
A Summary of Recent Progress on Efficient Parametric
Approximations of Viability and Discriminating Kernels

Ian M. Mitchell

Department of Computer Science
The University of British Columbia

July 2015

mitchell@cs.ubc.ca

http://www.cs.ubc.ca/~mitchell

Copyright 2015 by Ian M. Mitchell
This work is made available under the terms of the Creative Commons Attribution 4.0 International license

http://creativecommons.org/licenses/by/4.0/

Ian M. Mitchell — 1

http://creativecommons.org/licenses/by/4.0/


Let’s Cut to the Chase

We can approximate the set of controllably safe states within some constraint set
K in polynomial time for linear systems using parametric approximations.

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

state dimension

ru
n 

tim
e 

(s
)

 

 

polytope
ellipsoid
support vector

It may be worth trading off algorithm speed and accuracy (support vector
approach) for other capabilities (ellipsoidal approach).

Ian M. Mitchell — 2



Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion

Ian M. Mitchell — 3



Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion

Ian M. Mitchell — 3



Invariance Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∀u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Inv([ts,tf], S)

• What states will remain safe despite input uncertainty.
• Inputs treated in a worst-case fashion.
• We will not further discuss this kernel.

Ian M. Mitchell — 4



Viability Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∃u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Viab([ts,tf], S)

• Also called controlled invariant set.

• Inputs treated in a best-case fashion.

Ian M. Mitchell — 5



Discriminating Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∃u(·),∀v(·),∀t ∈ [ts, tf ], x(t) ∈ S},

That is hard to draw. . .

• Also called robust controlled invariant set.

• Two inputs “control” u(·) and “disturbance” v(·) treated adversarially.

Ian M. Mitchell — 6



The Challenge: Efficient Parametric Representations

Existing algorithms used non-parametric representations; complexity is exponential
in state space dimension.

• Viability algorithms: for example [Saint-Pierre 1994; Cardaliaguet et al 1999].

• Level set methods: for example [Mitchell et al 2005].

In contrast, algorithms using parametric representations for reachable sets are
widely available.

Reach+ (t,S) , {x0 | ∃u(·), x(t) ∈ S},
Reach− (t,S) , {x0 | ∀u(·), x(t) ∈ S},

• Ellipsoids: for example [Kurzhanski & Valyi 1996; Kurzhanski & Varaiya
2000; Kurzhanskiy & Varaiya 2006].

• Support functions / vectors: for example [Le Guernic 2009; Le Guernic &
Girard 2010; Frehse et al 2011].

Ian M. Mitchell — 7



Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion

Ian M. Mitchell — 7



Discrete and Continuous Time

Discrete time:

x(t+ 1) = f(x(t), u(t), v(t)) general dynamics

x(t+ 1) = Ax(t) + Bu(t) + Cv(t) linear dynamics

• Assume state feedback: Choose u(t) knowing x(t).

• Conservative treatment of uncertainty: Choose v(t) knowing x(t) and u(t).

Continuous time:

ẋ(t) = f(x(t), u(t), v(t)) general dynamics

ẋ(t) = Ax(t) + Bu(t) + Cv(t) linear dynamics

• “Non-anticipative strategies” rigorously resolve input ordering issue;
equivalent to state feedback in all but artificially constructed examples.

• Optimal input signals often have little regularity and hence may not be
physically realizable.

Ian M. Mitchell — 8



Sampled Data Model of Time

Sampled data is a model of a common approach to designing cyber-physical
systems:

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

• Unlike continuous time models, change to feedback control is only possible at
sample times.

• Unlike discrete time models, state of plant between sample times is relevant.

Ian M. Mitchell — 9



Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)

Ian M. Mitchell — 10



Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)

Ian M. Mitchell — 10



Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)

Ian M. Mitchell — 10



Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)

Ian M. Mitchell — 10



Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)

Ian M. Mitchell — 10



Continuous-Time Viability Algorithm

• Start with an under-approximation K↓ of K
(ρ: small computational timestep; M : uniform bound on f)

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach+ (ρ,Kn)

Ian M. Mitchell — 10



Other Constructs and Models

• Discriminating kernel algorithm is straightforward, albeit notationally
complicated.

• Discrete time algorithm omits initial erosion: K0 = K.

• Sampled data algorithm uses continuous time algorithm in an augmented
state space

x̃ ,

[
x
u

]
f̃(x̃) ,

[
f(x, u)

0

]
.

I Control input held constant over each sample period.
I Disturbance input allowed to vary (measurably).
I Tensor products and projections move between original and augmented state

space.

Ian M. Mitchell — 11



Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion

Ian M. Mitchell — 11



Ellipsoids

Ellipsoidal techniques (under-)approximating the maximal reach set:

K Reach♯
t(K,U)

ℓ(τ)

ℓ(τ − t)

• Key operations (set evolution, intersection) are accomplished through ODEs
and convex optimization.

• Class of ellipsoids are not closed under these operations, so
underapproximations must be used.

• Set evolution possible in discrete or continuous time.

• Control and/or disturbance inputs can be treated.

