Getting Started with Matlab
(in Computer Science at UBC)

lan Mitchell

Department of Computer Science
The University of British Columbia

Outline

 Why Matlab?
— Why not C / C++ / Java / Fortran?
— Why not Perl / Python?
— Why not Mathematica / Maple?

A Brief Taste of Matlab

— where to find it
— how to run it
— interactive Matlab
— m-files & debugging
« Sources of Additional Information

January 2013 lan Mitchell (UBC Computer Science)

January 2013

Choosing Programming Languages

Compare / contrast compiled languages C++ and Java

C++

Fast: close to hardware

Flexible: interfaces to almost
any other language

Flexible: pointers, references,
explicit memory allocation

Flexible: everybody provides C /
C++ libraries

Popular: commonly used,
available everywhere

Prone to bugs: complex syntax,
memory leaks

lan Mitchell (UBC Computer Science)

Java

Easy to use: references only,
garbage collection

Popular: commonly used, widely
available

Portable: common byte code

Developed with a clear vision:
Standard libraries for security,
threading, distributed systems

Slower: interpreted or JIT for
byte code

The Right Tool for the Job

« C/C++/Fortran:

— Statically typed and compiled languages

— Well developed algorithm, known platform, execution time is key
« Java:

— Simpler, partially compiled language

— Unknown platform, less experienced programmer, development
time is important, broad standard library

« Perl/ Python:
— Interpreted “dynamic” languages: no typing, no compilation(?)

— Unknown platform, development time is key, concise but powerful
code, huge standard library

 Many others (8000+)

January 2013 lan Mitchell (UBC Computer Science)

http://en.wikipedia.org/wiki/Comparison_of_programming_languages
http://en.wikipedia.org/wiki/Comparison_of_programming_languages

The Job: Scientific Computing

* Why not use Numerical Recipes / LAPACK / BLAS?
— “simple” CLAPACK routine for solving Ax = b (general A):

int dgesv_(integer *n, integer *nrhs, doublereal *a, integer *lda,
integer *ipiv, doublereal *b, integer *1db, integer *info)

— what library to use to plot sin(2nx) forx 2 [0, 1]?

— too much programmer overhead: time consuming and too many
opportunities for mistakes

« Why not use Mathematica / Maple?
— Oiriginally designed for symbolic mathematics

— Some numerical capabilities, but not as efficient to code and/or
execute

January 2013 lan Mitchell (UBC Computer Science)

MATLAB®

Why use Matlab?

robust, dependable, easy to use routines for all basic linear algebra
intuitive, untyped, imperative language with garbage collection
huge library (toolboxes) of mathematical functions and algorithms
fast implementation of vector/matrix operations

portable interpreted language widely used in applied mathematics,
engineering & physical sciences
powerful combination of visualization and debugging

* Why not use Matlab?

proprietary system (Mathworks Inc.)
occasionally erratic syntax

toolbox quality varies widely

no support for references/pointers

 Alternatives?

Numerical computing: Octave, SciLab, Sage, SciPy, ...
Plotting: Gnuplot, XGraph, PLPIlot, PGPLOT, matplotlib, ...

January 2013 lan Mitchell (UBC Computer Science) 6

Outline

 Why Matlab?
— Why not C / C++ / Java / Fortran?
— Why not Perl / Python?
— Why not Mathematica / Maple?

A Brief Taste of Matlab

— where to find it
— how to run it
— interactive Matlab
— m-files & debugging
« Sources of Additional Information

January 2013 lan Mitchell (UBC Computer Science)

What is “Matlab”?

« Technically, a single product
— Contains basic scientific computing tools

— Linear algebra, quadrature, interpolation, approximation, differential
equations

— GUI, visualization and debugging
— Programming data and control structures
« Domain specific algorithms packaged in separate “Toolboxes”

— For example: multivariable optimization, advanced splines, image
processing, neural networks, ... (40+ available)

— Why? Separate product development (eg: $$%)
« Additional products (not used in CS courses)

— Simulink: simulation & model-based design

— Engines, coders, targets, links, etc.

January 2013 lan Mitchell (UBC Computer Science) 8

Where to find Matlab (UBC CS Dept)

« Undergraduate Labs
— Unix or Windows
— Release 7.14 (2012a)
— Toolboxes: image processing, optimization & statistics
— Licensed only for course work (grad or ugrad)
* Graduate Labs
— Several releases available, 7.14 (2012a) the default

— Toolboxes: image processing, image acquisition, statistics,
wavelets, neural networks, optimization, PDEs, signal processing,
control, robust control, identification, ...

— Licensed for research work
 Purchase Student Version

— Full basic Matlab, a few common toolboxes (sufficient for 302/303)
— Available immediately at UBC Bookstore $150(?)

— Also available online (US $99), but requires validation of student
status for full activation

January 2013 lan Mitchell (UBC Computer Science)

How to run Matlab ‘\

« Windows (or Mac): click Matlab icon to start the Matlab desktop
* Unix (Linux): type matlab to start the Matlab desktop

« Command line alternatives:
— text interface: matlab -nodesktop
— see all the options: matlab -help
— text interface still allows graphical visualization

e Remote use
— Other than in MS Windows, Matlab uses X Windows for graphics

— If you are sitting at an X Windows capable machine, you can
remotely log into the ugrad Unix machines and use Matlab

— Linux & Mac already include X Windows support

— All CS students can download XManager software for Windows: X
Windows (remote graphics), Xshell (ssh), Xftp (file sync), ...

