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A Common Design Pattern

Sampled data is a model of a common approach to designing
cyber-physical systems:

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

• Unlike continuous time models, change to feedback control is only
possible at sample times.

• Unlike discrete time models, state of plant between sample times is
relevant.
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Prevous Work

Safety verification and safe controller synthesis for sampled data systems:

• In [Ding & Tomlin, CDC 2010]:
• Reach-avoid tube.
• Formulation based on Hamilton-Jacobi (HJ) partial differential

equation (PDE)

• In [Mitchell, Chen & Oishi, ADHS 2012]:
• Minimal reach tubes (no disturbance input).
• State space partition into free and constrained control sets.
• Permissive set-valued control policy.
• Formulation based on HJ PDE.

• In [Mitchell, Kaynama, Chen & Oishi, NAHS 2013]:
• Discriminating kernels.
• State space partition into free and constrained control sets.
• Permissive set-valued control policy.
• Formulation based on abstract viability / reachability operators.
• Ellipsoidal and HJ PDE implementations.

All versions assumed fixed sample period.
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Other Related Work

• Much work on traditional control objectives for sampled data systems; for
example [Goodwin et al, IEEE Control Systems Magazine 2013], [Monaco
& Normand-Cyrot, Euro. J. Control 2007], [Nes̆ić & Teel, IEEE TAC
2004].

• In [Tsuchie & Ushio, ADHS 2006]: Controller determines switches, more
restrictive (but more realistic?) class of jitter, require trajectory solutions.

• In [Karafylllis & Kravaris, Int. J. Control 2009]: Define r-robust
reachability, but requires Lyapunov-like function.

• In [Simko & Jackson, HSCC 2014]: Taylor models and SMT solver, but
only initial state is nondeterministic.

• In [Gillula, Kaynama & Tomlin, HSCC 2014]: Sampled data viability
kernel (no disturbance input) with polytopic set representation.

• In [Aréchiga & Krogh, ACC 2014]: theorem prover to verify (and
synthesize?) invariants and control envelopes robust to parameter
variations including sample time uncertainty.

• In [Dabadie, Kaynama & Tomlin, IROS 2014]: robust reach set is
complement of (jitter-free) discriminating kernel.
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Goal and Contributions

For a sampled data model, construct a permissive, set-valued control
policy such that system trajectories remain within a constraint set over
bounded time horizon despite disturbance input and sample time jitter.

Contributions

• Modification of algorithm from [Mitchell et al, 2013].

• Proof that algorithm is tight for systems with no jitter.

• Proof that algorithm is robust to jitter.

• Example application of algorithm to nonlinear model of quadrotor
height maintenance.

• Experimental evidence that algorithm is more accurate and faster.

Results can be extended to hybrid systems with mode switches at sample
times. Other types of mode switching are challenging.
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Sampled Data Systems

Consider a nondeterministic nonlinear system

ẋ = f(x, u, v) with x(0) = x0

We make typical assumptions:

• State x ∈ Ω ⊂ Rdx .

• Control input u ∈ U .

• Disturbance input v ∈ V.

• Input sets U ⊂ Rdu and V ⊂ Rdv compact and convex.

• f is Lipschitz continuous in x and continuous in u and v.

• Disturbance signal v(·) must be measurable and will use
non-anticipative strategies (includes open loop and state feedback).

Consequently, trajectories x(·) exist and are unique.
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Jittery Sample Times

State is sampled and control input is chosen at times tk in sample time
sequence T = {tk}Nk=0

• Sample period divided into fixed and jitter components:

tk+1 − tk = δF + δJk

where δF ≥ 0 and δJk ∈ [0, δJ] for some fixed δJ ≥ 0.

Control is piecewise constant in time

upw(t) = ufb(x(tk)) for tk ≤ t < tk+1

where ufb : Ω→ U is a feedback control policy

• Feedback policy does not know T .

• Resulting dynamics ẋ(t) = f(x(t), upw(t), v(t)) are time-dependent

for a given state x (eg: they cannot be written ẋ = f̂(x, v)).
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Problem Definition and Basic Approach

Given constraint set K0 ⊂ Ω, times δF, δJ and horizon T .

• Find subset of Ω and (set-valued) control policy such that x(t) ∈ K0

for all t ∈ [0, T ].

• Solution must be robust to disturbance input v(·) and sample time
jitter δJk.

Divide Ω into nested sets:

• Constraint K0.

• Finite horizon safe sets Kk.

• Free control set Kfree.

Control is constrained within Kk.
Safety can be ensured for k sample
periods.

 

K0 K1 
K2 KN-1 KN 

Kfree 

More details on Kfree in [Mitchell et al, 2013].
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Construct: Augmented State Space

We will often work in an augmented state space

x̃ ,

[
x
u

]
∈ Ω̃ , Ω× Rdu

with dynamics

d

dt
x̃ =

d

dt

[
x
u

]
=

[
f(x, u, v)

0

]
, f̃(x̃, v).

Define two projection operators for X̃ ⊆ Ω̃ and x ∈ Ω:

Projx

(
X̃
)
,

{
x ∈ Ω

∣∣∣∣∃u, [xu
]
∈ X̃

}
,

Proju

(
X̃ , x

)
,

{
u ∈ U

∣∣∣∣ [xu
]
∈ X̃

}
,

Both projections can easily be applied to implicit surface function (HJ
PDE formulation) and ellipsoid set representations.
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Construct: Invariance Kernel

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∀v(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Inv([ts,tf], S)

• Straightforward HJ PDE approximation.

• Ellipsoidal approximation based on recursive reach sets followed by
intersections [Kaynama et al, HSCC 2012].

April 2015 Ian M. Mitchell — UBC Computer Science 11



Construct: Robust Reach Set

Reach ([ts, tf ],S) , {x̃(ts) ∈ Ω̃ | ∀v(·), x̃(tf ) ∈ S}

S

Reach([ts,tf], S)

• Straightforward HJ PDE approximation.

• Straightforward ellipsoidal approximation.
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Goal: Jitter Robust Sampled Data Discriminating
Kernel

Discsd ([0, T ],S) ,

{
x0 ∈ S

∣∣∣∣∣ ∃upw(·),∀T ,∀v(·),
∀t ∈ [0, T ], x(t) ∈ S

}
,

That is hard to draw. . .

Define the maximum number of sample periods in the chosen horizon:

N̄ ,

⌈
T

δF

⌉
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Working Sets

Sets of states and constant control values such that (no matter what the
disturbance v(·)) the trajectories will:

• Stay within S for δF + δJ time:

I1 , Inv
(
[0, δF + δJ],S × U

)
.

• Be in Discj−1 (S) in exactly δF time:

Rj , Reach
(
[0, δF],Discj−1 (S)× U

)
, for j = 2, 3, . . . , N̄ .

• Be in Discj−1 (S) during the time interval [δF, δF + δJ]:

Ij , Inv
(
[0, δJ],Rj

)
for j = 2, 3, . . . , N̄ .

Also define
Îj , Ij ∩ I1; Discj (S) , Projx

(
Îj
)

for j = 1, 2, . . . , N̄ .
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Problem Solution

Approximation of the finite horizon safe sets:

Kj = Discj (K0) .

Using these sets, we can define a set-valued control signal:

• For x ∈ K0, define the safety horizon of x as

n(x) ,

{
N̄ , if x ∈ KN̄ ;

j, if x ∈ Kj \ Kj+1;

for j = N̄ − 1, N̄ − 2, . . . , 0.

• Control policy:

Uctrl(x) , Proju

(
În(x), x

)
• By construction, applying u ∈ Uctrl(x(tk)) ensures that
x(tk+1) ∈ Kn(x(tk))−1.
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Old Algorithm was Jitter Robust!

• Original algorithm [Mitchell et al, 2013] was designed for fixed
sample periods: δF = δ and δJ = 0.

• Translated into this notation, it used

Ij , Inv ([0, δ],Discj−1 (S)× U)

(there was no Rj).

• In other words, it was robust to the case δF = 0 and δJ = δ.

Not surprising that the results were conservative.
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The Theory

• Proposition: Algorithm is conservative for systems with sample time
jitter (δJ ≥ 0):

DiscN̄ (S) ⊆ Discsd ([0, T ],S) .

• Proposition: Algorithm is tight for fixed sample times (δJ = 0):

DiscN (S) = Discsd ([0, T ],S) ,

where N = T/δF.

• Theorem: Control policy guarantees safety of x(·) for all
t ∈ [0, n(x(t))δF] despite sample time jitter and action of
disturbance input v(·).
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Demonstration of Tightness

Consider example system from
[Mitchell et al, 2013]:

f(x, u, v) =

[
u
−1

]
,

U = [−1,+1], δF = 2, δJ = 0 and
K0 the Y-shaped shaded region. True sampled data viability kernel.

Sampled Data Viability Kernel δ = 2.0, N = 3

x
1

x 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

Conservative algorithm.

Sampled Data Viability Kernel δ = 2.0, N = 3

x1

x 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

Improved algorithm.
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The Intuition

Difference between old and new algorithms:

• Old algorithm’s invariance kernel required x(t) ∈ Kn(x(tk))−1 for all
t ∈ [tk, tk+1].

• New algorithm’s reach set followed by invariance kernel permits
x(t) /∈ Kn(x(tk))−1 for t ∈ [tk, tk + δF].

• However, x(t) ∈ K0 for all t ∈ [tk, tk+1] because

Kn(x(tk)) ⊆ Projx (I1) = Projx
(
Inv
(
[0, δF + δJ],S × U

))
.

K0

K1 = Disc1(K0) = Projx(I1)
Kn-1

Kn = Disc1(Kn-1)
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Toy Example with Time Jitter

Let f(x, u, v) = u with

uup =

[
0
1

]
, uright =

[
1
0

]
;

U = {u | u = λuup + (1− λ)uright};
where 0 ≤ λ ≤ 1.

