A Summary of Recent Progress on Efficient Parametric
Approximations of Viability and Discriminating Kernels

lan M. Mitchell

Department of Computer Science
The University of British Columbia

July 2015

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/“mitchell

Copyright 2015 by lan M. Mitchell
This work is made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

1
lan M. Mitchell — 1



http://creativecommons.org/licenses/by/4.0/

Let’s Cut to the Chase

We can approximate the set of controllably safe states within some constraint set
IC in polynomial time for linear systems using parametric approximations.
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It may be worth trading off algorithm speed and accuracy (support vector
approach) for other capabilities (ellipsoidal approach).
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Invariance Kernel

Inv ([te. 7], 8) 2 {@(t,) € S | Yu(), e € [ta,t7],2(t) € S},

/ \Y

&@Inv( [tsrtf]: S)

e What states will remain safe despite input uncertainty.
o Inputs treated in a worst-case fashion.
o We will not further discuss this kernel.
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Viability Kernel

Inv ([ts,tr],S) £ {Z(ts) € S| Ju(-),Vt € [ts, ts],2(t) € S},

/ A}

&_\Qab([m,

e Also called controlled invariant set.
o Inputs treated in a best-case fashion.
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Discriminating Kernel

Inv ([ts, t7],S) £ {Z(ts) € S| Fu(:),Yo(-),Vt € [ts, ts], 2(t) € S},

That is hard to draw. ..

e Also called robust controlled invariant set.

e Two inputs “control” wu(-) and “disturbance” v(-) treated adversarially.

1
lan M. Mitchell — 6



The Challenge: Efficient Parametric Representations

Existing algorithms used non-parametric representations; complexity is exponential
in state space dimension.

e Viability algorithms: for example [Saint-Pierre 1994; Cardaliaguet et al 1999].
o Level set methods: for example [Mitchell et al 2005].

In contrast, algorithms using parametric representations for reachable sets are

widely available.
Reach, (t,S8) £ {zo | Ju(-),z(t) € S},

Reach_ (t,8) 2 {zo | Vu(-),z(t) € S},

e Ellipsoids: for example [Kurzhanski & Valyi 1996; Kurzhanski & Varaiya
2000; Kurzhanskiy & Varaiya 2006].

e Support functions / vectors: for example [Le Guernic 2009; Le Guernic &
Girard 2010; Frehse et al 2011].
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2. Models & Algorithms
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Discrete and Continuous Time

Discrete time:

x(t+1) = f(z(t),u(t),v(t)) general dynamics
z(t +1) = Az(t) + Bu(t) + Co(t) linear dynamics

e Assume state feedback: Choose wu(t) knowing x(t).
o Conservative treatment of uncertainty: Choose v(t) knowing z(t) and u(t).

Continuous time:

z(t) = fx(t), u(t),v(t)) general dynamics
@(t) = Ax(t) + Bu(t) + Co(t) linear dynamics

e “Non-anticipative strategies” rigorously resolve input ordering issue;
equivalent to state feedback in all but artificially constructed examples.

e Optimal input signals often have little regularity and hence may not be
physically realizable.
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Sampled Data Model of Time

Sampled data is a model of a common approach to designing cyber-physical
systems:

Plant
(continuous time)

Actuators Sensors

(zero order hold) (time sampling)

Controller
(discrete time)

e Unlike continuous time models, change to feedback control is only possible at
sample times.
e Unlike discrete time models, state of plant between sample times is relevant.
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Continuous-Time Viability Algorithm

e Start with an under-approximation K| of K
(p: small computational timestep; M: uniform bound on f)

Ky = {z e K| dist(z, K > pM}

e lteratively compute K, 41:

Ko =Ky,
Kn+1(P) = Ko NReachy (p, K,)
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Continuous-Time Viability Algorithm

e Start with an under-approximation K| of K
(p: small computational timestep; M: uniform bound on f)

K, :={z € £ |dist(z,K) > pM}
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Continuous-Time Viability Algorithm

e Start with an under-approximation K| of K
(p: small computational timestep; M: uniform bound on f)

