The Flexible, Extensible and Efficient Toolbox of Level Set Methods

Ian Mitchell

Department of Computer Science University of British Columbia

http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca

research supported by the Natural Science and Engineering Research Council of Canada

Level Set Methods

- Numerical algorithms for dynamic implicit surfaces and time-dependent Hamilton-Jacobi / degenerate parabolic partial differential equations
- Applications in
 - Graphics, Computational Geometry and Mesh Generation
 - Differential Games
 - Financial Mathematics and Stochastic Differential Equations
 - Fluid and Combustion Simulation
 - Image Processing and Computer Vision
 - Robotics, Control and Dynamic Programming
 - Verification and Reachable Sets

Implicit Surface Functions

- Surface S(t) and/or set G(t) are defined implicitly by an isosurface of a scalar function $\varphi(t,x)$, with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

Ian Mitchell, UBC Computer Science

Implicit Surface Benefits

- Easy to represent a variety of shapes
- Unified framework for many types of motion
- Surface parameters easily approximated
- Topological changes are automatic
- Conceptual complexity independent of dimension
- Easy to visualize
- Easy to implement (?)

"Hamilton-Jacobi" Equations $D_t \varphi(t, x) + G(t, x, \varphi, D_x \varphi, D_x^2 \varphi) = 0$ $\varphi(x, 0) = g(x)$ bounded and continuous $G(t, x, r, p, \mathbf{X}) \leq G(t, x, s, p, \mathbf{Y}), \text{ if } r \leq s \text{ and } \mathbf{Y} \leq \mathbf{X}$

- Time-dependent partial differential equation (PDE)
 - With second derivative terms: degenerate hyperbolic PDE
- In general, classical solution will not exist
 - Viscosity solution φ will be continuous but not differentiable
- For example, classical Hamilton-Jacobi-Bellman
 - Finite horizon optimal cost leads to terminal value PDE

$$\varphi(t, x(t)) = \min_{u(\cdot)} \left[g(x(T)) + \int_t^T \ell(x(s), u(s)) ds \right]$$
$$D_t \varphi(t, x) + \min_u \left[D_x \varphi(t, x) \cdot f(x, u) + \ell(x, u) \right] = 0$$

Viscosity Solution

- Well defined weak solution of HJ PDE
 - Limit of vanishing viscosity solution, where it exists
 - Kinks form where characteristics meet
- Example

 $D_t\varphi(t,x) + (1 - b\kappa(t,x)) \|D_x\varphi(t,x)\| = 0$

18 July 2007

Ian Mitchell, UBC Computer Science

Outline

- Level set methods: dynamic implicit surfaces and the Hamilton-Jacobi equation
- Toolbox of level set methods: features and examples
- Adding schemes
 - How to achieve flexibility and efficiency
 - SSP RK integrators
 - Monotone motion by mean curvature

0.6

-0.2

-0.6

18 July 2007

Ian Mitchell, UBC Computer Science

The Toolbox: What Is It?

- A collection of Matlab routines for level set methods
 - Fixed Cartesian grids
 - Arbitrary dimension (computationally limited)
 - Vectorized code achieves reasonable speed
 - Direct access to Matlab debugging and visualization
 - Source code is provided for all toolbox routines
- Underlying algorithms
 - Solve various forms of time-dependent Hamilton-Jacobi PDE
 - First and second spatial derivatives
 - First temporal derivatives
 - High order accurate finite difference approximation schemes
 - Explicit temporal integration
- Implements schemes from many sources
 - For citations, see the 140 page indexed user manual

The Toolbox: What Can It Do?

$$\begin{array}{lll} 0 = D_t \varphi(t,x) & \text{temporal derivative} \\ &+ v(t,x) \cdot D_x \varphi(t,x) & \text{convection} \\ &+ a(t,x) \| D_x \varphi(t,x) \| & \text{normal motion} \\ &+ sign(\varphi(x,0))(\| D_x \varphi(t,x) \| - 1) & \text{reinitialization} \\ &+ H(t,x,\varphi,D_x \varphi) & \text{general HJ} \\ &- b(t,x)\kappa(t,x) \| D_x \varphi(t,x) \| & \text{mean curvature} \\ &- \text{trace}[\sigma(t,x)\sigma^T(t,x)D_x^2\varphi(t,x)] & \text{stochastic DEs} \\ &+ \lambda(t,x)\varphi(t,x) & \text{discounting} \\ &+ F(t,x,\varphi), & \text{forcing} \end{array}$$