Sampled Data Viability Kernel δF = 1.0, δJ = 0.0, N = 5

x
1

x 2

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

δF = 1.0 and δJ = 0.0

Sampled Data Viability Kernel δF = 0.8, δJ = 0.2, N = 5

x
1

x 2

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

δF = 0.8 and δJ = 0.2

Sampled Data Viability Kernel δF = 0.9, δJ = 0.1, N = 5

x
1

x 2

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

δF = 0.9 and δJ = 0.1

• Each plot shows Discj (S) for j = 0, 1, . . . , 5 (darkest to lightest).

• Computed using HJ PDE formulation on Ω×U grid 201× 161× 25.
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Quadrotor Altitude Maintenance

Nonlinear model from [Akametalu et al, CDC 2014]:

ẋ1 = x2, (vertical position),

ẋ2 = kTx
2
3 − g, (vertical velocity),

ẋ3 = kp(u− x3) (related to thrust).

• Constants kp = 6.6667 and kT = 0.1222 empirically determined.

• State constraints

K0 =

x
∣∣∣∣∣∣∣
x1 ∈ [0.5, 2.8],

x2 ∈ [−1.5,+1.5],

x3 ∈ [8, 10]


• Input constraint u ∈ U = [0, 10].

• Fixed sample period δF = δ = 0.1 and δJ = 0.

• Horizon T = 1.
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Linearization with Safety Guarantee

Linearize about hover condition xeq =
[
2 0 8.96

]T
and ueq = 8.96:

˙̄x =

0 1 0
0 0 2(8.96)kT
0 0 −kp

 x̄+

 0
0
kp

 ū+

0
1
0

 v,
where x̄ = x− xeq and ū = u− ueq.

• Choose V = [0, 0.1] to bound linearization error.

• Constraint on x3 could be loosened at cost of larger V.
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Working with Ellipsoids

Ellipsoids can be efficiently
represented, but the class of
ellipsoidal sets is:

• Invariant under projection.

• Not invariant under invariance
kernels, reach sets, intersection
or tensor products.

K Reach♯
t(K,U)

ℓ(τ)

ℓ(τ − t)

S

U
lousy

elliptical
approx

U x S

U x Ω

U x S
Ellipsoidal underapproximations of the

latter operations can be efficiently
computed (mostly in Ellipsoidal
Toolbox).

• Tensor product
underapproximation is very poor.

• Instead, separately evolve two
large ellipsoids and then take the
intersection.
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Comparison between Algorithms

Start with ellipsoidal approximations in 20 terminal directions.

−1 0 1

−1

0

1

x̄1

x̄
2

−1 0 1
−1

−0.5

0

0.5

1

1.5

x̄1

x̄
3

−2 0 2
−1

−0.5

0

0.5

1

1.5

x̄2

x̄
3

Old algorithm (173 min, 13 nonempty terminal directions)

−1 0 1

−1

0

1

x̄1

x̄
2

−1 0 1
−1

−0.5

0

0.5

1

1.5

x̄1

x̄
3

−2 0 2
−1

−0.5

0

0.5

1

1.5

x̄2

x̄
3

Improved algorithm (5 min, 15 nonempty terminal directions)

Projections of one second finite horizon safe set K10 (green) and state
constraint K0 (red).
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Synthesized Safety Preserving Control Set

Slices of (underapproximation of) safe range of ū for various x̄ using a
single terminal direction.

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.20← 0.07← 0.33

x̄1

ū

x̄3 = -0.75

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.37← 0.03← 0.43

x̄1

ū

x̄3 = -0.54

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.48
← −0.01

← 0.46

x̄1

ū

x̄3 = -0.33

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.55
← −0.05

← 0.46

x̄1

ū

x̄3 = -0.12

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.59
← −0.08

← 0.43

x̄1

ū

x̄3 = 0.09

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.61
← −0.12

← 0.37

x̄1

ū

x̄3 = 0.30

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.60
← −0.16← 0.29

x̄1

ū

x̄3 = 0.51

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.54
← −0.19← 0.16

x̄1

ū

x̄3 = 0.72

Ellipsoids in each subplot show three slices for x̄2 fixed at the values
shown. Values of ū in the grey region are infeasible.
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Conclusions and Future Work

What we did:

• Described a modified algorithm for approximating the sampled data
discriminating kernel.

• Proved result is conservative for systems with sample time jitter.

• Proved result is tight for systems with fixed sample times.

• Demonstrated on a nonlinear quadrotor example that algorithm
produces better underapproximations in less time that are usable
despite inherent accuracy limits of ellipsoidal representations.

What we plan to do:

• Account for state discretization and uncertainty.

• Allow for separate (jittery) sensing and actuation delays.

• Improved treatment of ellipsoids.

• Hybrid models.

• More examples in higher dimensions.

Research funded by NSERC Discover Grant #298211 (IMM & SK) and
NSERC Collaborative Health Research Project #CPG-127770 (SK).
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