— See

— For faster response times, use Matlab’s text interface (and some
method of editing the remote m-files)

January 2013 lan Mitchell (UBC Computer Science) 10

https://www.cs.ubc.ca/support/toc/Undergrads/remote login

Interacting with Matlab

 Examples

Getting help
Constants: pi, i, eps, inf, nan
Matrices & Arrays: input, output, colon, concatenation, £ind

Operators: transpose, arithmetic, element-wise, logical

« help topics: punct, ops, relop, arith, slash
Functions: zeros, ones, diag, eye, rand, reshape, size, ...
Text I/0O: semicolon, ellipses, format, diary

Visualization: plot, legend, xlabel, ylabel, title, subplot,
set, figure, gcf, gco, close, cl1f, ...

Graphical I/O: print, orient, imread, ...

Workspace management: who, whos, save, load, clear,
addpath, ...

Other data types: strings, ints, sparse, structures, cells

« Command line includes tab completion, up & down arrow to find
previous similar commands, ctrl-c to break execution

January 2013 lan Mitchell (UBC Computer Science) 11

Programming

« Standard programming control flow constructs

All compound statements finish with end

if/elseif/else, for, while, switch/case/otherwise,
try/catch, continue, break, return

Be careful with boolean operators, matrices and control flow (use
any, all)

« Sequences of commands can be stored as a script in an m-file

type name of file to execute commands (which run in the top level
“‘workspace” scope)

Use “%” to denote comment lines

 Functions are m-files that start with function command

January 2013

Have input and output parameters, local scope
May contain subfunctions and/or nested functions

Matlab also supports anonymous functions and a function handle
datatype (help function handle)

lan Mitchell (UBC Computer Science)

12

Data Structures

* No need to predefine variables

— Variable is created in the current workspace when it appears on the
left side of an assignment

« Many data types available

— By default, all variables are two dimensional double precision
floating point arrays

— Higher dimensional arrays allowed (but no one-dimensional array)

— Other types: single precision, integer, boolean, strings (specially
interpreted double arrays), structures (actually more like
dictionaries), cell arrays, function handles, classes

— No pointers, (almost) no references

— Dynamically typed: Matlab tries to determine a consistent type, but
type errors can occur

* Function arguments are pass by value

— Changes to input variables are not externally visible unless the
same variables are returned as outputs

— Copy on write implementation ensures fast execution if inputs are
not modified

January 2013 lan Mitchell (UBC Computer Science) 13

Debugging

« With Matlab desktop and editor

Breakpoints can be set and removed by clicking to the right of the
(executable) line in the file

Single stepping can be accomplished with buttons at the top of the
editor window

« Text based

Commands dbstop (set breakpoint), dbstep (single line step),
dbcont (continue), dbstatus (current program counter),
dbstack (examine call stack), etc.

see help debug for a full list

Extremely useful: dbstop if error causes Matlab to stop in the
workspace (eg local scope) of the function that caused the error

Also: keyboard command is equivalent to setting a breakpoint

* In either version, you can examine the current workspace

Examine variable values (text or plots), call other Matlab functions,
move up and down through the stack

January 2013 lan Mitchell (UBC Computer Science) 14

Efficient Matlab Coding

Use Matlab’s built-in functions

— €Qg: total = 0; for k =1 : 10; total = total + k; end
VS total = sum(1:10) ;

Preallocate arrays

— €eg:n = 100; ys = zeros(n, 1);
for k =1 : n; ys(i) = sin(2*pi*k/n); end

Use “vectorization”

— rather than loops, try operations that work on entire array of data at
once.

— egQ: element-wise operations (arithmetic or boolean),
sin(2*pi*(0:0.1:1)), find

— version 7.0 onward: built-in JIT often makes loops fast
Use functions, not scripts

Use profiler to find slow code

If all else fails, use MEX interface to C/C++/Fortran

January 2013 lan Mitchell (UBC Computer Science) 15

Outline

 Why Matlab?
— Why not C / C++ / Java / Fortran?
— Why not Perl / Python?
— Why not Mathematica / Maple?

A Brief Taste of Matlab

— where to find it
— how to run it
— interactive Matlab
— m-files & debugging
« Sources of Additional Information

January 2013 lan Mitchell (UBC Computer Science)

16

Sources of Further Information

« Matlab has extensive built-in documentation
— Hyperlinked documentation: helpdesk and doc <command>
— Basic textual command & function info: help <command>
— Unknown command search: lookfor <string>
— Implementation details: type <command>

* Online documentation
— Mathworks website: http://www.mathworks.com
— Community code: http://www.matlabcentral.com

— Matlab resources website (including these slides):
http://www.cs.ubc.ca/~mitchell/matlabResources.html

— YAGTOM (Yet Another Guide TO Matlab):
http://code.google.com/p/yagtom/

January 2013 lan Mitchell (UBC Computer Science)

17

Getting Started with Matlab
(in Computer Science at UBC)

For more information contact

lan Mitchell

Department of Computer Science

The University of British Columbia

UBC

Py, ¢ | by iy

mitchell@cs.ubc.ca R N\v/v/y iy
http://www.cs.ubc.ca/~mitchell