 $D_t \varphi(t, x) \ge 0,$ $D_t \varphi(t, x) \le 0,$ growth constraints $\varphi(t, x) \le \psi(t, x),$ $\varphi(t, x) \ge \psi(t, x),$ masking constraints

 $\varphi:\mathbb{R}\times\Omega\to\mathbb{R}^k$ vector level sets

Convective Flow

• Motion by externally generated velocity field

 $D_t\varphi(t,x) + v(t,x) \cdot D_x\varphi(t,x) = 0$

• Example: rigid body rotation about the origin

18 July 2007

Dimensionally Flexible

- Core code is dimensionally independent
 - Cost in memory and computation is exponential
 - Visualization in dimensions four and above is challenging
 - Dimensions one to three are quite feasible

Motion in the Normal Direction

• Motion by externally generated speed function

$D_t\varphi(t,x) + a(t,x) \| D_x\varphi(t,x) \| = 0$

constant speed switches direction outward at first, inward thereafter

Ian Mitchell, UBC Computer Science

Reinitialization Equation

Returning the gradient to unit magnitude

 $D_t\varphi(t,x) + \operatorname{sign}(\varphi(0,x))(\|D_x\varphi(t,x)\| - 1) = 0$

General Hamilton-Jacobi

Motion may depend nonlinearly on gradient

 $D_t\varphi(t,x) + H(t,x,D_x\varphi(t,x)) = 0$

• Example: rigid body rotation about the origin

rotate a square once around

compare errors of various schemes

General Hamilton-Jacobi $D_t\varphi(t,x) + H(t,x,D_x\varphi(t,x)) = 0$

Motion by Mean Curvature

• Interface speed depends on its curvature κ

 $D_t\varphi(t,x) - b(t,x)\kappa(t,x) \|D_x\varphi(t,x)\| = 0$

Ian Mitchell, UBC Computer Science

Combining Terms

- Terms can be combined to generate complex but accurate motion
 - Example: rotation plus outward motion in normal direction

18 July 2007

Ian Mitchell, UBC Computer Science

Constraints on Function Value

- Level set function constrained by user supplied implicit surface function
 - Example: masking a region of the state space

18 July 2007

Constraints on Temporal Derivative

• Sign of temporal derivative controls whether implicit set can grow or shrink

 $D_t \varphi(t, x) \leq 0$ $D_t \varphi(t, x) \geq 0$

• Example: reachable set only grows

$$\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = W_p \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \frac{W_p}{R} \begin{bmatrix} y \\ -x \end{bmatrix} b$$

$$+ 2W_e \min\left(\sqrt{x^2 + y^2}, S\right) a$$

$$a \in \mathbb{R}^2, \|a\| \le 1$$

$$b \in [-1, +1]$$

$$W_p, W_e, R, S \text{ constant}$$

$$a = \frac{1}{2}$$

. .

Stochastic Differential Equations (v1.1)

Itô stochastic differential equation

$$dx(t) = f(t, x(t))dt + \sigma(t, x(t))dB(t)$$

Kolmogorov or Fokker-Planck equation for expected outcome

$$D_t \varphi + f^T D_x \varphi - \frac{1}{2} \operatorname{trace} \left[\sigma \sigma^T D_x^2 \varphi \right] = 0$$

- Example: linear DE with additive noise

Open Curves by Vector Level Sets (v1.1)

- Normal level set methods can only represent closed curves
- Evolve two level sets in unison to represent an open curve Γ

Reinitialization with Subcell Fix (v1.1)

- Different treatment for nodes adjacent to the interface
 - Distance to interface is estimated and alternative update results in less movement
- Compare interface locations after 160i iterations, i = 0, 1, ..., 5

Continuous Reachable Sets

 Nonlinear dynamics with adversarial inputs

$$D_t\varphi(t,x) + \min[0, H(x, D_x\varphi(t,x))] = 0$$

$$H(x,p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} \left[p \cdot f(x,a,b) \right]$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -v_a + v_b \cos x_3 + ax_2 \\ v_b \sin x_3 - ax_1 \\ b - a \end{bmatrix}$$
$$= f(x, a, b)$$

$$a \in \mathcal{A} = [-1, +1]$$

 $b \in \mathcal{B} = [-1, +1]$
 v_a, v_b constant

Hybrid System Reachable Sets

• Mixture of continuous and discrete dynamics

Constructive Solid Geometry

- Simple geometric shapes have simple algebraic implicit surface functions
 - Circles, spheres, cylinders, hyperplanes, rectangles
- Simple set operations correspond to simple mathematical operations on implicit surface functions

- Intersection, union, complement, set difference

High Order Accuracy

- Temporally: explicit, Total Variation Diminishing Runge-Kutta integrators of order one to three
- Spatially: (Weighted) Essentially Non-Oscillatory upwind finite difference schemes of order one to five

- Example: approximate derivative of function with kinks

Other Available Examples

- Hybrid Systems Computation & Control
 - Mitchell & Templeton (2005)
 - Stationary HJ PDE for minimum time to reach or cost to go
 - Stochastic hybrid system model of Internet TCP transmission rate
- Journal of Optimization Theory & Applications
 - Kurzhanski, Mitchell & Varaiya (2006)
 - State constrained optimal control
- Following David Donoho's "Reproducible Research" initiative

The Toolbox: How to Use It

- Cut and paste from existing examples
- Most code is for initialization and visualization

Other Level Set Software Packages

- Level Set Method Library (LSMLIB) [Chu & Prodanovic]
 - C/C++/Fortran with Matlab interface, dimensions 1–3
 - two types of motion, fast marching & velocity extension
 - localized algorithms, serial and parallel execution
- Multivac C++ [Mallet]
 - C++, dimension 2
 - six types of motion, fast marching
 - localized algorithms
 - application: forest fire propagation and image segmentation
- "A Matlab toolbox implementing level set methods" [Sumengen]
 - Matlab, dimension 2
 - three types of motion
 - application: vision and image processing
- Toolbox Fast Marching [Peyré]
 - Matlab interface to C++, dimensions 2–3
 - Static HJ PDE only

Outline

- Level set methods: dynamic implicit surfaces and the Hamilton-Jacobi equation
- Toolbox of level set methods: features and examples
- Adding schemes lacksquare
 - How to achieve flexibility and efficiency
 - SSP RK integrators
 - Monotone motion by mean curvature

-0.5

-1 . -1

0

0

t = 0.5

1.8

0.8

0

Ian Mitchell, UBC Computer Science

The Toolbox: How to Extend It

- Choose appropriate class of routines to modify
- Use coding patterns to achieve compatibility & efficiency

Coding Patterns: Functions of x

- All scalar functions of $x \in \Omega \subset \mathbb{R}^d$ are stored in *d*-dimensional Matlab arrays
 - Each element corresponds to a node in the grid
- Permits flexible and efficient operations—no explicit loops!
 - Implement $a(t,x)||D_x \varphi(t,x)||$ as speed .* magnitude
 - Dimensionally independent
 - Command interpretation overhead trivial
 - Matlab implementation optimized for cache & processor efficiency
- Vector functions of x are stored in cell arrays
 - For example, distance to origin for d = 2 generated by
 sqrt(grid.xs{1}.^2 + grid.xs{2}.^2)
 - Also convenient for calls to Matlab functions: interpn(grid.xs{:},data,samples{:})
- Requires structured, dense data layout
 - Unstructured and adaptive meshes are infeasible
 - Localized algorithms are of dubious benefit

Coding Patterns: Indexing

• Dimensionally independent indexing required in boundary conditions and finite difference derivative approximation

Additional SSP RK Integrators

- Basic Toolbox includes standard explicit, Strong Stability Preserving Runge-Kutta temporal integrators
 - Choices are order p and number of substeps s
 - For standard schemes: s = p = 1, 2, 3
- Alternative: set s > p [Spiteri & Ruuth, SINUM 2002]
 - Additional work on substeps offset by larger CFL constraint
 - Schemes specified by parameters α_{ik} and β_{ik}
- Implemented
 - Integrator for general α - β schemes
 - Integrator with α - β tables for (*s*, *p*) schemes: (1,1), (2,2), (3,3), (3,2), (4,2), (4,3), (5,3), (5,4)
 - ODE test problems to validate order of accuracy

SSP RK Schemes

- To solve ODE system $d_{dt}\Phi(t) = \mathcal{L}(t,\Phi(t))$
 - Introduce substep sample times $t^{(i)}$

$$t^{(i)} = t_n + \Delta t \sum_{k=0}^{i-1} c_{ik}$$
, where $c_{ik} = \beta_{ik} + \sum_{j=k+1}^{i-1} \alpha_{ij} c_{jk}$,

- Scheme given by (for i = 1, 2, ..., s)

$$\Phi^{(0)} = \Phi(t_n),$$

$$\Phi^{(i)} = \sum_{k=0}^{i-1} \left[\alpha_{ik} \Phi^{(k)} + \Delta t \beta_{ik} \mathcal{L}(t^{(k)}, \Phi^{(k)}) \right],$$

$$\Phi(t_{n+1}) = \Phi^{(s)}.$$

- Only the forward operator \mathcal{L} is required if $\beta_{ik} \ge 0$

SSP RK Examples

- Five examples
 - Three initial conditions: circle, rectangle, Zalesak's disks
 - Two flow fields: rotation or rotation + normal direction
- Simple shapes and flow fields chosen to minimize effect of spatial derivative approximation errors
 - Spatial approximation fifth order accurate WENO

SSP RK Results: Accuracy

- Error measured against analytic solution
 - Only measured at nodes adjacent to interface
- Combination motion for rectangle is representative
 - Order of accuracy of temporal scheme makes little difference
 - When differences exist, traditional schemes (blue) are slightly more accurate than new schemes (red)

SSP RK Results: Efficiency

Scheme	Steps	Order	CFL	Convection	Combination	
Source	S	p	Bound	Time (sec)	Time (sec)	
Shu &	2	2	1.0	530	957	
Osher	3	3	1.0	853	1662	
Spiteri &	ri & 3 2 2		2.0	390	1097	
Ruuth	4	2	3.0	385	840	
	4	3	2.0	602	1110	
	5	3	~ 2.65	542	1257	
	5	4	$\sim \! 1.51$	847	2221	

- Timing platform
 - 201² grid with rectangular initial conditions and CFL factor 0.75
 - Matlab 7.2 (R2006a) in Windows XP version 2002 SP2
 - Intel Pentium M laptop, 1.7 GHz with 1 GB memory
- Significant time savings achieved with large CFL numbers

Motion by Mean Curvature

• Traditional approach

$$\Delta_{1}\varphi = \|D_{x}\varphi\|\kappa(\varphi) = \|D_{x}\varphi\|\operatorname{div}\left(\frac{D_{x}\varphi}{\|D_{x}\varphi\|}\right)$$
$$= \sum_{i=1}^{d} \frac{\partial^{2}\varphi}{\partial x_{i}^{2}} - \frac{1}{\|D_{x}\varphi\|^{2}} \sum_{i,j=1}^{d} \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{j}} \frac{\partial\varphi}{\partial x_{i}} \frac{\partial\varphi}{\partial x_{j}}$$

- Use centered differences to approximate partial derivatives
- Not monotone, so convergence theory does not apply
- Alternative [Oberman, Numerische Mathematik 2004]
 - Gather circular stencil S_x of nodes around x
 - Let $\varphi_*(x)$ = median{ $\varphi(x_k) \mid x_k \in S_x$ }
 - Then monotone approximation is

$$\Delta_1 \varphi(x) = \frac{2(\varphi_*(x) - \varphi(x))}{d_x^2} + \mathcal{O}(d_x^2 + d_\theta),$$

Adapting Median-Based Approach

- How to construct stencils when Δx not constant?
 - Define stencil width w, $\Delta x_{max} = max_i \Delta x^{(i)}$ and $d_x = w \Delta x_{max}$
 - Initial stencil S' contains all nodes at distance $d_x \pm \frac{1}{2}\Delta x_{\text{max}}$
 - Nodes are discarded if they are in a similar direction as another node whose distance is closer to d_x
- Stencils S for various ratios of horizontal Δx to vertical Δx
 - Also, initial stencil \mathcal{S}' on 1:5 grid before discarding nodes

Quantitative Results are Disappointing

• Test on polynomial with known analytic curvature

$$\varphi_1(x) = 6x_1 + \frac{5}{4}x_2 + \frac{9x_1^2}{22} + \frac{14}{5}x_1x_2 + \frac{26x_2^2}{52}$$

- Error for standard centered difference approximation ~10⁻¹⁰
- Median-based approximation has only eight distinct directions

Is Consistency Possible?

• Can we achieve $\mathcal{O}(d_x^2 + d_\theta) \to 0$ through some combination of $\Delta x \to 0$ and $w \to \infty$?

$$|\mathcal{S}| = \mathcal{O}\left(\frac{\text{circumference of stencil}}{\text{distance between } x_k}\right) = \mathcal{O}\left(\frac{2\pi d_x}{\Delta x}\right) = \mathcal{O}(\Delta x^{\gamma-1}),$$

- Let $d_x = \Delta x^{\gamma}$ and note $d_{\theta} = (|S|^{-1})$, so error is $\mathcal{O}(\Delta x^{2\gamma} + \Delta x^{1-\gamma})$
- Balancing exponents leads to $\gamma = \frac{1}{3}$, consistent asymptotic error $\mathcal{O}(\Delta x^{\frac{2}{3}})$, and choice $\Delta x = w^{-1.5}$

				Circular Stencil				Square Stencil	
	Ratio	Stencil	Grid	w/o interp		w/ interp		w/ interp	
	Δx	Radius	Size	Mean	Max	Mean	Max	Mean	Max
	1:1	1	101 imes 101	1.995	6.523	1.439	5.459	1.439	5.459
		2	284 imes 284	1.425	3.704	1.191	3.554	0.896	2.960
		3	521 imes 521	0.878	2.652	0.796	2.654	0.708	2.302
		4	801 imes 801	0.560	1.647	0.433	1.197	0.604	2.013
		5	1119 imes 1119	0.565	1.696	0.493	1.591	0.547	1.854
	1:2	1	101 imes 51	1.720	6.436	1.094	5.353	1.094	5.353
		2	284 imes 142	0.929	3.669	0.670	2.580	0.737	2.782
		3	521 imes 261	0.614	2.179	0.445	2.047	0.579	2.293
		4	801 imes 401	0.476	1.642	0.347	1.488	0.512	2.007
		5	1119 imes 560	0.401	1.216	0.295	1.162	0.477	1.849
	1:5	1	126 imes 26	1.517	6.271	0.938	5.125	0.888	5.125
		2	355 imes 72	0.825	2.739	0.607	2.536	0.601	2.896
		3	651 imes131	0.593	2.137	0.429	1.830	0.503	2.271
-		4	1001×201	0.482	1.751	0.351	1.464	0.458	1.996
(5	1399 imes 281	0.378	1.173	0.271	1.040	0.437	1.843

18 July 200

42

Why Use Median-Based Approach?

- Qualitative results are quite reasonable
- CFL bound $\mathcal{O}(d_x^2) = \mathcal{O}(w^2 \Delta x^2)$, so for large w new scheme can be much faster
 - Simulations on 201² grid with (2,2) time integrator

Ian Mitchell, UBC Computer Science

Future Work

- Algorithms
 - Implicit temporal integrators
 - Fast methods for stationary Hamilton-Jacobi
 - General boundary conditions
 - Other numerical Hamiltonians
 - ENO / WENO function value interpolation
 - Particle level set methods
- More application examples
 - Surfaces of codimension two
 - Hybrid system reachable sets and verification
 - Path planning for robotics
 - Image processing, financial math, fluid dynamics, etc.

The Toolbox is not a Tutorial

- Users will need to read the literature
- Two textbooks are available
 - Osher & Fedkiw (2002)
 - Sethian (1999)

The Toolbox: Why Use It?

- Dynamic implicit surfaces and Hamilton-Jacobi equations have many practical applications
- The toolbox provides an environment for exploring and experimenting with level set methods
 - More than twenty examples
 - Approximations of most common types of motion
 - Extensive, indexed user manual
 - High order accuracy
 - Arbitrary dimension
 - Reasonable speed with vectorized code
 - Direct access to Matlab debugging and visualization
 - Source code for all toolbox routines
- The toolbox is free for research use

http://www.cs.ubc.ca/~mitchell/ToolboxLS

The Flexible, Extensible and Efficient Toolbox of Level Set Methods

For more information contact

Ian Mitchell Department of Computer Science The University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell

