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Abstract. Using only the existence and uniqueness of trajectories for ageneric dynamic system with inputs, we de�ne and examine eight typesof forward and backward reachability constructs. If the input is treatedin a worst-case fashion, any forward or backward reach set or tube canbe used for safety analysis, but if the input is treated in a best-case fash-ion only the backward reach tube always provides the correct results.Fortunately, forward and backward algorithms can be exchanged if well-posed reverse time trajectories can be de�ned. Unfortunately, backwardreachability constructs are more likely to su�er from numerical stabil-ity issues, especially in systems with signi�cant contraction|the verysystems where forward simulation and reachability are most e�ective.
1 Introduction
Except for the simplest of examples, analytic veri�cation of safety properties forcontinuous and hybrid systems is rarely possible. With the goal of broadeningthe applicability and automating the process, numerical methods for verifying orvalidating such properties have been the subject of much study. The approxima-tion of reachable sets is one major category of such numerical methods. There aretwo fundamental types of reachability: forward and backward. Many algorithmshave been proposed to compute one of these reachable sets (see Section 3), andsome type of equivalence is often informally mentioned when a problem state-ment requires computation of the other set. The contribution of this paper is adetailed examination of the distinctions between these two sets. We make ratherstrong assumptions about the existence and uniqueness of trajectories, so it isthe negative conclusions that hold the most signi�cance.Section 2 informally discusses the relationship between reachability and safetyand de�nes some of the terminology, while Section 3 covers previous work. Thebody of the paper beings in Section 4 by examining the question of when vari-ous forms of forward and/or backward reachability can be used to prove system1 A condensed version of this work appears in [1].



safety: in some cases any form will do, but in some cases only one type of back-ward reachability gives the correct result. Section 5 then demonstrates that theformulation of the reachability problem and the algorithm used to solve it neednot work in the same temporal direction, since forward and backward algorithmscan be interchanged for systems which are reversible.Unfortunately, these algorithms �nd only approximations. In Section 6, tra-jectory sensitivity analysis [2] is extended to examine the way in which numericalerror may grow as these algorithms are run. Even though the backward reach-ability formulation may be applicable to more problems, we conclude that it isalso more likely to experience numerical stability problems, regardless of whetherit is implemented by a forward or backward algorithm.
2 Reachability and Safety Analysis
Safety analysis of a given system seeks to discover whether the system|or moreaccurately, the mathematical model representing the system|can enter a speci-�ed set of unsafe states. Since many systems operate correctly only when startedcorrectly, a set of initial states is also often speci�ed. Mathematically, we willspecify a safety analysis problem by a tuple S = (H; I; T ) where H is a systemmodel, I is the initial set, and T is the unsafe set or target.We de�ne the concepts more formally in Section 4, but informally reachabil-ity analysis seeks to determine whether trajectories of H can reach T from I.There are two types of analysis. Forward reachability starts with states in I andfollows trajectories forward in time. If any of these trajectories intersect with Tthe system is unsafe. Backward reachability starts with states in T and followstrajectories backwards in time. If any of these backwards trajectories intersectsI the system is unsafe.Under these de�nitions it sounds like reachability can be determined by sim-ulating individual trajectories of H, and simulation is in fact the typical methodby which safety is disproved. Proof of safety, however, requires a guarantee thatall possible trajectories have been investigated; a challenging task in continuousand hybrid systems where the number of states is in�nite. Consequently, theterm reachability algorithm is usually reserved for techniques that determine theset of states traversed by all trajectories emanating from a given set.While the terms are not used consistently in the literature, we will in thispaper distinguish two di�erent objects that a reachability algorithm might gen-erate: the reach set is the set of states occupied by trajectories at exactly somespeci�ed time, and the reach tube is the set of states traversed by those sametrajectories over all times prior to and including the speci�ed time. Thus, thereach tube always contains the reach set. Forward and backward versions of bothreach sets and tubes can be speci�ed.While we examine their properties and appropriateness in terms of the fullyspeci�ed safety analysis problem S, forward and backward reachable sets andtubes may be more or less appropriate for other tasks; for example, backwardreach tubes for �nding the set of states which achieves a target set despite the



unknown but bounded disturbance of exogenous inputs, or forward reach setsfor demonstrating system liveness.
3 Related Work
There are two main classes of direct reachability algorithms, those that workdirectly with continuous representations. Lagrangian approaches represent theset or tube with information that moves with the 
ow of the underlying dy-namics, and are typically described in terms of forward reachability. A few aredesigned for systems without inputs [3], many permit inputs which expand thesize of the reach set [4{8] and some permit inputs which shrink the reach set [9].The theory is often based on linear continuous dynamics, although most schemeshave demonstrated computational extensions to handle the nonlinear case. Theseschemes have also shown the best scalability; for example, results for systemswith hundreds of dimensions have been reported in [8, 3].Eulerian approaches work with a discretization that is not moving with thedynamics (although it may be re�ned during computation), and are typicallydescribed in terms of backward reachability [10{14]. All schemes can supportsystems with inputs which expand the size of the reachable set, and most handlethose that shrink it as well. The theory works directly with nonlinear systems,although scalability much beyond four dimensions has not been demonstrated.The results in Section 6 are derived by a sensitivity analysis of trajectories.Lagrangian reachability algorithms that depend on numerical integration of these(or related) trajectories are clearly a�ected by such sensitivity. Despite the factthat they do not directly integrate the dynamics, Eulerian schemes will also besubject to similar numerical stability problems since the approximations thatthey use are based on the evolution of the underlying system.In addition to the classes of direct algorithms, there are at least two otherclasses of indirect algorithms related to reachability for continuous and/or hy-brid systems. Discretization of the state space and dynamics can yield a systemon which discrete reachability algorithms can be run; for example [15, 16]. Al-ternatively, automated Lyapunov type methods can be used to prove invarianceproperties, such as [17, 18]. How the sensitivity results might apply to thesealgorithms has not yet been investigated.The conclusions of Sections 4 and 5 apply to discrete systems as well; infact, forward and backward reachability have been combined to verify somediscrete systems (see [19] and the citations within). However, the nature of theapproximation errors (if any) in discrete algorithms is di�erent enough thatSection 6 may not apply.
4 Comparing Forward and Backward Reachability
In this section we compare properties of forward and backward reachability fora very generically de�ned dynamic system H. Trajectories of H will be denoted



by
�H(s; z; t; u(�)) : T! Z;

where T = [�T ;+T ] � R is the time interval over which the trajectory exists.We employ the semicolon to distinguish between the argument s of �H and thetrajectory parameters: initial state z 2 Z, initial time t 2 T and input signalu(�) 2 U. For systems lacking an input signal, we omit it and denote trajectoriesas �H(s; z; t). While such systems are often called \autonomous" in the controlliterature, we will avoid this term due to potential confusion with its standardbut di�erent meaning in the dynamic systems literature. Instead, we will callthem zero input systems.Existence and uniqueness of trajectories �H for varioustypes of dynamic systems is a challenging subject by itself; for example, see [20,21] and the citations within. To maintain the focus of this paper, we make thefollowing rather idealized assumption.
Assumption 1. For given initial state z, time t, and input signal u(�) drawnfrom an appropriate class, there exists a unique trajectory �H(s; z; t; u(�)) fors 2 T.

By making this strong but generic assumption, many of the results in the nexttwo sections will apply to a broad group of dynamic systems, although we focuson continuous and hybrid systems. It is the negative conclusions that we drawthat have the most relevance to future research|if a technique or formulationfails under such a strong but generic assumption, there is little point in pursuingits concrete implementation.In continuous systems, the dynamics are given by an ordinary di�erentialequation (ODE) of the form _z(t) = f(z(t); u(t)), where the state z is continuous.Typically Z � Rd, although some state variables may use other domains; forexample, angles are often drawn from the periodic set [0; 2�[. If f : Z�U ! TZis uniformly continuous, bounded and Lipschitz continuous in z for �xed u, thenAssumption 1 is satis�ed [22] for �xed u(�) 2 U, where
U , f� : T! U j �(�) is measurableg (1)

and U � Rdu is convex and compact. Consequently, we can specify a continuoussystem as a tuple HC = (Z; f; U).The generalization to hybrid systems involves a form of hybrid automaton(HA) adapted from [14]: we simplify to a single input, but that input may a�ectthe guards and domains. The state of a hybrid system is z = (q; x) 2 Q�X = Z,where q is the discrete state and x is the continuous state. The full HA is given



by the tuple HH = (Q;X; f;D;G; r; U), where
Q discrete states;X continuous states;f : Q� X� UC ! TX continuous dynamics (vector �eld);D : Q� UD ! P (X) domain of continuous evolution;G : Q�Q� UD ! P (X) guard conditions for discrete evolution;r : Q�Q� X� U ! X reset function;U = (UC ; UD) continuous and discrete input sets;

(2)

where P (X) is the power set (set of all subsets) of X. As in [14], we assumethat the discrete inputs are constant during continuous evolution. We will callthe boundaries of the domains and guards the switching surfaces. Although (2)allows switching to occur away from these surfaces when the interiors of thedomains and guards intersect, in order to satisfy Assumption 1 HH must bedeterministic for �xed u(�)|while the system may be nondeterministic with re-spect to state, all nondeterminism must be expressed through the input signals.Formal mathematical conditions under which Assumption 1 holds are availablefor some subclasses of this hybrid automata [20, 21]. At a minimum, Assump-tion 1 will require that HH be non-Zeno and non-blocking, and that f statis�esconditions to ensure existence of the continuous components of the trajectories.
4.1 Maximal ReachabilityWhen performing safety analysis with forward reachability, the single input'sauthority is used to make the reach set and tube as large as possible. We willuse the subscript \1+" to denote a single input used to maximize the size of thereachable set and tube and call these constructs maximal.

F1+(H; S; t) , fẑ 2 Z j 9u(�) 2 U;9z 2 S; �H(t; z; 0; u(�)) = ẑg; (3)F1+(H; S; [0; t]) , fẑ 2 Z j 9u(�) 2 U;9z 2 S;9s 2 [0; t]; �H(s; z; 0; u(�)) = ẑg: (4)
In the corresponding backward reachability problems, the input is used to driveas many states as possible towards the target set. The result is that the size ofthe reachable set and tube are again maximized.

B1+(H; S; t) , fz 2 Z j 9u(�) 2 U;9ẑ 2 S; �H(0; z;�t; u(�)) = ẑg; (5)B1+(H; S; [0; t]) , fz 2 Z j 9u(�) 2 U;9ẑ 2 S;9s 2 [0; t]; �H(0; z;�s; u(�)) = ẑg: (6)
The relationships between these four sets is easy to establish and should not besurprising.
Proposition 1.
F1+(H; S; [0; t]) = [

t̂2[0;t]F1+(H; S; t̂) B1+(H; S; [0; t]) = [
t̂2[0;t]B1+(H; S; t̂)



Proof. We prove only the forward reachability case; the backward reachabilitycase is similar. Assume ẑ 2 F1+(H; S; [0; t]). Since all the quanti�ers in (4) areexistential, it is equivalent to
F1+(H; S; [0; t]) = fẑ 2 Z j 9s 2 [0; t]; 9u(�) 2 U; 9z 2 S; �H(s; z; 0; u(�)) = ẑg:

Therefore, ẑ 2 F1+(H; S; s). Now assume ẑ 2 F1+(H; S; t̂) for some u(�). Usingthat same u(�) and letting s = t̂ in (4), we get ẑ 2 F1+(H; S; [0; t]) for all t � t̂.ut
Reachability for zero input systems is a special case of maximal reachability;for example, the forward reach set is given by

F0(H; S; t) , fẑ 2 Z j 9z 2 S; �H(t; z; 0) = ẑg:
4.2 Minimal ReachabilityThe presence of the existential quanti�ers in (3){(6) begs an obvious question:what if some are replaced by universal quanti�ers?2 The interpretation is that weseek only those states that trajectories are forced to reach no matter what inputis chosen. Consequently, the reachable sets and tubes are as small as possible,we use the \1�" notation, and call these constructs minimal.F1�(H; S; t) , fẑ 2 Z j 8u(�) 2 U;9z 2 S; �H(t; z; 0; u(�)) = ẑg; (7)F1�(H; S; [0; t]) , fẑ 2 Z j 8u(�) 2 U;9z 2 S;9s 2 [0; t]; �H(s; z; 0; u(�)) = ẑg; (8)B1�(H; S; t) , fz 2 Z j 8u(�) 2 U;9ẑ 2 S; �H(0; z;�t; u(�)) = ẑg; (9)B1�(H; S; [0; t]) , fz 2 Z j 8u(�) 2 U;9ẑ 2 S;9s 2 [0; t]; �H(0; z;�s; u(�)) = ẑg: (10)
Unfortunately, the properties that hold in the purely existential maximal caseabove no longer apply.
Proposition 2.[
t̂2[0;t]F1�(H; S; t̂) � F1�(H; S; [0; t])

[
t̂2[0;t]B1�(H; S; t̂) � B1�(H; S; [0; t])

Proof. It is clear that the tubes must contain the sets. To show that the backwardtube may be larger than the union of the backward sets, consider the purelycontinuous system H1 for x 2 R
_x = b� 2; where jbj � 1; (11)

with target set S = [�1; 0]. Since _x � �1, it is easy to see that B1�(H1; S; [0; t]) =[�1; t], a set that grows for all time. However, B1�(H1; S; t) = [3t � 1; t], andin particular B1�(H1; S; t) = ; for all t > 1=2. Therefore, [t>0B1�(H1; S; t) =[�1; 1=2] is a �xed set.2 Replacing all of the existential quanti�ers with universal quanti�ers can be accom-plished trivially by looking at the complements of the sets (3){(6).



To show that the forward tube may be larger than the union of the forwardsets, let _x = b + 2 in (11) and use the same S. The analysis proceeds in thesame manner: _x � +1, F1�(H1; S; [0; t]) = [�1; t] is unbounded as t grows but[t>0F1�(H1; S; t) = [�1; 1=2] is a �xed set. ut
The problem arises because the choice of t in the reach set de�nitions is�xed before any other variable is quanti�ed, while the choice of s 2 [0; t] in thereach tube de�nition occurs after all other variables are quanti�ed. For maximalreachability all the quanti�ers are existential, so their ordering does not matter.However, once the input's quanti�er is changed to be universal, the order inwhich the trajectory's time interval is chosen matters a great deal.We close with the observation that these same results apply to systems withcompeting inputs u(�) and v(�). As we will see in the next section, the backwardsreach tube is the most useful of the minimal constructs, so we give its de�nitionin this context.
B2(H; S; [0; t]) , fz 2 Z j9v(�) 2 V; 8u(�) 2 U;9ẑ 2 S; 9s 2 [0; t]; �H(0; z;�s; u(�); v(�)) = ẑg: (12)

Additional care must be taken in the adversarial two input case when de�ningthe sets U and V from which the input signals are drawn, so as to properlyaccount for what information the two players have about each others' signalchoice [23]. For example, in the purely continuous case one practical choice isto de�ne U as in (1) and V as the class of nonanticipative strategies [13, 14]. Inconjunction with this question of relative knowledge, the ordering of the inputsin (12) may need to be swapped for some problems.
4.3 Application to Safety Analysis
Having de�ned the maximal and minimal forward and backward reach sets andtubes, we examine which can be used to solve the safety problem S = (H; I; T )under various assumptions about the input's behaviour. Throughout this sectionwe assume that H satis�es Assumption 1.
Proposition 3. The following properties are equivalent.
1. H is safe over horizon t � T for all possible inputs u(�) 2 U.2. F1+(H; I; s) \ T = ; for all s 2 [0; t].3. F1+(H; I; [0; t]) \ T = ;.4. B1+(H; T; s) \ I = ; for all s 2 [0; t].5. B1+(H; T; [0; t]) \ I = ;.
Proof. Proposition 1 establishes 2 () 3 and 4 () 5.1 () 2: We actually prove the converse. Assume that there exists ẑ 2F1+(H; I; s) \ T for some s 2 [0; t]. By (3) there exists u(�) 2 U and z 2 Isuch that �H(s; z; 0; u(�)) = ẑ. Since z 2 I and ẑ 2 T , this trajectory reachesfrom I to T and thus H is unsafe. Now assume that H is unsafe, so that there



exists an input u(�) 2 U and initial condition z 2 I giving rise to a trajectory�H(�; z; 0; u(�)) such that �H(s; z; 0; u(�)) = ẑ 2 T for some s 2 [0; t]. By (3),ẑ 2 F1+(H; I; s) which implies that F1+(H; I; s) \ T 6= ;.1() 4: Again we prove the converse. Assume that there exists z 2 B1+(H; T; s)\I for some s 2 [0; t]. By (5) there exists u(�) 2 U and ẑ 2 T such that�H(0; z;�s; u(�)) = ẑ. Since z 2 I and ẑ 2 T , this trajectory reaches from Ito T and thus H is unsafe. Now assume that H is unsafe, so that there ex-ists an input u(�) 2 U and initial condition z 2 I giving rise to a trajectory�H(�; z; 0; u(�)) such that �H(s; z; 0; u(�)) = ẑ 2 T for some s 2 [0; t]. Because H istime-independent, we can shift the time variable such that �H(0; z;�s; u(�)) = ẑ.By (5), z 2 B1+(H; T; s) which implies that B1+(H; T; s) \ I 6= ;. ut
Based on this proposition, we can use any of the reach sets or tubes todemonstrate the safety of systems despite the actions of bounded exogenousinputs, or of systems without any inputs. The situation is not quite so favourablefor proving the existence of an input which guarantees safety.

Proposition 4. Given horizon t � T , there exists an input u(�) 2 U (which maydepend on initial state) that keeps H safe if and only if B1�(H; T; [0; t]) \ I = ;.Such an input may exist only if B1�(H; T; s) \ I = ; for all s � t, but theconverse is not necessarily true.
Proof. We �rst prove the claims for the reach tube. Let S = B1�(H; T; [0; t])\ I.H safe =) (S = ;): Assume z 2 S but that H is safe for input u(�) 2 Uand derive a contradiction. By (10), there exists ẑ 2 T and s 2 [0; t] such that�H(0; z;�s; u(�)) = ẑ. But then this trajectory reaches from I to T under inputu(�), which is a contradiction that H is safe for input u(�)H safe (= (S = ;): Assume that S = ;. Then for all z 2 I, z is in thecomplement of B1�(H; T; [0; t]). Negating (10), there exists u(�) 2 U such thatfor all ẑ 2 T and s 2 [0; t], �H(0; z;�s; u(�)) 6= ẑ; in other words, for any initialstate in I, there is an input which gives rise to a trajectory which does not reachT during the interval [0; t]. Hence, there is an input u(�) which makes H is safeduring this interval.The \only if" claim for the reach set is a simple outcome of combining Propo-sition 2 and the proof for =) above. The converse is not necessarily true becausefor the reach set the input is chosen after the time t, and for larger t the inputmay drive trajectories right through the unsafe set T and out the other side [13].An example can be found in [24]. ut

Based on this proposition, we can use the minimal backwards reach tube toprove the existence of a safe input for any state in the initial set. This sametechnique can be applied to systems with two adversarial inputs, although asnoted above additional care must be taken in de�ning the sets from which thecompeting inputs are drawn, the order in which the inputs act, and conditionsunder which Assumption 1 is valid. While complicated to de�ne, the two inputminimal reach tube can be used successfully for safety veri�cation [13]. Unfortu-nately, the same cannot be said of the minimal forward reachability constructs.



Proposition 5. The forward minimal reach set and tube provide no informationabout whether there exists an input u(�) 2 U that makes H safe.
Proof. Consider �rst the forward reach tube. Let S = F1�(H; I; [0; t]) \ T . Weshow that any combination of S empty or nonempty with H safe or unsafe ispossible. The two easy cases are the ones that should hold. For S 6= ; and Hunsafe, take I \ T 6= ;. For S = ; and H safe, take T = ;.Now consider S = ;. Then for all ẑ 2 T , ẑ is in the complement of F1�(H; I; [0; t]).Negating (8), there exists u(�) 2 U such that for all z 2 I and s 2 [0; t],�H(s; z; 0; u(�)) 6= ẑ; in other words, for any unsafe state ẑ in T , there is aninput such that no trajectory emanating from the initial set I arrives at ẑ dur-ing the interval [0; t]|so far, so good. Unfortunately, this proof only appliesonce ẑ 2 T is selected; there is nothing in this proof to stop the chosen inputfrom driving all those trajectories into some other part of T , thus rendering thesystem unsafe.Finally, consider ẑ 2 S. By (8), for all u(�) 2 U there exists z 2 I ands 2 [0; t] such that �H(s; z; 0; u(�)) = ẑ; in other words, for all inputs there existsa trajectory starting from somewhere in I that will arrive at ẑ at or before timet. However, this is not the safety question that we sought to answer. For all thesez 2 I, there may still exist some other û(�) 2 U that ensures �H(s; z; 0; û(�)) =2 Tfor all s 2 [0; t], and hence that H is safe.The forward reach set can fail for safety veri�cation in either of the waysthat the forward reach tube or the backward reach set fails. ut
The essential problem with minimal forward reachability is that the state lyingin the initial set is chosen after the input while the state lying in the target setis chosen before, rather than the other way around.
4.4 Examples of Forward and Backward Reachability for Safety
In this section we examine the various reachability constructs in terms of thepurely continuous system H2 for x 2 R2.

_x = �+1u
� ; where juj � 1: (13)

The motion of H2 is easy to visualize: translation to the right at unit speed, andthe choice of input determines vertical motion at unit speed.We examine the situation for two initial and two target sets.
I1 = [0;+2]� [0;+2] T1 = [+2;+4]� [+7;+8]I2 = [0;+2]� [0;+4] T2 = [+2;+4]� [+5;+8]

This system can be used to demonstrate Proposition 3 on universal safety for allinputs u(�). Any combination involving I2 or T2 will be unsafe, which can be seenby choosing u(t) = +1 which drives the trajectory starting in the top left cornerof the initial set to enter the target set at t = 3 (and exit at t = 4). The same



Fig. 1. Forward maximal reach sets F1+(H2; Ii; t) at t = 3:5 for various combinationsof initial and target set. The system is safe for the leftmost case but not the other two,since the reach set intersects the target set in only the center and rightmost cases.

Fig. 2. Forward maximal reach tubes F1+(H2; Ii; [0; t]) at t = 3:5 for various combina-tions of initial and target set.
input drives the upper left corner of I1 closest to T1, but no trajectory enteringT1 exists and for this lone case H2 is safe. Figures 1{4 show the various maximalreach sets and tubes at t = 3:5 for three of the combinations of initial and targetset (the case I2 and T2 is clearly unsafe and is not shown). The conclusion of allfour types of reachability analysis concur, thus supporting Proposition 3.For a demonstration of the negative result for the backward reach set inProposition 4 on existential safety for some input u(�), we use H1 from (11). LetI5 = [+1;+2] and T5 = [�1; 0]. As shown in the proof of Proposition 2

B1�(H1; T5; t) = ([3t� 1; t]; t � 1=2;; otherwise:
Therefore B1�(H1; T5; t) \ I5 = ; for all t. However, B1�(H1; T5; [0; t]) = [�1; t]and the tube component of Proposition 4 demonstrates that (H1; I5; T5) is actu-ally unsafe for all t > 1. A demonstration of the negative result for the forwardreach set in Proposition 5 can be constructed by using _x = b+2 as the dynamicsand swapping the initial I5 and unsafe T5 sets in the discussion above.



Fig. 3. Backward maximal reach sets B1+(H2; Ti; t) at t = 3:5 for various combinationsof initial and target set.

Fig. 4. Backward maximal reach tubes B1+(H2; Ti; [0; t]) at t = 3:5 for various combi-nations of initial and target set.
For a demonstration of the tube components of Propositions 4 and 5 wereturn to H2 from (13). Again, we choose two initial and two target sets.

I3 = [0;+2]� [�2;+2] T3 = [+5;+7]� [�2;+2]I4 = [0;+2]� [�4;+4] T4 = [+5;+7]� [�4;+4]
These initial and target sets are horizontally aligned, so for any initial state withx2 � 0, choose u(t) = +1 and for any initial state with x2 � 0, choose u(t) = �1.With these input signals it is easy to see that either initial set with T3 is safe,while either initial set with T4 is unsafe.Figures 5 and 6 show the two minimal reach tubes for three of the combina-tions of initial and target sets (the unsafe case I4 and T4 is not shown but is aneasy extrapolation from those given). Both tubes reach a �xed point at t = 2(for I3 or T3) or t = 4 (for I4 or T4), and it is that �xed point which is shown.The failure of the forward reach tube to correctly distinguish safe and unsafesituations can be seen in the two right subplots of Figure 5.



Fig. 5. Fixed points of the forward minimal reach tubes. The two cases on the left areactually safe, while the case on the right is unsafe. The forward reach tube demonstratesthat it is inappropriate for existential safety veri�cation in the two cases on the right.

Fig. 6. Fixed points of the backward minimal reach tubes. Safety is correctly deter-mined for the two cases on the left, and a lack of safety for the case on the right.
4.5 Time Dependent Systems
Throughout the paper we assume that the systems of interest are time indepen-dent,3 but the de�nitions of reach sets and tubes in Sections 4.1 and 4.2 canbe modi�ed to accomodate systems whose dynamics depend on time. For for-ward reachability this process is straightforward and results in the set of statesreached by trajectories starting from a given set at a given time. For backwardreachability the result is the set of states that will reach a given target at a giventime. While this set might be useful in other applications, safety speci�cationsrarely include a time of failure; consequently time dependent systems are onearea where forward reachability formulations may prove more useful. Of course,it is always possible to transform a time dependent system into a time indepen-dent system by adding a dimension to the dynamics. Furthermore, the resultsin the next section permitting a change in algorithmic temporal direction applyto time dependent systems, although additional care must be taken in handlingthe time variable.
3 We will avoid the use of the term \autonomous" because of its con
icting de�nitionsin the control and dynamic systems literature.



5 Exchanging Forward and Backward Reachability
Despite the negative conclusions regarding the minimal forward reach tubeF1�(H; S; [0; t]), algorithms for its computation may still be useful if they can beused to compute backward reach tubes. In order to establish the situations underwhich forward and backward reachability may be interchanged, we must be ableto reverse the direction of time in our dynamic system. Under Assumption 1,the following assumption will be relatively easily satis�ed.
Assumption 2. For a given dynamic system H, there exists a backward dy-namic system  �H such that for all t; s 2 T

�H(s; z; t; u(�)) = ẑ () � �H (s; ẑ; t; u(�)) = z:
Furthermore, � �H satis�es the conditions of Assumption 1.

For the continuous HC, � �HC satis�es the ODE
_z(t) = �f (z(t); u(t)) , �f(z(t); u(t)) (14)

and  �HC = (Z;�f; U). If f satis�es the su�cient conditions mentioned above for�HC to satisfy Assumption 1, then so will � �HC .The case for the HA HH is considerably more complex. In addition to thereversed continuous evolutions satisfying (14), there must exist reversed versions �G and  �r of the guards and reset which satisfy
x 2 G(q; q̂; uD) () x̂ 2  �G(q̂; q; uD);r(q; q̂; x; u) = x̂ ()  �r (q̂; q; x̂; u) = x: (15)

With these de�nitions,  �HH = (Q;X;�f;D; �G; �r ; U). Conditions under which� �HH would satisfy Assumption 1 are even more challenging to come by, althoughthere has been some work [25]. However, if we can �nd a well posed �H , then thetemporal direction of our favourite reachability algorithm is irrelevant.
Proposition 6. If H satis�es the conditions of Assumptions 1 and 2, then

F1+(H; S; [0; t]) = B1+( �H ; S; [0; t]) F1+(H; S; t) = B1+( �H ; S; t)F1�(H; S; [0; t]) = B1�( �H ; S; [0; t]) F1�(H; S; t) = B1�( �H ; S; t)
Proof. We prove the claim for the minimal reach tubes; the proofs for the re-maining claims are similar. Assume ẑ 2 F1�(H; S; [0; t]). By (7), for all u(�) 2 Uthere exists z 2 S and s 2 [0; t] such that �H(t; z; 0; u(�)) = ẑ. Under Assump-tion 2, � �H (t; ẑ; 0; u(�)) = z. Because �H is time independent, we can shift the timevariable to get � �H (0; ẑ;�t; u(�)) = z, which by (9) implies z 2 B1�( �H ; S; [0; t]).The proof in the converse direction is similar. ut



6 Reachable Set Sensitivity
Section 4.3 demonstrated that the backward reach tube is the most generallyapplicable of the reachability operators to veri�cation tasks. However, reach setsand tubes can rarely be determined analytically, so they must be approximatednumerically. In this section we examine equations for the sensitivity of trajec-tories with respect to initial conditions. From these equations we can draw theconclusion that for some types of systems accurate numerical approximation ofbackwards reachability may not be possible.The sensitivity analysis techniques used in this section force us to abandonthe very general dynamic system de�nition used in the previous sections. Fur-thermore, we will assume that the number of states in discrete systems or thediscrete component of hybrid systems is small enough that the discrete compo-nent of the reachable sets or tubes can be represented exactly. Therefore, wewill focus our attention on continuous systems and the continuous componentof hybrid systems. Since the former are a subset of the latter, we perform theanalysis for hybrid systems and except where noted assume that H = HH andthat Assumptions 1 and 2 hold.For the purposes of this analysis the domains D and guards G are speci�edby implicit surface functions

D(q; uD) = fx 2 X j  D(q; x; uD) � 0gG(q; q̂; uD) = fx 2 X j  G(q; q̂; x; uD) � 0g
for all q; q̂ 2 Q and uD 2 UD. The switching surfaces are then given by thezero level sets of these functions, and the normals of those switching surfacesby the local gradients. In order to study perturbations, we make the followingassumption about the components of the hybrid system; the assumption alsoensures that the switching surfaces and their normals are well de�ned.
Assumption 3. The vector �eld f , reset r and implicit surface functions of thedomains  D and guards  G are di�erentiable with respect to their continuousparameter x when all other parameters are held �xed.

Sensitivity equations for a class of hybrid systems called di�erential-algebraic-discrete were derived in [2]. Here we adapt these results to HA of the form (2)by ignoring sensitivity with respect to parameter or discrete state, removing thealgebraic component and adding a continuous reset. Details are omitted becausethe derivation follows directly from [2]. Sensitivity with respect to (constant)problem parameters can be derived in a similar manner. We do not considersensitivity with respect to the input, and hence assume throughout that u(�) 2 Uis �xed.For convenience, de�ne the matrices
F(q; x; u) , @f(q; x; u)@x R(q; q̂; x; u) , @r(q; q̂; x; u)@x



6.1 Trajectory Sensitivity Analysis
In this section we examine the e�ects on a trajectory's position due to smallperturbations of the continuous portion of its initial state.

�H(t; z0 + �x; 0; u(�)) = �H(t; z0; 0; u(�)) + �H(t; �H(�))�x+O(�x2); (16)
where the initial state is z0 = (q0; x0), the perturbation is purely continuousz0 + �x = (q0; x0 + �x), �H(�) = �H(�; z0; 0; u(�)), and the sensitivity matrix isde�ned as

�H(t; �H(�)) , @�H(t; z0; 0; u(�))@x0 :
The continuous evolution of the HA is governed by an ODE, and sensitivityanalysis of ODEs is well established; for example, see [26, section 4.6 and ex-ercise 6.4]. Using what is essentially a Taylor series expansion, it can be shownthat the sensitivity matrix solves the ODE

ddt�H(t) = F(q; x; u)�H(t); (17)
where z = (q; x) = �H(t; z0; 0; u(�)) and u = u(t). The initial condition for (17)is �H(0) = I, where I is the identity matrix of appropriate size.To treat the discrete jumps that occur in hybrid systems, let t� and t+indicate values just before and just after the instantaneous jump respectively,z� = (q�; x�) = �H(t�; z0; 0; u(�)) be the state just before the jump, and q+ bethe discrete state just after the jump (so x� 2 G(q�; q+; u)). For jumps thatoccur on switching surfaces the di�erence in post-jump state for two neighboringtrajectories depends both on the reset and the di�erence in time when the jump isenabled (for guard switching surfaces) or forced (for domain switching surfaces).Let t(z0) be the time of the jump as a function of initial state and � be itssensitivity. Then

� = @t(z0)@z0 = � r (x�)T �H(t�)r (x�)T f(q�; x�; u) (18)
where  (x�) is  D(q�; x�; uD) for domain switching surfaces and  G(q�; q+; x�; uD)for guard switching surfaces. This equation is only valid if the vector �eld sat-is�es a transversality condition such that r (x�)T f(q�; x�; u) 6= 0 [2]. Duringthis period, one trajectory is subject to the old vector �eld and one to the newvector �eld, so

�H(t+) = R(q�; q+; x�; u) ��H(t�) + f(q�; x�; u)��� f(q+; x+; u)�; (19)
where x+ = r(q�; q+; x�; u) and � is given in (18). Away from switching surfacestrajectories in a neighborhood can all jump at the same time, so � = 0.



6.2 Implications for Approximating Reach Sets and TubesGiven a nominal system trajectory �H, the sensitivity evolution equations (17)and (19) can be solved as if they were a dynamic system to provide quantitativeestimates of the form (16) for the e�ects of small perturbations on the initialconditions. Here, though, we will use them to ascertain conditions under whichwe cannot expect accurate results from approximate reachability algorithms.Most such algorithms use 
oating point instead of exact arithmetic, and hencemake small errors throughout computation. Taking �x as a small numerical errorincurred, for example, by a single 
oating point operation at time t and state z,algebraic manipulation of (16) arrives at a bound for the error at another times (ignoring the O(�x2) terms)
k�H(s; z + �x; t; u(�))� �H(s; z; t; u(�))k � k�H(s; �H(�))kk�xk: (20)

This trajectory-based sensitivity analysis is relevant to direct reachability al-gorithms because they either track trajectories explicitly (for Lagrangian ap-proaches) or implicitly (for Eulerian); consequently, errors in locating a trajec-tory translate directly into errors in the approximation of the boundary of thereachable set or tube. It should be noted that Assumption 3 and the vector�eld transversality condition ensure that the two trajectories in (20) follow thesame sequence of discrete states, so we need only consider the di�erence in theircontinuous states.The multiplicative factor k�H(s; �H(�))k in (20) depends on the trajectory�H(�), but there are three ways in which it might grow large. The �rst (and onlyoption for continuous systems) is continuous evolution by (17), whose explicitsolution is given by �H(t) = exp[(t � s)F]. Large values of �H will result if Fhas eigenvalues with large positive real components. Discrete evolution by (19)contains the remaining two potential sources of growth. One is the term �H(t+) =R�H(t�), which will result in growth if R has any eigenvalues whose magnitudesare much greater than one. The �nal potential source of growth in (19) is theterm � given by (18), which may have large components if the denominatorr T f� � 0 (we use f� to denote f(q�; x�; u)). In summary, numerical ill-conditioning of a mathematical HA model of the form (2) can arise from one ofthree sources:
Real[�(F)]� 0 continuous evolution; (21)j�(R)j � 1 discrete jumps; (22)r T f� � 0 grazing contact with switching surface; (23)

where �(A) are the eigenvalues of matrixA and f�(x) = f(q�; x; u). Because F,R,  and f depend on state (and potentially input), checking these conditionsexplicitly will usually be impractical. However, systems satisfying any of theconditions (21){(23) are inherently unpredictable; consequently, deterministicmodels of the form studied here are rarely constructed for such systems. Withthe notable exception of chaotic systems, conditions (21){(23) are unlikely tooccur in practice when computing forward reachability.



Unfortunately, the same cannot be said of backward reachability. It may bede�ned in terms of the forward dynamics, but computational approximationswill begin with the target set and work backwards along trajectories of the timereversed system. Therefore, let us consider the form of conditions (21){(23) for �H in terms of the elements of a given H. From (14),
 �f = �f =)  �F = �F =) �( �F ) = ��(F):

From (15), r(q; q̂; �r (q̂; q; x; u); u) = x. Taking the derivative with respect to x
R �R = I =)  �R = R�1 =) �( �R) = �(R)�1:

The equivalent of (23) is a little more di�cult to deduce, but as explained in [25]the concern is that the 
ow �eld after a forward time jump (before the reversetime jump) is nearly parallel to the switching surface which triggered the jump.To summarize, we restate conditions (21){(23) for �H in terms of the parametersof H
Real[�(F)]� 0 backward continuous evolution; (24)j�(R)j � 1 backward discrete jumps; (25)r T f+ � 0 backward grazing contact with switching surface; (26)

where f+(x) = f(q+; r(q�; q+; x; u); u) includes the action of the reset. Asdemonstrated in the next section, these conditions can easily occur for systemswhose forward simulations are very well behaved. From these conditions, we drawthe following conclusion about the challenges of using numerically approximatedbackwards reachability.
Remark 1. Systems which display large amounts of contraction in forward time(ie nearby trajectories get closer together) in either their continuous evolution (ofthe form (24)) or discrete evolution (of the form (25)) are likely to be numericallyill-conditioned for backwards reachability. Poorly conditioned switching events(of the form (26)) are also more likely to be overlooked when working backward,because the relevant switching surfaces and vector �elds are in di�erent discretemodes.

As a �nal comment, we note that this ill-conditioning of backwards reacha-bility depends on the set being sought, and not the manner in which it is calcu-lated. Consequently there are unlikely to be issues of ill-conditioning when usinga backward algorithm and Proposition 6 to compute a forward reach set|thisprocess involves reversing the dynamics twice and ends up back with forwarddynamics. On the other hand, using a forward algorithm and Proposition 6 todetermine the backward reach tube may run into ill-conditioning because thedynamics are reversed before the algorithm is applied.



Fig. 7. Left: Yuan's and Svensson's toggle circuit [27]. The numbers next to the tran-sistors are the relative sizing used in the simulations. Right: Simulation of the togglemodel H3 for a typical input signal �.

Fig. 8. Upper and lower bounds on the real components of the eigenvalues of theJacobian F of the dynamics of H3 during the simulation in Figure 7.
6.3 Continuous System Sensitivity Example
To illustrate how sensitivity of the continuous evolution can be a major issue incomputing reachability for real systems, we examine the toggle circuit [27] whoseschematic and typical trace are shown in Figure 7. The model H3 is based on asimple, short channel transistor model with velocity saturation [28, pp. 62{63].All capacitances are to ground and are of �xed value, and interconnect capac-itance is ignored. To emulate the e�ect of connecting toggle elements together,the output node z is given an additional capacitative load equivalent to that seenby input �.The circuit is correctly operating if the period of the output z is twice theperiod of the input signal �. Forward reachability has been used to demonstratethat under suitable constraints on the input, the output has twice the period ofthe input and satis�es the same constraints as the input; consequently, a chainof toggle circuits can be used to form a counter [29].Unfortunately, a similarly successful analysis using backward reachabilitywould be unlikely to succeed. Figure 8 shows the maximum and minimum realcomponents of the eigenvalues of the Jacobian F of the dynamics for H3 over thecourse of the simulation in Figure 7. Even after scaling by 10�8 to account for the



Fig. 9. Rocking block example. The left �gure shows the con�guration for mode q2.The block starts with its center of mass at the crossing point of the two dashed lines(modes q1 and q2). The input u can enable the center of mass to switch sides to thecrossing point of the two dotted lines (modes q3 and q4). The right �gure shows thecorresponding hybrid automaton H4 with its discrete dynamics, domains, guards andresets. The continuous dynamics are given in (27).
very short time intervals typical of VLSI circuits, the minimum real componentof the eigenvalues of F is �(103) or less, which indicates a highly contractivedynamic system. Such systems are great for forward reachability calculations,since overapproximation errors will be rapidly contracted to the point of beingnegligible. But from (24) we see that backward reachability calculations are un-likely to maintain any accuracy for circuits of this type, since they face expansionfactors of the same magnitude. In this case, error in backward reachability couldgrow by a factor of e1000 or more on time intervals as short as those in Figure 7.
6.4 Hybrid System Sensitivity Example
To examine the sensitivity issues that can arise in hybrid systems, we use amodi�ed version of the rocking block example from [21]. Figure 9 shows H4,where the continuous dynamics are given by

fL(x; �) = � x21� sin(�(1 + x1))
� ; fR(x; �) = � x2� 1� sin(�(1� x1))

� : (27)
The block in this case has an o�set center of mass, which can reside in one oftwo symmetric locations. The system has a single discrete control u which candecide whether to activate switch (q2; q3) and thereby instantaneously move thecenter of mass; however, this switch has a guard and is only available when theblock is not leaning too far to the right. Since the center of mass locations aresymmetric, if the switch is activated the dynamics for the left and right modesswap. Because the block position x1 is measured as a fraction of the angularposition of the center of mass, it experiences a reset when (q2; q3) is activated aswell. The parameters used in the analysis are

�big = �=3; �small = �=6; � = 0:8; 
 = �big=�small = 2: (28)



Fig. 10. Rocking block simulation with parameters given in (28), starting from x =[�0:9 0:0]T . The solid curve shows a trajectory in which the center of mass is notshifted, with resulting mode switches denoted by circles on the time axis. The blockstarts leaning to the left, shifts to the right at t � 3:0, back to the left at t � 5:5, andso on. The dashed curve shows a trajectory where the center of mass is shifted at t = 4when x�1 � 0:43 (well within the guard). Even though x+1 � 0:86 < 1, the block is stillmoving to the right after the switch. By t = 8, x1 > 1 and it is clear that the block istoppling.
A simulation of trajectories with and without a center of mass shift is shown inFigure 10.First, we consider sensitivity at the switching surface of the guard for (q2; q3).Figure 11 shows an enlarged view of the vector �elds (arrows) before the switchf� = f(q2; x) and after the switch f+ = f(q3; r(q2; q3; x)), and the switchingsurface (solid line) for the guardG(q2; q3). The vector �elds and switching surfaceare vertically symmetric, so we analyze the case for x2 > 0.4 The normal of theswitching surface is n = �5 �1�T . From the �gure, it appears that the vector �eldbefore the switch will not cause problems via (23), but that the vector �eld af-terwards may via (26). In fact, it is easy to show that nT f�=knk > 0:04 (a small,but not tiny value), but that nT f+ = 0 for x � �0:8255 0:1277�T � 1=23 �19 3�T ,where the decimal values are determined numerically and the fractions by thesmall angle approximation of sine. Therefore the backward trajectories of H4are in�nitely sensitive at this switch. This sensitivity would be a problem if,for example, we sought from a set in q3 a backward reach tube whose boundarypassed close to this guard. Very small numerical errors could cause the boundaryto incorrectly intersect or fail to intersect the guard, so that the backward reachtube would incorrectly contain or fail to contain states in q2 respectively. Thisexample highlights the reason why condition (26) is easy to miss: the switchingsurface examined above is reasonably well behaved with respect to the vector
4 We point out but will not further discuss the fact that the switching surface's normalis not uniquely de�ned at x2 = 0 and its implicit surface function would not bedi�erentiable at this point. Such points in the state space are yet another situationwhere care must be taken when de�ning and computing reachable sets, but we donot yet have theory to analyze them.



Fig. 11. Comparing the vector �elds f� and f+ to the guard's switching surface for(q2; q3). Switching is allowed to the left of the switching surface. Only a portion of thecontinuous state space in mode q2 is shown. While f� = f(q2; x) in the left subplotis not parallel to the switching surface, f+ = f(q3; r(q2; q3; x)) in the right subplot isparallel slightly above and slightly below the x2 = 0 line.
�elds f(q2; x) and f(q3; x) of the modes on both sides of the switch; the problemonly arises through the combination of vector �eld and reset.As a �nal case of sensitivity, we examine the e�ect of the resets in H4 when theblock rocks from left to right or vice versa; for concreteness, consider the switch(q1; q2). This case corresponds to the conditions (22) and (25). From Figure 9,r(q1; q2; x) = ��x1 x2�T , so

R = �� 00 1
�  �R = R�1 = ���1 00 1

� :
Since � 2 [0; 1], kRk = 1 and kR�1k = ��1. Consequently, for � = 0:8 from (28)backward trajectories are only slightly more sensitive to numerical error than for-ward trajectories, and concern about the numerical stability of backward reach-ability would arise only after many, many discrete jumps. However, if the blockwere made out of a soft material, then it is likely that � � 1; for example,� = 0:001. Physically, this case would correspond to a block that for stable ini-tial conditions would essentially settle in an upright position after rocking backand forth only one or two times. The sensitivity of forward trajectories remainsthe same, but errors in backward trajectories (speci�cally, errors in x1) wouldbe multiplied by ��1 = 1000 after each mode switch. While it might be ap-pealing to compute the set of states which settle in an upright position throughbackwards reachability, the quantitative results could be dubious in this highlydamped situation.



7 Conclusions and Future Research
Using a very general de�nition of dynamic system, we demonstrated that back-ward reach tubes are the most broadly applicable formulation of reachabilityfor demonstrating system safety; that forward and backward algorithms can beinterchanged if well-posed backward trajectories can be de�ned; and that thebackward reachability formulation is more likely to su�er from numerical sta-bility problems, particularly for systems displaying signi�cant contraction. Weintend to continue studying the sensitivity of reachability algorithms to problemparameters such as inputs, initial and target sets.Acknowledgments: The author would like to thank Professor Mark Green-street, Chao Yan and Suwen Yang for the model, code and help with the toggleexample.
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