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Motivation

Goal: deliver anesthetics to patients in closed-loop.

Key element for FDA/Health Canada: guarantees of safety.

Figure: iControl
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Motivation

Example of an unsafe anesthesia response:
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Motivation

Example of an unsafe anesthesia response:
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Solution:

Safety-preserving control and formal methods.
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Contributions

Theoretical:

Safety in uncertain systems:
Yousefi et al., Model-invariant safety-preserving control, In ACC 2016.

Yousefi et al., Model-invariant viability kernel, Submitted to Automatica.

Safety in output-feedback systems:

Yousefi et al., Output-feedback safety-preserving control, In ACC 2017.

Clinical:

Yousefi et al., A formally verified safety system for closed-loop anesthesia,
In IFAC WC 2017.

Yousefi et al., Modelling blood pressure uncertainty for safety verification of

propofol anesthesia, Submitted to SMC 2017.
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Contributions

Paper’s contribution:

Guarantee safety of output-feedback systems.

Outline:

Related work

Problem formulation

Output-feedback safety-preserving control

Simulation results

Conclusion
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Related Work

Haesaert et al., Correct-by-design output feedback of LTI systems, In CDC 2015.

Lesser et al., Safety verification of Output feedback controllers, In ECC 2016.

For example, Lesser et al.:

1 Design a high-gain observer,

2 Calculate a upper bound on the estimation error over all time,

3 Erode the safe region by the error upper bound,

4 Calculate the feedback invariant for the specified feedback controller.

This approach is:

conservative,

controller-specific,

assumes initial error is zero.

In order to ensure the invariance of ⌦x
c and ⌦⌘

⇢, we require
an upper bound on the value that ✏ can take. From Theorem 1,
we know that ✏ < ✏̄ = 1

4M1kPk to ensure that ⌦⌘
⇢ is invariant.

To ensure that ⌦x
c is invariant and that all trajectories outside

of ⌦x
c enter ⌦x

c in finite time requires ✏ < min{✏3, ✏4}, with

✏3 =
�

2�max(Q)xmaxL�
,

and ✏4 chosen such that

c � 16�max(Q)3L2�2kD(✏)k2
2✏

2
2

is satisfied, while at the same time ⌦x
c ⇢ �. The constant

L is equal to maxx2⌦x
c
|a(x)|, and � = minx2@⌦x

c
kxk2

2.
Therefore we require ✏ < ✏̂ = min{✏̄, ✏1, ✏2}.

The recovery of asymptotic stability of the origin can be
shown in the same manner as in [6].

To summarize, we can compute a finite or infinite horizon
safety-invariant set under output feedback with the following
procedures.

1) Finite horizon case:
• Compute ⇠ as a function of ✏ and time horizon T

according to (9) and (10) from Theorem 1.
• Compute �̃ using standard reachability techniques for

fully observable systems, with state constraints (Xsafe�
⇠), control constraints Usafe, and time horizon T .

2) Infinite horizon case:
• Compute � using Xsafe and Usafe.
• Find the largest c such that ⌦x

c ⇢ �.
• Compute T1 according to (11).
• Compute ⇠ as a function of ✏ and T1 according to

Theorem 1.
• Compute �̃ using standard reachability techniques for

fully observable systems, with state constraints (Xsafe�
⇠), control constraints Usafe, and time horizon T1.

The obtained set �̃ is the safety-invariant set for either
the finite or infinite horizon using a controller designed for
state feedback, but whose input is an estimate of the state
produced by a high-gain observer. A simple case study that
demonstrates the outlined techniques for computing �̃ is
provided in an extended version of this paper, available at
XXXXX.

IV. COMPUTATIONAL EXAMPLE

We consider a simple example to elucidate the synthesis
of g(x), the calculation of ✏ and �, and the construction of
� and �̃. The known double integrator has linear dynamics


ẋ1

ẋ2

�
=


0 1
0 0

� 
x1

x2

�
+


0
1

�
u, (12)

which are already in normal form. The objective is to design
a feedback controller that stabilizes the system to the origin
(in this simple case the system is already linear). We set
u = g(x) = ��x1��x2 to obtain the closed-loop dynamics

ẋ =


0 1
�� ��

�
x,

Fig. 1: The safety invariant set, computed using the Level Set
Toolbox [16], using state feedback and fixed control law g(x) =
��x1 � �x2, for varying values of �.

which is asymptotically stable with two complex roots under
state feedback.