Ian M. Mitchell — 12



Applications: Flight Envelope Protection (CT, 4D)

-20 0 20
-10

-5

0

5

10

-20 0 20
-10

-5

0

5

10

-20 0 20
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

x1 x1 x1

x3x2x2

x
2

x
3

x
3

x
4

x
4

x
4

Level-Set (non-parametric, black): 5.5 hr
Piecewise Ellipsoidal (parametric, green): 10 min

Ian M. Mitchell — 13



Applications: Automated Anesthesia
(DT Laguerre model, 7D)

-1 0 1

-20

0

20

-1 0 1

-20

0

20

-1 0 1

-20

0

20

-1 0 1

-20

0

20

-1 0 1

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

-20 0 20

-20

0

20

z1 z1 z1 z1 z1

z2 z2 z2 z2 z3

z3 z3 z4 z4 z5

z 2 z 3 z 4 z 5 z 6

z 3 z 4 z 5 z 6 z 4

z 5 z 6 z 5 z 6 z 6

Level Set (non-parametric): infeasible
Piecewise Ellipsoidal (parametric): 15 min

Ian M. Mitchell — 14



Applications: Quadrotor Altitude Maintenance
(nonlinear SD, 3D)

−1 0 1

−1

0

1

x̄1

x̄
2

−1 0 1
−1

−0.5

0

0.5

1

1.5

x̄1
x̄
3

−2 0 2
−1

−0.5

0

0.5

1

1.5

x̄2

x̄
3

• Linearize within constraint set, use
discriminating kernel to ensure
robustness to linearization error.

• One second horizon with 10 Hz
sample cycle.

• 20 directions, execution time 5 min.

• Also generate safe range of inputs
(slices shown at right).

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.20← 0.07← 0.33

x̄1

ū

x̄3 = -0.75

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.37← 0.03← 0.43

x̄1

ū

x̄3 = -0.54

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.48
← −0.01

← 0.46

x̄1

ū

x̄3 = -0.33

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.55
← −0.05

← 0.46

x̄1

ū

x̄3 = -0.12

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.59
← −0.08

← 0.43

x̄1

ū

x̄3 = 0.09

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.61
← −0.12

← 0.37

x̄1

ū

x̄3 = 0.30

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.60
← −0.16← 0.29

x̄1

ū

x̄3 = 0.51

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.54
← −0.19← 0.16

x̄1

ū

x̄3 = 0.72

Ian M. Mitchell — 15



Support Vectors

Support functions provide polytopic
overapproximation in specified directions

Corresponding support vectors provide
polytopic underapproximation in

specified directions

• Key operations (set evolution, intersection) are accomplished through convex
optimization.

• Support functions / vectors are closed under these operations, so no need to
further underapproximate.

• Only discrete time.
• Only control input (no discriminating kernel version).

Ian M. Mitchell — 16



Application: Automated Anesthesia
(DT compartment model, 6D)

• Three compartment LTI model of Propofol metabolism.

• Third order Padé approximation of input delay yields six dimensional state
space.

• 18 directions, execution time 11.5 min.

• Support vector underapproximation (left) and free support function
overapproximation (right).

Ian M. Mitchell — 17



Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion

Ian M. Mitchell — 17



Comparing Accuracy: A Double Integrator

All images: True viability kernel (black).

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

5 directions, execution time 105s.

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

20 directions, execution time 280s.
Ellipsoidal approximation (dark blue) and constraint (light grey).

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

5 directions, execution time 28s.

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

20 directions, execution time 56s.
Support vector approximation (dark blue) and support function (light grey).

Ian M. Mitchell — 18



Scaling with Dimension: A Chain of Integators

Compare execution time over ten steps for a discrete time model.

• Exact polytopic method
(non-parametric).

• Ellipsoidal algorithm in a
single direction.

• Support vector algorithm in
2dx standard basis vectors
(positive and negative
directions).

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

state dimension

ru
n 

tim
e 

(s
)

polytope ellipsoid support vector

Ian M. Mitchell — 19



Comparing the Options

Level Set Ellipsoidal Support Vector

Dynamics nonlinear linear linear
Time CT / SD CT / DT / SD DT
Complexity O(nd) O(kd3) O(kd2)
Control input

optimal /
sampled

optimal optimal

Control synthesis X X –
Discriminating kernel optimal optimal –
Accuracy excellent fair good
Inner guarantee – X X
Outer approx – ? free

• Time models are continuous (CT), discrete (DT) or sampled data (SD).

• Complexity parameters are dimension (d = dx for CT or DT, d = dx + du for
SD), grid resolution per dimension (n) and number of ellipses / support
vectors (k).

Ian M. Mitchell — 20



And Yet You Insist on Using Ellipsoids. . .

Support vector approach is faster and more accurate, so why we are working more
actively on the ellipsoidal approach?

• All models are wrong, but discriminating kernels can generate approximations
robust to model error.

• Discrete time approximation is too simplistic for continuous time systems
with fast dynamics.

• Viability analysis without control synthesis only accomplishes half the job.

It is possible that the support vector approach could be extended to handle
disturbance inputs, continuous time and/or control synthesis.

Ian M. Mitchell — 21



Future Work

Control filtering to ensure safety of human-in-the-loop quadrotor control.

• Longitudinal 6D quadrotor model.

• Sampled data with 10 Hz sample cycle.

• Control inputs are total thrust and
differential thrust.

• Linearization about hover condition with
robustness to linearization error.

• Two second safety horizon.

• Display current safety horizon and safe
control set.

• Clip human input to safe control set
(somehow. . . ).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

−0.5 0 0.5

−1

0

1

u Input

T
hr

us
t a

bo
ut

 9
.8

1

Anglr Accl
−0.5 0 0.5

−1

0

1

u

Anglr Accl
0 1 2

−0.1

0

0.1
Time until Unsafe

Seconds

Ian M. Mitchell — 22


	Constructs & Motivation
	Models & Algorithms
	Implementations & Results
	Comparison & Discussion