K, :={z € £ |dist(z,K) > pM}

o lteratively compute K, 11:
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Continuous-Time Viability Algorithm

e Start with an under-approximation K| of K
(p: small computational timestep; M: uniform bound on f)

K, :={z € £ |dist(z,K) > pM}
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Continuous-Time Viability Algorithm

e Start with an under-approximation K| of K
(p: small computational timestep; M: uniform bound on f)

K, :={z € £ |dist(z,K) > pM}
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Other Constructs and Models

e Discriminating kernel algorithm is straightforward, albeit notationally
complicated.

e Discrete time algorithm omits initial erosion: Ky = K.
e Sampled data algorithm uses continuous time algorithm in an augmented

state space
S H f@) = [f(”g’“)].

u

» Control input held constant over each sample period.
» Disturbance input allowed to vary (measurably).
» Tensor products and projections move between original and augmented state

space.

aplace of mind
lan M. Mitchell — 11




Outline

3. Implementations & Results
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Ellipsoids

Ellipsoidal techniques (under-)approximating the maximal reach set:
K

Key operations (set evolution, intersection) are accomplished through ODEs

and convex optimization.

Class of ellipsoids are not closed under these operations, so

underapproximations must be used.

Set evolution possible in discrete or continuous time.
Control and/or disturbance inputs can be treated.
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Applications: Flight Envelope Protection (CT, 4D)
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Applications: Automated Anesthesia
(DT Laguerre model, 7D)
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Applications: Quadrotor Altitude Maintenance
(nonlinear SD, 3D)
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e Also generate safe range of inputs
(slices shown at right).

lan M. Mitchell — 15




Support Vectors

Corresponding support vectors provide
polytopic underapproximation in
specified directions

%D%@

e Key operations (set evolution, intersection) are accomplished through convex
optimization.

Support functions / vectors are closed under these operations, so no need to
further underapproximate.

Only discrete time.

e Only control input (no discriminating kernel version)
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Support functions provide polytopic
overapproximation in specified directions




Application: Automated Anesthesia
(DT compartment model, 6D)

e Three compartment LTI model of Propofol metabolism.

e Third order Padé approximation of input delay yields six dimensional state
space.

e 18 directions, execution time 11.5 min.

e Support vector underapproximation (left) and free support function
overapproximation (right).
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4. Comparison & Discussion
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Comparing Accuracy: A Double Integrator

All images: True viability kernel (black).
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Support vector approximation (dark blue) and support function (light grey).
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Scaling with Dimension: A Chain of Integators

Compare execution time over ten steps for a discrete time model.
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Comparing the Options

H \ Level Set Ellipsoidal Support Vector H

Dynamics nonlinear linear linear

Time CtT/sb CT /DT /SD DT
Complexity O(n?) O(kd?) O(kd?)
Control input 2;:;::1 optimal optimal
Control synthesis v v -
Discriminating kernel optimal optimal -
Accuracy excellent fair good

Inner guarantee - v v

Outer approx - ? free

e Time models are continuous (CT), discrete (DT) or sampled data (SD).

o Complexity parameters are dimension (d = d, for CT or DT, d = d,, + d,, for
SD), grid resolution per dimension (n) and number of ellipses / support
vectors (k).
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And Yet You Insist on Using Ellipsoids. ..

Support vector approach is faster and more accurate, so why we are working more
actively on the ellipsoidal approach?

o All models are wrong, but discriminating kernels can generate approximations
robust to model error.

e Discrete time approximation is too simplistic for continuous time systems
with fast dynamics.

o Viability analysis without control synthesis only accomplishes half the job.

It is possible that the support vector approach could be extended to handle
disturbance inputs, continuous time and/or control synthesis.
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Future Work

Control filtering to ensure safety of human-in-the-loop quadrotor control.

e Longitudinal 6D quadrotor model.

Sampled data with 10 Hz sample cycle.

Control inputs are total thrust and
differential thrust.

robustness to linearization error.

Linearization about hover condition with ) T

Two second safety horizon.

Display current safety horizon and safe

bout 9,81

control set. A
Clip human input to safe control set
(somehow. . . ).

Thus
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