However, we also assume that only the first state x1 is
available, i.e. the output is y = x1, and therefore imple-
menting g(x) exactly is impossible. We therefore construct
the following high-gain observer, in the form of (5):

˙̂x =


0 1
�� ��

�
x̂ +


↵1

✏
↵2

✏2

�
[x1 � x̂1]. (13)

The constants ↵1 and ↵2 must be chosen such that s2 +
↵1s + ↵2 has negative roots: they are set to ↵1 = ↵2 = 4,
and the resulting polynomial has two roots equal to �2.

We further require that the state x(t) does not leave the
region Xsafe = {x : �4  x1  4, �3  x2  3}, and
restrict the control input to the condition |g(x̂)|  1. In other
words, we seek to stabilize the origin and respect the bounds
Xsafe using a saturating control law of the form (4) with
umax = 1. We would then like to find the safety-invariant set
(as per Definition 1), which is the set of all initial states x(0)
resulting in trajectories meeting all of the above requirements
(stability, plus state and input constraints).

Following Theorem 1, we let ⌘ = [x1�x̂1

✏ , x2 � x̂2]. The
composed singularly perturbed system is

ẋ = Ax + Bg(x � D(✏)⌘)

✏⌘̇ = ⇤⌘,

with ⇤ = [�4, 1;�4, 0]. Notice that in this example the term
✏B[b(x) + a(x)g(x�D(✏)⌘))� b(x̂)� a(x̂)g(x�D(✏)⌘))]
vanishes because b(x) = 0 and a(x) = 1.

Since our first objective was to stabilize (12) to drive
trajectories to the origin, we do not want an additional
reference input v. We can, however, maximize the safety-
invariant set by choosing � appropriately. We compute � for
varying � using a Hamilton-Jacobi formulation and the Level
Set Toolbox, as outlined in [10]. Fig. 1 shows the safety-
invariant set for varying � (on the z-axis): around � = 0.2
the safety-invariant set is the largest, and we therefore select
the controller g(x) = �0.2x1 � 0.2x2.

Under state feedback, the origin is asymptotically stable
and there exists a Lyapunov function V (x) = xT Px satisfy-
ing V̇ (x)  0. Next, as described in Theorem 3, we would

Fig. 2: The safety-invariant set � using state feedback and the fixed
control law g(x) = ��x1 � �x2, for � = 0.2 (in black, external
curve) and the maximal invariant set ⌦x

c = {x : V (x)  c} for
c = 16 (in purple, smaller ellipsoid).

Fig. 3: The safety-invariant set using state feedback and Xsafe

(external black line) versus the output feedback safety invariant
set, computed using (Xsafe � �) (internal red curve), for ✏ = 0.01
and � = 0.1768.

like to find the largest set ⌦x
c = {x : V (x)  c} ⇢ �, with

� the safety invariant set associated with � = 0.2 from Fig.
1. The set ⌦x

c with c = 16 is depicted inside � in Fig. 2.
The constant c was found manually by simply testing various
possibilities and visualising them, although a better way of
doing this should be found for higher dimensional model
instances.

We compute T1 and T (✏), and then finally �. For ✏ =
0.01, T (✏) = 0.0608 seconds, T1 = 24.74 seconds, and
� = 0.1768. If we instead picked ✏ = 0.001, we could reduce
� to 0.022. As expected, as ✏ is made smaller, � approaches
0, and we can essentially recover the state feedback safety-
invariant set. Restricting ✏ to 0.01, the safety-invariant set
using (Xsafe � �) is depicted in Fig. 3, with the original
safety-invariant set included for comparison.

A sample trajectory of x(t) under state feedback is com-
pared to the trajectory x(t) under output feedback with
✏ = 0.01, starting from x(0) = (�2,�2), in Fig. 4. Note
the slight difference with x(t) when the trajectory initializes,

Fig. 4: Sample trajectories initialised at (�2, 2) under state feed-
back (x(t)) (blue, dashed) versus output feedback (x(t)) (red). Note
the initial trajectories difference over the output feedback curve,
which is quickly corrected at time T (✏).

Fig. 5: Control inputs generated for the trajectories in Fig. 4. The
state feedback control inputs are in blue (dashed) and the output
feedback inputs are in red (solid line). Note the initial saturation
of the control inputs for the output feedback trajectory, which
corresponds to the initial difference noticeable in Fig. 4. After the
initial saturation, however, the control inputs quickly almost exactly
coincide.

which is caused by the initial transient period before T (✏),
when the output feedback controller is saturated and the state
feedback controller is not. The saturation can be seen in Fig.
5, which compares the state feedback control input to the
output feedback control input.

This example highlights that not only can we use the pre-
sented approach for verification of output feedback systems,
but also for the synthesis of controllers that satisfy stability
and safety specifications under output feedback, which is a
consequence of being able to separate state estimation and
control using the high-gain observer. We can construct a
controller that maximises the safety-invariant set � under
state feedback, apply the same controller to the system with
output feedback, and simultaneously produce the maximal
safety-invariant set under output feedback. The one drawback
of course is that we do not know x(0) exactly, and do not
necessarily know if it falls within �̃. Hence the need to
maximize �̃, and also to exploit any knowledge we may
have about x(0) to try to ensure �̃ contains the region in
which x(0) lies.
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Our Approach

In this work, we:

1 Design a stable observer,

2 Formulate the error dynamics,

3 Calculate the error tube using the error dynamics,

4 Erode the safe tube by the error tube,

5 Synthesize an observer-based safety-preserving feedback controller
envelope.

Our approach is:

less conservative,

not controller-specific.

7
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Problem Formulation & Assumptions

System Dynamics:

X : ẋt = Axt + But , yt = Cxt .

t ∈ T, x(·) ∈ XT, u(·) ∈ UT,

Observer:

O : ˙̂xt = (A− LC)x̂t + But + LCxt .

Assumptions:

(A,C) is observable,

L stabilizes A− LC .

Therefore, error (e = x − x̂) dynamics is stable:

E : ėt = (A− LC)et .

8
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Definition

Output-feedback safety preserving control guarantees that

∃u(·) ∈ UT, s.t. x(·) ∈ XT,

despite the fact that x(·) is not measurable but is observable.

9
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Method

We calculate the evolution of the error dynamics (set of error trajectories):

ET = {e(·)| ∀t ∈ T, et ∈ Et}.

Due to the stability of (A− LC), Et becomes smaller as t goes forward.

The error dynamics can be reformulated as:

O : ˙̂xt = Ax̂t + But + LCet , et ∈ Et .

Note:

ET is a set of error trajectories.

Et is a set of states (errors) at time t.

10
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Method

Let’s define X̂T as:

X̂T = XT 	 ET,

We prove that if

∃u(·) ∈ UT =⇒ x̂(·) ∈ X̂T,

the same input keeps

x(·) ∈ XT.

So any safety-preserving controller that keeps x̂(·) ∈ X̂T,
will keep the system safe.

11
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Method

Reduced to already solved problem:

Step 1)

Discriminating kernel

approximation for x̂(·) dynamics.

Step 2)

Safety-preserving
control synthesis

Safe&region&

&

Discrimina*ng&kernel&
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Example

Double integrator1 :

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t),

y(t) =
[

1 0
] [ x1(t)

x2(t)

]
.

|x1(t)| ≤ 4, |x2(t)| ≤ 3, |u(t)| ≤ 1.

1
Lesser et al., Safety verification of output feedback controllers for nonlinear system, In ECC 2016.
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Example

Double integrator:
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Figure: Viable sets for the double integrator at t = 0 (T = [0, 10s]).
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Example

Double integrator:
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Figure: Viable sets for the double integrator at t = 5s (T = [0, 10s]).
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Example

Double integrator:
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Figure: Closed-loop trajectories.
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Summary

Output-feedback safety-preserving scheme:

Not controller-specific,

Less conservative than Lesser et al.2 ,

Allows for non-zero initial conditions,

Enables a variety of safety-preserving control schemes designed for fully
observable systems.

Next step:

Extend the proposed method to the case of

uncertain systems,
uncertain delays.

2
Lesser et al., Safety verification of output feedback controllers for nonlinear system, In ECC 2016.

17



M Yousefi, K van Heusden, IM Mitchell, GA Dumont︎

Output-Feedback Safety-Preserving Control

M Yousefi, K van Heusden, IM Mitchell, GA Dumont

For more information:

mahdiyou@ece.ubc.ca (ece.ubc.ca/∼mahdiyou)
mitchell@cs.ubc.ca (cs.ubc.ca/∼mitchell)

18


	Motivation and Objectives

