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Shortest Path via the Value Function

• Assume isotropic holonomic vehicle

d
dtx(t) = ẋ(t) = u(t), ‖u(t)‖ ≤ 1.

• Plan paths to target set T optimal by cost
metric

ψ(x0) = inf
x(·)

∫ tf

t0

c(x(s)) ds,

tf = argmin{s | x(s) ∈ T }.

• Value function ψ(x) satisfies Eikonal
equation

‖∇ψ(x)‖ = c(x), for x ∈ Ω \ T ;

ψ(x) = 0, for x ∈ T .

Top: Goal location (blue circle) and
obstacles (grey).
Middle: Contours of value function.
Bottom: Gradients of value function
(subsampled grid).
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Path Extraction from Value Function

• Given the value function, optimal state
feedback action

u∗(x) =
∇ψ(x)

‖∇ψ(x)‖
.

• Typical robot makes decisions on a periodic
cycle with period δt so path is given by

ti+1 = ti + ∆t,

x(ti+1) = x(ti) + ∆t u∗(x(ti)).

• Even variable step integrators for
ẋ(t) = u∗(x(t)) struggle

Top: Fixed stepsize explicit (forward
Euler).
Middle: Adaptive stepsize implicit
(ode15s).
Bottom: Sampled gradient algorithm.
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Not Just for Static HJ PDEs!

Time dependent HJ PDEs arise in:

• Finite horizon optimal control.

• Reachable sets and viability kernels for formal verification of continuous and
hybrid state systems.

(See game of two identical vehicles / softwalls slide deck.)
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Gradient Sampling for Nonsmooth Optimization I

Gradient sampling algorithm [Burke, Lewis & Overton, SIOPT 2005]

• Evaluate gradient at k random samples
within ε-ball of current point x(ti)

x(k)(ti) = x(ti) + ε δx(k),

p(k)(ti) = ∇ψ(x(k)(ti)).

• Determine consensus direction

p∗(ti) = argmin
p∈P(ti)

‖p‖

P(ti) = conv{p(1)(ti), . . . , p(K)(ti)}.

P(ti) approximates the Clarke
subdifferential at x(ti).

Gradient samples (yellow) and
consensus direction (red).

Plotted in state space.

Plotted in gradient space.
Convex hull (blue) also shown.
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Gradient Sampling for Nonsmooth Optimization II

Gradient sampling algorithm [Burke, Lewis & Overton, SIOPT 2005]

If ‖p∗(ti)‖ = 0

• There is a Clarke ε-stationary point inside
the sampling ball.

• Shrink ε and resample.

If ‖p∗(ti)‖ 6= 0

• Choose step length s by Armijo line search
along p∗(ti).

• Set new point

x(ti+1) = x(ti)− s
p∗(ti)

‖p∗(ti)‖
.

Gradient samples (yellow) and
consensus direction (red).

Plotted in state space.

Plotted in gradient space.
Convex hull (blue) also shown.
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Particle Filters

Monte Carlo localization (MCL) [Thrun, Burgard & Fox, Probabilistic Robotics,
2005] is often used to estimate current state for mobile robots.

• State estimate is a collection of weighted samples

{(w(k)(t), x(k)(t))}.

• Predict: Draw new sample state x(k)(ti+1) when action u(ti) is taken

x(k)(ti+1) ∼ p(x(ti+1) | x(k)(ti), u(ti)).

• Correct: Update weights w(k)(ti+1) when sensor reading arrives

w(k)(ti+1) = p(sensor reading | x(k)(ti+1)) w(k)(ti),

• Resample states and reset weights regularly.

We always work with particle cloud after resampling (when all weights are unity).
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The Gradient Sampling Particle Filter (GSPF)

• Sample the gradients at the particle locations.

• If ‖p∗(ti)‖ 6= 0, then p∗(ti) is a consensus descent direction for current state
estimate.

Choosing action by steepest descent on the
expected state.

Choosing action by GSPF.

Simulated traversal of a narrow corridor.
Estimated (blue) and true (green) paths shown.
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Narrow Corridor Simulation

Run in ROS (Robot Operating System) with simulated motion and sensor noise
(ROS/Gazebo) and particle filter localization (ROS/AMCL).

Occupancy grid constructed with laser range
finder(s) and SLAM package.

Cost function c(x) (higher cost is darker blue).

Value function ψ(x) (higher value is red). Vertical component of ∇ψ(x) (yellow is
downward, brown is upward).
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Narrow Corridor Simulation

Compare paths taken when choosing action by AMCL expected state (roughly the
mean of particle locations) or GSPF.

• Chattering remains even as step size reduced.

Choosing action by steepest descent on the
expected state.

Choosing action by GSPF.

Visualizations shown in the videos:

• Main window: Estimated state and path (blue), actual state and path (green), particle
cloud (pink), action choices (red arrows), sensor readings (red dots), vertical component of
∇ψ(x) (background).

• Lower left window: Gradient space visualization of gradient samples (yellow) and action
choice (red).
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Finite Wall Scenario

If ‖p∗(ti)‖ = 0 there is no consensus direction.

Finite wall scenario displays the two
typical types of stationary points:

• Minimum (left side): Path is
complete(?)

• Saddle point (right side): Seek a
descent direction.

Cost. Value approximation.
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Classify the Stationary Point

Quadratic ansatz for value function in neighborhood of samples

ψ̄(x) = 1
2 (x− xc)T A(x− xc)

• Fit to the existing gradient samples

∇ψ̄(x) = A(x− xc).

• Solve by least squares

min
A,b
‖p(k)(ti)−Ax(k)(ti)− b‖

and set xc = A−1b.

• Examine eigenvalues {λj}dj=1 of A

I If all λj > 0, local minimum.
I If any λj < 0, corresponding eigenvectors

are descent directions.

ψ̄(x) at minimum.

ψ̄(x) at saddle.
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Classification Experiments: Minimum

State space view of path.

State space gradient samples
(gold) and eigenvectors of

Hessian of ψ̄(x) (blue).
Inward pointing eigenvector
arrow pairs correspond to

positive eigenvalues.
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Classification Experiments: Saddle

State space view of path.

Gradient space convex hull

State space eigenvectors of
Hessian of ψ̄(x).
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Resolve the Stationary Point

Three potential responses to detection of a stationary point

• Stop: If it is a minimum and localization is
sufficiently accurate.

• Reduce sampling radius: Collect additional sensor
data to improve localization estimate.

I Rate and/or quality of sensing can be reduced when
consensus direction is available.

I Localization should be improved by independent
sensor data.

• Vote: If it is a saddle and improved localization is
infeasible.

I Let v be the eigenvector associated to a negative
eigenvalue and α =

∑
k sign(−v

T p(k)).
I Travel in direction sign(α)v.
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Decreasing localization
covariance (green) allows for
identification of a consensus

direction (blue). In grey
region, no consensus
direction was found.
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Finite Wall Simulation

Generate paths for finite wall scenario using each of the two resolution procedures
for the saddle point.

Resolution by using an improved sensor. Resolution by voting.

Visualizations shown in the videos:

• Main window: Estimated state and path (blue), actual state and path (green), particle
cloud (pink), action choices (red arrows), gradient samples (yellow), sensor readings (red
dots) and eigenvectors of the Hessian approximation (blue arrows).

• Lower left window: Gradient space visualization of gradient samples (yellow) and action
choice (red).
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Gradient Sampling is not just for Value Functions

Actions synthesized by nearest neighbor lookup on RRT* tree.
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No Time For. . .

Monotone acceptance ordered upwind method [Alton & Mitchell, JSC 2012].
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No Time For. . .

Mixed implicit explicit formulation of reach sets to reduce computational
dimension [Mitchell, HSCC 2011].
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No Time For. . .

Infusion pump

Controller

Parametric approximations of viability and discriminating kernels with applications
to verification of automated anesthesia delivery [Maidens et al, Automatica 2013].
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No Time For. . .

Shared control smart wheelchair for older adults
with cognitive impairments [Viswanathan et al,

Autonomous Robots 2016].
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Ensuring safety for human-in-the-loop flight
control of low sample rate indoor quadrotors

[Mitchell et al, CDC 2016].
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Conclusions

Gradient sampling particle filter (GSPF)

• Utilizes natural uncertainty in system state to reduce chattering due to
non-smooth value function and/or numerical approximation.

• Easily implemented on existing planners and state estimation.

• To appear in [Traft & Mitchell, CDC 2016].

Future work

• Nonholonomic dynamics.

• Convergence proof.

• Scalability to more particles.

• Set-valued actions.

• Human-in-the-loop control and interface.
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