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Let’s Cut to the Chase

We can approximate the set of controllably safe states within some constraint set
K in polynomial time for linear systems using parametric approximations.
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It may be worth trading off algorithm speed and accuracy (support vector
approach) for other capabilities (ellipsoidal approach).
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Invariance Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∀u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Inv([ts,tf], S)

• What states will remain safe despite input uncertainty.
• Inputs treated in a worst-case fashion.
• We will not further discuss this kernel.
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Viability Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∃u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Viab([ts,tf], S)

• Also called controlled invariant set.

• Inputs treated in a best-case fashion.
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Discriminating Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∃u(·),∀v(·),∀t ∈ [ts, tf ], x(t) ∈ S},

That is hard to draw. . .

• Also called robust controlled invariant set.

• Two inputs “control” u(·) and “disturbance” v(·) treated adversarially.
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The Challenge: Efficient Parametric Representations

Existing algorithms used non-parametric representations; complexity is exponential
in state space dimension.

• Viability algorithms: for example [Saint-Pierre 1994; Cardaliaguet et al 1999].

• Level set methods: for example [Mitchell et al 2005].

In contrast, algorithms using parametric representations for reachable sets are
widely available.

Reach+ (t,S) , {x0 | ∃u(·), x(t) ∈ S},
Reach− (t,S) , {x0 | ∀u(·), x(t) ∈ S},

• Ellipsoids: for example [Kurzhanski & Valyi 1996; Kurzhanski & Varaiya
2000; Kurzhanskiy & Varaiya 2006].

• Support functions / vectors: for example [Le Guernic 2009; Le Guernic &
Girard 2010; Frehse et al 2011].
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Discrete and Continuous Time

Discrete time:

x(t+ 1) = f(x(t), u(t), v(t)) general dynamics

x(t+ 1) = Ax(t) + Bu(t) + Cv(t) linear dynamics

• Assume state feedback: Choose u(t) knowing x(t).

• Conservative treatment of uncertainty: Choose v(t) knowing x(t) and u(t).

Continuous time:

ẋ(t) = f(x(t), u(t), v(t)) general dynamics

ẋ(t) = Ax(t) + Bu(t) + Cv(t) linear dynamics

• “Non-anticipative strategies” rigorously resolve input ordering issue;
equivalent to state feedback in all but artificially constructed examples.

• Optimal input signals often have little regularity and hence may not be
physically realizable.
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Sampled Data Model of Time

Sampled data is a model of a common approach to designing cyber-physical
systems:

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

• Unlike continuous time models, change to feedback control is only possible at
sample times.

• Unlike discrete time models, state of plant between sample times is relevant.
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Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)
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Other Constructs and Models

• Discriminating kernel algorithm is straightforward, albeit notationally
complicated.

• Discrete time algorithm omits initial erosion: K0 = K.

• Sampled data algorithm uses continuous time algorithm in an augmented
state space

x̃ ,

[
x
u

]
f̃(x̃) ,

[
f(x, u)

0

]
.

I Control input held constant over each sample period.
I Disturbance input allowed to vary (measurably).
I Tensor products and projections move between original and augmented state

space.
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Ellipsoids

Ellipsoidal techniques (under-)approximating the maximal reach set:

K Reach♯
t(K,U)

ℓ(τ)

ℓ(τ − t)

• Key operations (set evolution, intersection) are accomplished through ODEs
and convex optimization.

• Class of ellipsoids are not closed under these operations, so
underapproximations must be used.

• Set evolution possible in discrete or continuous time.

• Control and/or disturbance inputs can be treated.
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Applications: Flight Envelope Protection (CT, 4D)

-20 0 20
-10

-5

0

5

10

-20 0 20
-10

-5

0

5

10

-20 0 20
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

x1 x1 x1

x3x2x2

x
2

x
3

x
3

x
4

x
4

x
4

Level-Set (non-parametric, black): 5.5 hr
Piecewise Ellipsoidal (parametric, green): 10 min

Ian M. Mitchell — 13



Applications: Automated Anesthesia
(DT Laguerre model, 7D)
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Applications: Quadrotor Altitude Maintenance
(nonlinear SD, 3D)
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• Linearize within constraint set, use
discriminating kernel to ensure
robustness to linearization error.

• One second horizon with 10 Hz
sample cycle.

• 20 directions, execution time 5 min.

• Also generate safe range of inputs
(slices shown at right).
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ū

x̄3 = -0.12

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.59
← −0.08

← 0.43

x̄1

ū
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Support Vectors

Support functions provide polytopic
overapproximation in specified directions

Corresponding support vectors provide
polytopic underapproximation in

specified directions

• Key operations (set evolution, intersection) are accomplished through convex
optimization.

• Support functions / vectors are closed under these operations, so no need to
further underapproximate.

• Only discrete time.
• Only control input (no discriminating kernel version).
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Application: Automated Anesthesia
(DT compartment model, 6D)

• Three compartment LTI model of Propofol metabolism.

• Third order Padé approximation of input delay yields six dimensional state
space.

• 18 directions, execution time 11.5 min.

• Support vector underapproximation (left) and free support function
overapproximation (right).
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Comparing Accuracy: A Double Integrator

All images: True viability kernel (black).
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Scaling with Dimension: A Chain of Integators

Compare execution time over ten steps for a discrete time model.

• Exact polytopic method
(non-parametric).

• Ellipsoidal algorithm in a
single direction.

• Support vector algorithm in
2dx standard basis vectors
(positive and negative
directions).
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Comparing the Options

Level Set Ellipsoidal Support Vector

Dynamics nonlinear linear linear
Time CT / SD CT / DT / SD DT
Complexity O(nd) O(kd3) O(kd2)
Control input

optimal /
sampled

optimal optimal

Control synthesis X X –
Discriminating kernel optimal optimal –
Accuracy excellent fair good
Inner guarantee – X X
Outer approx – ? free

• Time models are continuous (CT), discrete (DT) or sampled data (SD).

• Complexity parameters are dimension (d = dx for CT or DT, d = dx + du for
SD), grid resolution per dimension (n) and number of ellipses / support
vectors (k).
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And Yet You Insist on Using Ellipsoids. . .

Support vector approach is faster and more accurate, so why we are working more
actively on the ellipsoidal approach?

• All models are wrong, but discriminating kernels can generate approximations
robust to model error.

• Discrete time approximation is too simplistic for continuous time systems
with fast dynamics.

• Viability analysis without control synthesis only accomplishes half the job.

It is possible that the support vector approach could be extended to handle
disturbance inputs, continuous time and/or control synthesis.
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Future Work

Control filtering to ensure safety of human-in-the-loop quadrotor control.

• Longitudinal 6D quadrotor model.

• Sampled data with 10 Hz sample cycle.

• Control inputs are total thrust and
differential thrust.

• Linearization about hover condition with
robustness to linearization error.

• Two second safety horizon.

• Display current safety horizon and safe
control set.

• Clip human input to safe control set
(somehow. . . ).
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