) \cdot \nabla \phi(x,t) & \text{convection} \\ &+ a(x,t) \| \nabla \phi(x,t) \| & \text{normal motion} \\ &+ sign(\phi(x,0))(\| \nabla \phi(x,t) \| - 1) & \text{reinitialization} \\ &+ H(x,t,\phi,\nabla\phi) & \text{general HJ} \\ &- b(x,t)\kappa(x,t) \| \nabla \phi(x,t) \| & \text{mean curvature} \\ &- \text{trace}[\mathbf{L}(x,t) D_x^2 \phi(x,t) \mathbf{R}(x,t)] & \text{stochastic DEs} \\ &+ \lambda(x,t) \phi(x,t) & \text{discounting} \\ &+ F(x,t,\phi), & \text{forcing} \end{split}$$

 $D_t \phi(x,t) \ge 0,$ $D_t \phi(x,t) \le 0,$ growth constraints $\phi(x,t) \le \psi(x,t),$ $\phi(x,t) \ge \psi(x,t),$ masking constraints

 $\phi: \mathbb{R}^n \rightarrow \mathbb{R}^m$ vector level sets

Ian Mitchell, UBC Computer Science

Convective Flow

• Motion by externally generated velocity field

 $D_t\phi(x,t) + v(x,t) \cdot \nabla\phi(x,t) = 0$

• Example: rigid body rotation about the origin

Dimensionally Flexible

- Core code is dimensionally independent
 - Cost in memory and computation is exponential
 - Visualization in dimensions four and above is challenging
 - Dimensions one to three are quite feasible

Motion in the Normal Direction

• Motion by externally generated speed function

$D_t\phi(x,t) + a(x,t) \|\nabla\phi(x,t)\| = 0$

constant speed switches direction outward at first, inward thereafter

Ian Mitchell, UBC Computer Science

Reinitialization Equation

• Returning the gradient to unit magnitude $D_t \phi(x,t) + \operatorname{sign}(\phi(x,0))(\|\nabla \phi(x,t)\| - 1) = 0$

General Hamilton-Jacobi

Motion may depend nonlinearly on gradient

 $D_t\phi(x,t) + H(x,t,\nabla\phi(x,t)) = 0$

• Example: rigid body rotation about the origin

rotate a square once around

compare errors of various schemes

General Hamilton-Jacobi $D_t\phi(x,t) + H(x,t,\nabla\phi(x,t)) = 0$

Motion by Mean Curvature

• Interface speed depends on its curvature κ

 $D_t\phi(x,t) - b(x,t)\kappa(x,t) \|\phi(x,t)\| = 0$

Ian Mitchell, UBC Computer Science

Combining Terms

- Terms can be combined to generate complex but accurate motion
 - Example: rotation plus outward motion in normal direction

01 June 2005

Ian Mitchell, UBC Computer Science

Constraints on Function Value

Level set function constrained by user supplied implicit surface function

 $\phi(x,t) \leq \psi(x) \quad \phi(x,t) \geq \psi(x)$

Example: masking a region of the state space

mask with small circle at origin

Constraints on Temporal Derivative

 Sign of temporal derivative controls whether implicit set can grow or shrink

 $D_t\phi(x,t) \leq 0$ $D_t\phi(x,t) \geq 0$

• Example: reachable set only grows

Stochastic Differential Equations (v1.1)

Itô stochastic differential equation

$$dx(t) = f(x(t), t)dt + \sigma(x(t), t)dB(t)$$

Kolmogorov or Fokker-Planck equation for expected outcome

$$D_t \phi + f^T \nabla \phi - \frac{1}{2} \operatorname{trace} \left[\sigma \sigma^T D_x^2 \phi \right] = 0$$

- Example: linear DE with additive noise

Open Curves by Vector Level Sets (v1.1)

- Normal level set methods can only represent closed curves
- Evolve two level sets in unison to represent an open curve Γ

$$D_t \phi - \operatorname{sign}(\psi) \left[\lambda \operatorname{sign}(\psi) \kappa(\phi) - 1 \right] \left| \nabla \phi \right| = 0$$

$$D_t \psi - \operatorname{sign}(\phi) \left[\lambda \operatorname{sign}(\phi) \kappa(\psi) + 1 \right] \left| \nabla \psi \right| = 0$$

Continuous Reachable Sets

 Nonlinear dynamics with adversarial inputs

$$D_t\phi(x,t) + \min\left[0, H(x, \nabla\phi(x,t))\right] = 0$$

$$H(x,p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} \left[p \cdot f(x,a,b) \right]$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -v_a + v_b \cos x_3 + ax_2 \\ v_b \sin x_3 - ax_1 \\ b - a \end{bmatrix}$$
$$= f(x, a, b)$$

$$a \in \mathcal{A} = [-1, +1]$$

 $b \in \mathcal{B} = [-1, +1]$
 v_a, v_b constant

Hybrid System Reachable Sets

• Mixture of continuous and discrete dynamics

Constructive Solid Geometry

- Simple geometric shapes have simple algebraic implicit surface functions
 - Circles, spheres, cylinders, hyperplanes, rectangles
- Simple set operations correspond to simple mathematical operations on implicit surface functions

- Intersection, union, complement, set difference

High Order Accuracy

- Temporally: explicit, Total Variation Diminishing Runge-Kutta integrators of order one to three
- Spatially: (Weighted) Essentially Non-Oscillatory upwind finite difference schemes of order one to five

- Example: approximate derivative of function with kinks

Other Available Examples

- Hybrid Systems Computation & Control
 - Mitchell & Templeton (2005)
 - Stationary HJ PDE for minimum time to reach or cost to go
 - Stochastic hybrid system model of Internet TCP transmission rate
- Journal of Optimization Theory & Applications
 - Kurzhanski, Mitchell & Varaiya (to appear 2006)
 - State constrained optimal control

The Toolbox: How to Use It

- Cut and paste from existing examples
- Most code is for initialization and visualization

Future Work

- Algorithms
 - Implicit temporal integrators
 - Fast methods for stationary Hamilton-Jacobi
 - General boundary conditions
 - Other numerical Hamiltonians
 - Monotone schemes for second derivatives
 - ENO / WENO function value interpolation
 - Particle level set methods
 - Adaptive grids
- More application examples
 - Surfaces of codimension two
 - Hybrid system reachable sets and verification
 - Path planning for robotics
 - Image processing, financial math, fluid dynamics, etc.

The Toolbox is not a Tutorial

- Users will need to read the literature
- Two textbooks are available
 - Osher & Fedkiw (2002)
 - Sethian (1999)

The Toolbox: Why Use It?

- Dynamic implicit surfaces and Hamilton-Jacobi equations have many practical applications
- The toolbox provides an environment for exploring and experimenting with level set methods
 - Fourteen examples
 - Approximations of most common types of motion
 - High order accuracy
 - Arbitrary dimension
 - Reasonable speed with vectorized code
 - Direct access to Matlab debugging and visualization
 - Source code for all toolbox routines
- The toolbox is free for research use http://www.cs.ubc.ca/~mitchell/ToolboxLS

A Toolbox of Level Set Methods

For more information contact

Ian Mitchell Department of Computer Science The University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell

