Proceedings of the 2006 IEEE International Conference on Robotics and Automation

Orlando, Florida - May 2006

Optimal Path Planning under Different Norms in
Continuous State Spaces

Ken Alton and Ian M. Mitchell
Department of Computer Science
University of British Columbia
2366 Main Mall, Vancouver, BC, V6T 174, Canada
{kalton,mitchell}@cs.ubc.ca

Abstract— Optimal path planning under full state and map
knowledge is often accomplished using some variant of Dijkstra’s
algorithm, despite the fact that it represents the path domain as
a discrete graph rather than as a continuous space. In this paper
we compare Dijkstra’s discrete algorithm with a variant (often
called the fast marching method) which more accurately treats
the underlying continuous space. Analytically, both generate
a value function free of local minima, so that optimal path
generation merely requires gradient descent. We also investigate
the use of optimality metrics other than Euclidean distance
for both algorithms. These different norms better represent
optimal paths for some types of problems, as demonstrated
by planning optimal collision-free paths for a multiple robot
scenario. When considering approximations consistent with the
underlying state space, our conclusion is that fast marching places
fewer constraints upon grid connectivity, and that it achieves
better accuracy than Dijkstra’s discrete algorithm in many but
not all cases.

I. INTRODUCTION

Path planning is one of the most studied areas of robotics
research and nobody aspires to follow poor paths, but the
concept of optimality is in many cases qualitative or is rel-
egated to an afterthought by competing concerns of mapping,
localization and/or safety. While these are important issues, in
this paper we focus on quantitatively optimal path planning
on continuous domains. In order to do so in this constrained
conference venue, we make the simplifying assumptions of
full state and map knowledge. The recommendations resulting
from our analysis should be simple enough to incorporate into
more general robotic systems that take account of these other
concerns.

The grandfather of techniques for this full knowledge setting
is Dijkstra’s algorithm [1], which is an efficient implementa-
tion of dynamic programming to find the shortest path through
a discrete graph. In this paper we explore the use of this
algorithm and an adaptation [2]—commonly called the fast
marching method [3]—which more accurately approximates
the underlying continuous space.

Both algorithms are typically used to create paths which
are optimal in the Euclidean or 2-norm, a job for which
the discrete nature of connectivity in Dijkstra’s algorithm is
particularly poorly suited. However, there are tasks for which
this norm is inappropriate; for example, planning a minimum
time path through configuration space for a robot arm whose
joints can be actuated independently. Therefore, we permit a

0-7803-9505-0/06/$20.00 ©2006 IEEE

slightly broader definition of optimality than simply minimum
Euclidean distance between states. In fact, there are models in
which different norms should be applied to different subsets
of the coordinates.

The two main contributions of this paper are an exploration
of the commonalities and differences between Dijkstra’s dis-
crete algorithm and the fast marching method in the context
of optimal path planning on continuous state (configuration)
spaces, and derivation of update equations for both algorithms
for robots whose actions are constrained by a variety of dif-
ferent norms. In addition, we demonstrate how combinations
of these norms can be used to generate collision-free optimal
paths for multiple robots.

II. OPTIMAL PATH PLANNING IN A CONTINUOUS DOMAIN

We formulate our problem as an optimal cost to reach
some closed target set T over paths or trajectories y(-)
which travel through some domain D. We present results for
Euclidean space D C R?, although modifications to handle pe-
riodic dimensions—such as rotational coordinates [0, 27)%—
are straightforward, and manifolds can be accomodated [4].
The paths are judged to be optimal according to an additive
cost metric (total cost is the sum of costs encountered along

the path):
ty
V(xg) = inf c(y(s))ds,
y() Jto

(M

where y(to) = zo, y(ty) € T, and y(-) are drawn from
feasible paths such that y(t) € D\T for ty <t < ts. The cost
Sfunction c(z) is assumed to be Lipschitz continuous in D, and
generates a value function V (x) which measures the minimum
cost to go from a point x to anywhere on the boundary of the
target set. It can be shown that this value function satisfies a
dynamic programming principle (DPP)

Vieo = 3

1+ At
V(y(t+ AD) + / c(y(s))ds], @

which says that the optimal cost to go from the current point
xo is given by the cost of the trajectory which minimizes the
cost to go from a future point on that trajectory plus the cost
over the next At time units.

Rearrange this equation and let At — 0 to get an infinites-
imal version of the DPP in the form of a partial differential

866

equation (PDE)

min VV (z) - § = ¢(z), 3)
U

where the choice of § = dy(t)/dt is the choice of action for
the robot. In this paper we restrict ourselves to the isotropic
problem, where the constraint on robot action is given by

llgll, <1 4)

for some p-norm defined for z € R% by

. N
et = (5, 1) ®

Typical problems use p = 1 (Manhattan norm), p = 2
(Euclidean norm) or p = oo (max norm). After inserting the
constraint (4) into (3), we arrive at the PDE

IVV(2)||ps = c(z), forxzeD\T; ©)

V(z) =0, for x € OT;
where || - ||« is the dual norm [5, p. 637] of the action
constraint norm || - ||, from (4). For the cases of interest, the

I-norm and oo-norm are duals, and the 2-norm is its own dual.
Once V' (z) is computed, the optimal path is found by gradient
descent § = —VV (y(t)/IVV (y(1)llpe-

At this point the notation may have obscured the simplicity
of the formulation. Consider planning a two dimensional path
through the known corridors of a building to a point 7.
The robot may travel at some maximum speed Spyax IN any
direction; in other words ||g]|2 < Smax. To put this problem
in the format described above, the map is represented by the
cost function defined in D C R2. To use (4) as the action
constraint, set ¢(x) = 1/smax in the middle of the corridor and
to some very large value inside the walls. To keep the robot
away from the walls, a smooth transition of appropriate width
is chosen between these two values. Then we can solve (6)
with px = 2 to find V(x). An example of this type is described
in section VI.

Now consider planning a kinematic path through configura-
tion space for a robot arm whose state is given by d joint
angles. Then D = [0,27)? and c(x) is defined as above
to encode obstacles in D. However, a Euclidean constraint
on action is inappropriate in this case, since each joint can
be actuated independently at maximum speed. Therefore, we
choose to constrain the maximum speed over all joint angles
using the p = oo (max) norm: ||§]|cc < Smax. Solving (6) with
px = 1 generates an appropriate value function, and gradient
descent on this value function creates an optimal path. Apart
from the simple adaptation of the algorithms to the toroidal
domain D and the different choice of norm, this problem is
the same as the one in the previous paragraph, so we do not
further investigate it here due to limited space. However, in
section VII we examine how mixtures of norms can be used
to plan optimal paths for multiple robots.

The derivation of (6) given above was extremely informal
and was intended primarily to provide intuition for the use
of this equation in path planning problems. Readers should

not infer from this informality a lack of rigourous theoretical
support for the formulation. The general PDE (3) is known as
a Hamilton-Jacobi-Bellman equation, and it can be modified to
describe much more general types of optimal trajectory control
problems [6]. The specific PDE (6) is known as an Eikonal
equation, and it can be shown that even under the assumptions
described above it may not have a classical solution that is
differentiable everywhere; however, for shortest path problems
there exists a unique weak solution for V(z) guaranteed to
be Lipschitz continuous, bounded, and differentiable almost
everywhere, called the viscosity solution [6]. Of more rele-
vance to path generation by gradient descent, this solution has
a global minimum at the target and no other local minima,
although it may contain saddle points and ridges (in both
cases there are multiple paths to the target with the same
optimal cost). The algorithms discussed below are designed
to approximate the viscosity solution.

The constraint (4) is not quite as limiting as it first appears,
since varying robot speed can be incorporated by scaling the
cost function as described above. However, a significant limita-
tion of this formulation is that the cost function cannot depend
on the choice of action; this limitation rules out, for example,
the planning of optimal paths for nonholonomic vehicles. We
have chosen this restricted formulation in order to focus on
the challenges and benefits of using different norms. With
appropriate edge weighting Dijkstra’s algorithm can handle
anisotropic cost functions c(z,y) and hence nonholonomy.
Modification of fast marching to treat this situation is possible
at the cost of added complexity [7] or multiple iterations [8].

III. RELATED WORK

Path planning is a central endeavor in robotics research [9],
so we mention only the most closely related work. The value
function solution of (6) is an example of a navigation func-
tion [10], and gradient descent is simply an optimal descent
path through this potential field which contains no spurious
local minima. There are other ways of approximating the value
function. An alternative discretization of (2) is used in [11]
to provide the update equation for Dijkstra’s algorithm. This
discretization permits more general types of motion constraints
but requires calculation of the preimage set of the current
reachable nodes under all available motions and the updates
may involve optimizations, so the algorithm may be much
more expensive than the simple, explicit algebraic equations
used here. An alternative to Dijkstra’s algorithm, wavefront
propagation [12], keeps an active list of nodes, but does not
require that the node removed from this list is always the one
with minimum value. It therefore avoids the cost of sorting
the list, but may need to revisit nodes multiple times.

Study has also been devoted to modifications of Dijkstra’s
algorithm to focus computational effort when both source and
destination state are known, in which case a feedback map for
the entire state space is superfluous. For example, the focused
dynamic A* (D*) algorithm [13] not only avoids calculating
the value function for states far from the optimal path, but
also allows for updates to the value function when new map

867

foreach z; € G, \ T do V(z;) = +o0
foreach z; € 7 do V(z;) =0
Q<+ Gy
while Q # () do
r; < ExtractMin (Q)
foreach z; € NV, (z;) do

V(z;) « Update (z;, N(z;), V, ¢)

Algorithm 1: Generic shortest path dynamic programming algorithm. De-
pending on the choice of update function, this algorithm will produce either
Dijkstra’s algorithm or the fast marching method.

information becomes available. It should be possible to com-
bine these methods with those outlined here to create solutions
of (6) which are both focused and accurately approximate the
underlying continous domain.

As an alternative to value functions, [14] uses harmonic
functions to find navigation functions without local minima.
While we prefer value functions because the paths generated
by these harmonic function methods are not optimal in any
obvious metric, it is possible that the sophisticated sampling
strategy used there to decide where to refine their adaptive 2¢-
tree discretization of the configuration space could improve on
the simplistic grid refinement strategy used here.

The techniques outlined in this paper apply in theory to
arbitrary dimension, but their grid size scales exponentially
with dimension and so they are practical only in dimen-
sions less than four or five. Probabilistic roadmap methods
(PRM) [15] have demonstrated some success at path planning
in high dimensional spaces. The update formulae outlined be-
low for different norms for Dijkstra’s algorithm can be used in
PRM, but those for fast marching require simplicial grids and
would therefore be difficult and inaccurate on probabilistic or
sparse samplings. However, naive probabilistic sampling of the
configuration space does not provide as good dispersion and
discrepancy as some deterministic sampling strategies [16].
Consequently, PRM cannot escape the necessity of having a
dense sampling of the configuration space in order to find
near optimal paths and narrow channels, and so will not be as
accurate and efficient for lower dimensional problems as the
grid based techniques mentioned here.

IV. DIJKSTRA’S ALGORITHM

Dijkstra’s Algorithm (DA) [1] is an easy to program, effi-
cient and accurate method for solving shortest path problems
on a discrete graph using dynamic programming (DP). In this
section we briefly review the algorithm and then examine
its effectiveness for approximating the solution of (6) on a
continuous domain for various norms.

A. Discrete Domain

Let G be a discrete graph with nodes G, = {z;} and
edges G.. The target is a subset of nodes 7 C §G,. Each
node has an associated cost ¢(z;) and set of neighbor nodes
Na(z;). A path consists of a sequence of neighboring nodes

+ 2K 2K

(a)p1=1 (b)p— ©p=2

Fig. 1. Local connectivity and weighting for the node at the center of
each subfigure. If these patterns are extended to all nodes in the orthogonal
grid G on D = R2, then running the discrete Dijkstra’s algorithm on G
approximates value functions on D corresponding to shortest path problems
under the labelled continuous p-norm bounds on the action, as shown in
figure 2.

y(t;) = x; such that y(t;) € T. Dijkstra’s algorithm
constructs by DP a value function V (x;) which is the discrete
analog of (1): V'(z;) = miny. Z‘JJ 0 y(t;), where y(to) = ;.
Algorithm 1 gives a generic version of DP For a set of nodes
Q, the ExtractMin (Q) function removes from Q a node
x; € Q with minimum V' (z;). The algorithm is specialized to
Dijkstra’s discrete setting by using the update function

Update (zj, N(z;), V, ¢) =c(z;)+ min V(z

R ENR(z;

k), (D)

which is the discrete analog of (2). Once V' (z;) is calculated
for all z; € G, the optimal path from a node can be found
by the discrete analog of gradient descent: the next node in
the path is always the neighbor with smallest value.

B. Continuous Domain

The physical position, configuration or state of most real
robot systems lies in a continuous domain, and not at the
nodes of a discrete graph. Despite this crude approximation,
DA is a popular and often successful approach to optimal path
planning for robots. We will examine the case where G is a
orthogonal grid discretization of D, and for concreteness we
will work in R? with node spacing Az (so there are O(Ax—2)
nodes in G,,). Graph connectivity is examined below. All of the
conclusions apply to higher dimensional domains, and most
apply to alternative discretizations as well. The algorithm is
identical to that described above, except that ¢(z;) should be
scaled by Az. However, two concerns arise when we consider
using the resulting value function for path planning in D.

The first concern, which is more of a mathematical detail,
is that the value function is not formally defined for states
in D which are not nodes in G. In practice, some kind of
linear interpolation among neighboring grid nodes is used
to assign a value to these states. We note in passing that
the Update function for DA was not designed with this
interpolation in mind; however, we do not further analyze the
resulting approximation error here.

The second concern is related to the first, but more practical.
Not only do the states of typical physical robots lie in a
continuous domain, but so do their actions. The set of actions
considered by discrete DP for a particular node z; € G,
includes only those corresponding to edges leading to Ny, (x;).
Interpolation of these actions to points z € D\ G, (by

868

08 08t /]

061, q 06

04 04

02

<02

-0.2

041

0 04t
-061

-0.6

-0.8F

AN /|

-08 -06 -04 -02 0 02 04 06 08

@p=1

Fig. 2.

(b) p=o0

0
©p=2

Contour plots of approximations to the value function V() for # € D = R? with the origin as 7" and ¢(z) = 1 for various continuous p-norm

bounds on action. The solid lines are the contours of the approximation generated by Dijkstra’s algorithm with the connectivities shown in figure 1, and the
dashed lines are the contours of the approximation generated by the fast marching method. The curves that lead toward the center are sample paths y(¢)
generated by gradient descent on the two value function approximations. The results are identical for p = 1, Dijkstra’s algorithm is more accurate for p = oo,

and fast marching is more accurate for p = 2.

interpolating VV (z)) may not lead to actions optimal under
continuous constraint (4).

Fortunately, the value function generated by DA can be
interpreted as the solution of (6) with continuous p-norm
constraint for certain choices of p, provided that certain
connectivities are chosen for G. Figure 1 shows local views
of the appropriate connectivity patterns. Connecting a node to
its four nearest neighbors in the orthogonal mesh produces a
value function equivalent to the p = 1 case, while connection
to the eight nearest neighbors produces the p = oo case.
Figure 2 provides contour plots of the resulting value function
approximations (solid lines) for the time to reach the origin
on a 1012 grid of D = [-1,+1]? C R2. A few sample paths
y(t) are also shown.

While the p = 1 and p = oo cases do occur, the most
common norm of interest is p = 2. If we allow variable
weighting of edges, it is possible to construct an approximation
of this case using DA. A common connectivity pattern and
edge weighting are shown in figure 1(c), and the resulting
value function appears in figure 2(c). Note that the contours in
the latter figure are octagonal, when they should be circular.
This faceting is not an artifact of the coarse grid, but will
persist as the grid is refined. The only way to reduce it is to add
more neighbors for each node. Similar persistent inaccuracies
may arise for the p =1 and p = oo cases when grid spacing
or the cost function is nonuniform; for further discussion see
section VL.

V. THE FAST MARCHING METHOD

Rather than trying to include all possible optimal paths
between nodes in the discrete grid G, an alternative is to incor-
porate the continuity of the domain D and use interpolation
during the construction of the value function. We follow the
approach of [2] for the p = 2 norm case to develop intuition,
and specialize to a orthogonal grid of R? for concreteness.
Using the connectivity shown in figure 1(a), each node z; will
have four neighbor nodes in N, (;). In addition, the neighbor

data structure A (z;) is augmented to contain in N (z;) (s is
for “simplex”) the four right triangles created by connecting
the nodes in N, (z;) with virtual edges.

The basic procedure is still given by algorithm 1, but with
a different Update function. Consider the update for a node
zg € D\ T. Choose a neighbor triangle S € N;(zg) and
label its other two nodes x; and zs. Using the values V' (z1)
and V (z3), construct a linear interpolant V() for the value
function along the (virtual) edge [z1,z2]. Then use a locally
linearized version of (2) to approximate V (zg)

V(wo) = (V12(2) + c(z0)||Z — zoll2) . (8)

min
Z€[x1,22]
The corresponding optimal path enters S at & and travels in a
straight line to zg.

While (8) is based on (2) and is hence quite general, we find
it algebraically easier to adopt the treatment of [3] to derive
our update equation for (6), as well as the name used there
for this adaptation of DA: the Fast Marching Method (FMM).
The basic idea is to plug a finite difference approximation
of VV(xz) for z € S € Ns(zp) into (6), and then solve for
V(zo) in terms of ¢(x) and V' (z;) for z; € S\ {zo}. For the
orthogonal mesh of R? described above, a first order accurate
finite difference approximation of (6) is

19V (@o)lls =/ (552)” + (Ye52)” = efe0).

where V; = V(x;). This equation is quadratic in V' (xg), and
so can be solved easily

Volps=2 = % (V1 + Vo + \/2A$2c(330)2 - - ‘/'2)2) 9)

It can be shown that (8) generates the same equation when
applied to (6) for px = 2. The full Update function for
FMM in this setting is given in algorithm 2. Adaptation to
more dimensions or variable grid spacing merely requires
slight modification of (9) [3]; the triangles of N;(zg) become
simplices in higher dimension.

869

Input: zq, N (z9), V, ¢
Output: V()
foreach S € N;(zo) do
Compute V) () from (9)
return ming V(%) ()
Algorithm 2: The Update function for the fast marching method. The use
of (9) specializes this version to a orthogonal grid of R? with action bounded

in the p = 2 norm, but with appropriately modified equation it can be used
for other grids, dimensions and/or norms.

S

To treat the alternative norms, we write finite difference
approximations of ||[VV (z)||p«

IVVolly = &5 (1Vo — Vil + [Vo — Va),
IVVolleo = a5 max(|Vo — VA, |Vo — Val),

plug them into (6), and rearrange to solve for V(zq)

Volps=1 = 5(Azc(zo) + Vi + V2),
Volpr=co = Azc(zo) + min(V7, V5).

(10)
(1D

Either of these equations can be substituted for (9) in algo-
rithm 2. Figure 2 shows contours and sample paths for value
function approximations generated by FMM (dashed lines).
For action constraint (4) with p = 1, use (11), since (6)
requires the dual norm px = oo. In the resulting figure 2(a),
the approximation and paths are invisible because they are
identical to those generated by DA with connectivity from
figure 1(a), which is not surprising since (11) is exactly the
same as (7) for this choice of grid. The result in figure 2(b)
for p = oo, using (10) since px = 1, is less accurate than the
discrete approximation, and there is noticable rounding of what
should be sharp corners. However, the result in figure 2(c) for
p = 2 = px using (9) is much better than the corresponding
discrete approximation. The contours are essentially circular
and the paths are straight.

VI. ADAPTIVE GRID REFINEMENT

The discussion thus far has focused on uniform orthogonal
discretizations of D; however, the distribution of obstacles
in the world is rarely uniform, and an adaptive grid which
has more nodes in cluttered regions than in open regions can
achieve better paths than can a uniform grid.

While the choice of where to place additional nodes is
important, we do not investigate refinement strategies here and
instead concentrate on the challenges of modifying DA and
FMM to accomodate adaptive grids. For the example below,
we refine the grid where the gradient of the cost function has
a large magnitude. This simple strategy is easy to implement
for cost functions generated by laser or sonar point data, and
results in dense node placement near obstacle boundaries,
where accuracy of the value function is more likely to matter
when choosing robot actions.

DA easily accomodates adaptive meshes, since it makes no
assumptions about the relative placement of nodes or local
connectivity. However, its accuracy for the p = 1 and p =
oo cases in the orthogonal mesh depended on the fact that
the connectivity patterns in figures 1(a) and 1(b) included the

Path Number
Method Grid Figure 1 2 3 4
DA [0) 3(c) — 2274 4989 3347
DA S 3(d) 3145 2272 5131 3427
FMM (0] 3(e) — 2258 4906 3281
FMM S 3(f) 3053 2252 4873 3307
TABLE I

METHOD VS TRAJECTORY LENGTH FOR THE TRAJECTORIES IN FIGURE 3.
“O” IS THE ORTHOGONAL GRID AND “S” IS THE SIMPLICIAL GRID.

optimal paths between nodes in these metrics. The discrete
algorithm’s failure for the p = 2 case occurred because it could
not represent all optimal paths between nodes without turning
the grid into a clique. On an adaptive grid, it may not be
possible to create efficient connectivity patterns for the p =1
and p = oo cases without accepting paths that are similarly
suboptimal at the local level of resolution of the grid.

FMM requires more information about the local neighbor-
hood of each node; specifically, a collection of neighboring
acute simplices which cover all possible directions of approach
to that node (a simplex in R? is a convex polytope with d + 1
vertices). The procedures in section V must be modified in
two ways: a formula based on approximating ||VV (z)]|p«
in a general acute simplex to replace (9), (10) or (11) and
find V(xg), and some method of generating simplicial grids
in arbitrary dimension. An update formula to replace (9) for
the px = 2 case on an acute simplex is given in [17]. We
are currently investigating adaptations of this formula to the
px = 1 and px = oo cases. We use the simplicial mesh
refinement algorithm developed in [18] to create an appropriate
adaptive grid. This algorithm works in any dimension, and
under mild assumptions guarantees a grid free of malformed
simplices which might introduce large approximation errors.

To demonstrate on a realistic example the pros and cons of
the various algorithms discussed thus far, we approximate a
value function for p = 2 on a portion of newoffice.map,
a collection of point obstacles based on laser rangefinder data
which comes with the Saphira software package. Figure 3(a)
shows the laser data for the map, as well as the outlines of
the resulting obstacles in the configuration space of a circular
robot of radius 100. Using a cost function to represent the
obstacles, we adaptively refine to the simplicial grid shown in
Figure 3(b). The resulting grid has 10326 nodes, and is com-
pared to a uniform orthogonal grid with 1012 = 10201 nodes.
Value function approximations for a target at (—3250, —1000)
are computed with both DA and FMM on both grids, and
then paths from four initial locations are computed based on
gradient descent. The results are shown in figures 3(c)-3(f).

The most obvious feature of the solutions is that path 1
fails to reach the target for both algorithms on the orthogonal
grid, because gradient descent is foiled by inaccurate gradient
approximations when traversing a gap narrower than the grid
cell size. More generally, it can be seen that the adaptive grids
do a better job of optimal path generation near obstacles. The
fact that the orthogonal grids appear to do a better job of path
generation through open spaces can be somewhat attributed to
the fact that they are better refined in these open spaces, but is

870

[

-500 -500 P4

1000 -1000

1500 -1500

T DDA

2000 -2000

-2000 -

-2500

-3000 1"\

3500l
~40!

~ N7
~2500 2500 (| —
~3000 -3000 g
EVVANVANZANVAY:
e / / , N\ P K \
5566 ; : y " L L ool / . ‘ NN
-4000 -3500 -3000 -2500 —-2000 -1500 -1000 -500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500
(b) simplicial mesh

(a) map

N o N
00 -3500 -3000 -2500 -2000 -1500 -1000 -500

(c) orthogonal DA

-500)
-1000 ;

1500
-2000

-2500

<3000 1 | L e

-500)
-1000 L —
-1500
-2000
-2500

-3000 “

3500 [
4000 3500 -3000

(d) simplicial DA

= 1 3500l
2600 2000 -1500 -1000 -500 -4000 -3500 -3000

Fig. 3.

-2500

(e) orthogonal FMM

3500

-2000 -1500 -1000 500 " -4000 -3000) -2500 -2000 -1500 -1000 -500

(f) simplicial FMM

-3500

Robot navigation using laser point data. Figure 3(a): Laser data and obstacles in configuration space. Figure 3(b): Adaptive simplicial mesh.

Figures 3(c)-3(f): Contour plots and example trajectories of value function approximations.

mostly a consequence of our simplistic refinement criteria. At
present the paths approach the target from a direction in which
the triangles are rather large. Additional grid refinement near
the target would create better open space simplicial paths.
The difference in results between DA and FMM is a little
more subtle. In practice, the paths generated following DA
tend to quickly converge to grid edges, a behavior which can
be seen in a few places in figures 3(c) and 3(d). Table I
demonstrates that the FMM paths are quantitatively shorter.

VII. AN EXAMPLE OF MIXED NORMS

To demonstrate the use of a mixed norm, we look at the
problem of coordinated control of two robots. Figure 4 shows
the scenario of two robots in a ring, where the light shaded
robot is constrained to move along a fixed circular path and the
dark shaded robot can move freely in R? subject to the black
obstacles. System state variables x; and x5 are the position
of the 2D robot, while z3 represents the position of the 1D
(circular arc) robot. We adapt (6) to this multirobot scenario
by using a p = 2 norm (p* = 2) to constrain the motion of
the 2D robot and a p = oo norm (px = 1) to constrain the
combined motion of both robots:

(1),)], = e

871

A first order accurate finite difference approximation is

2 2
V()" () 1gs
Since ¢(x) > 0 and Vj — V3 > 0, it is straightforward to solve
the quadratic equation for the value V4 at the current node.

Using this update equation with FMM on a 101? orthogonal
grid, we compute a value function to navigate the robots from
any state to a goal state. In this example, the goal for the 2D
robot (dark) is on the left side of the large circular obstacle
and the goal for the 1D robot (light) is on the right side. At
the top and bottom of the ring are bottlenecks where only
one robot may pass. The cost function encodes not only the
configuration space shape of the fixed obstacles, but also those
states forbidden because they represent a collision between the
robots.

In figure 4(a), the robots both start at each other’s goal states
and avoid one another entirely by going around opposite sides
of the central obstacle. In the remaining figures both robots
start in the bottom half of the ring. In figure 4(b) the 2D robot
is further away from the gap and therefore waits for the 1D
robot to pass through first, whereas in figure 4(c) the 2D robot
clears the gap and then makes way for the 1D robot.* Note

= c(zg). (12)

* Animations of these scenarios are available at
http://www.cs.ubc.ca/~kalton/icra2006.html

-08 -06 -04 -02 0 02

(@ (b)

o

-08 -06 -04 0 0.2 04 06

-0.2
(c

Fig. 4. Motion of two robots in a 2D world. The light robot is constrained to a circular path, while the dark robot may move anywhere within the obstacle
free space. The light robot’s goal is on the right, and the dark robot’s goal is on the left. Arrows show direction of movement, and are placed near goal states.

that the optimal paths in all three cases are generated from the
same value function approximation.

We are currently adapting (12) to unstructured grids and
higher dimensions. These results could also be approximated
with an appropriate grid connectivity and DA, subject to the
errors discussed in section IV-B for the px = 2 component of
the motion (and px = 1 component on unstructured grids).

VIII. CONCLUSION

The fast marching method is essentially Dijkstra’s algorithm
with a different node update formula, a formula which is
consistent with the underlying continuous state space and so
can represent optimal paths which do not lie on the discretized
grid. As a consequence, it tends to produce shorter paths.
However, there are some cases where it is less accurate—for
example, the max norm constraint (p = oo) on an orthogonal
grid—and it does require that the grid data structure keep
track of neighboring simplices (although an algorithm for
generating such grids in arbitrary dimension is available).
Not surprisingly, both Dijkstra’s algorithm and fast marching
benefited from refinement of the grid near obstacles.

Update equations for paths optimal under actions bounded
in various norms were derived for both algorithms on orthog-
onal grids. The final example showed how mixtures of norms
can be used in a multiple robot environment for generating
optimal collision-free paths. We hope that for many existing
path planning environments, introduction of these alternative
update formulae will be straightforward.

In addition to the extensions mentioned previously, we are
also investigating methods of improving the performance of
the gradient descent phase of path planning.

Acknowledgement: The authors would like to thank Pro-
fessor Adam Oberman for pointing out the connection between
the dual norm and the Eikonal equation with bounds on robot
action in alternative norms.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik 1, pp. 269-271, 1959.

[2] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
IEEE Transactions on Automatic Control, vol. AC-40, no. 9, pp. 1528—
1538, 1995.

[3] R. Kimmel and J. A. Sethian, “Optimal algorithm for shape from
shading and path planning,” Journal of Mathematical Imaging and
Vision, vol. 14, no. 3, pp. 237-244, 2001.

[4] ——, “Computing geodesic paths on manifolds,” Proceedings of the
National Academy of Sciences, USA, vol. 95, no. 15, pp. 8431-8435,
1998.

[51 S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[6] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman equations. Boston: Birkhduser,
1997.

[7]1 J. A. Sethian and A. Vladimirsky, “Ordered upwind methods for static
Hamilton-Jacobi equations,” Proceedings of the National Academy of
Sciences, USA, vol. 98, no. 20, pp. 11069-11074, 2001.

[8] C.-Y. Kao, S. Osher, and Y.-H. Tsai, “Fast sweeping methods for
static Hamilton-Jacobi equations,” STAM Journal on Numerical Analysis,
vol. 42, no. 6, pp. 2612-2632, 2005.

[9] J.-C. Latombe, Robot Motion Planning.
Publishers, 1991.

[10] J. Barraquand, B. Langlois, and J. Latombe, “Numerical potential field
techniques for robot path planning,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 22, no. 2, pp. 224-241, 1992.

[11] S. M. LaValle, “Numerical computation of optimal navigation functions
on a simplicial complex,” in Robotics: The Algorithmic Perspective,
P. Agarwal, L. Kavraki, and M. Mason, Eds. Wellesley, MA: A K
Peters, 1998, pp. 339-350.

[12] K. Konolige, “A gradient method for realtime robot control,” in Pro-
ceedings of IEEE IROS, 2000, pp. 639-646.

[13] D. Ferguson and A. Stentz, “The delayed D* algorithm for efficient path
replanning,” in Proceedings of IEEE ICRA, 2005, pp. 2057-2062.

[14] J. Rosell and P. Iniguez, “Path planning using harmonic functions and
probabilistic cell decomposition,” in Proceedings of IEEE ICRA, 2005,
pp. 1815-1820.

[15] L. E. Kavraki and J.-C. Latombe, “Randomized preprocessing of con-
figuration for fast path planning,” in Proceedings of IEEE ICRA, 1994,
pp. 2138-2145.

[16] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the re-
lationship between classical grid search and probabilistic roadmaps,”
International Journal of Robotics Research, vol. 23, no. 7-8, pp. 673—
692, 2004.

[17] J. Sethian and A. Vladimirsky, “Fast methods for the Eikonal and related
Hamilton-Jacobi equations on unstructured meshes,” Proceedings of the
National Academy of Sciences, USA, vol. 97, no. 11, pp. 5699-5703,
May, 2000.

[18] J. M. Maubach, “Local bisection refinement for n-simplicial grids gen-
erated by reflection,” SIAM Journal on Scientific Computation, vol. 16,
no. 1, pp. 210-227, Jan., 1995.

Cambridge, UK:

Boston: Kluwer Academic

872

