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Abstract. We define a �-causal discretization of static convex Hamilton-Jacobi Partial Differen-
tial Equations (HJ PDEs) such that the solution value at a grid node is dependent only on solution
values that are smaller by at least �. We develop a Monotone Acceptance Ordered Upwind Method
(MAOUM) that first determines a consistent, �-causal stencil for each grid node and then solves
the discrete equation in a single-pass through the nodes. MAOUM is suited to solving HJ PDEs
efficiently on highly-nonuniform grids, since the stencil size adjusts to the level of grid refinement.
MAOUM is a Dijkstra-like algorithm that computes the solution in increasing value order by using
a heap to sort proposed node values. If � > 0, MAOUM can be converted to a Dial-like algorithm
that sorts and accepts values using buckets of width �. We present three hierarchical criteria for
�-causality of a node value update from a simplex of nodes in the stencil.

The asymptotic complexity of MAOUM is found to be O((Ψ̂�)dN logN), where d is the dimen-

sion, Ψ̂ is a measure of anisotropy in the equation, and � is a measure of the degree of nonuniformity
in the grid. This complexity is a constant factor (Ψ̂�)d greater than that of the Dijkstra-like Fast
Marching Method, but MAOUM solves a much more general class of static HJ PDEs. Although �
factors into the asymptotic complexity, experiments demonstrate that grid nonuniformity does not
have a large effect on the computational cost of MAOUM in practice. Our experiments indicate
that, due to the stencil initialization overhead, MAOUM performs similarly or slightly worse than
the comparable Ordered Upwind Method presented in [Sethian and Vladimirsky, SIAM J. Numer.
Anal., 41 (2003)] for two examples on uniform meshes, but considerably better for an example with
rectangular speed profile and significant grid refinement around nonsmooth parts of the solution.
We test MAOUM on a diverse set of examples, including seismic wavefront propagation and robotic
navigation with wind and obstacles.
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1. Introduction. One interpretation of the viscosity solution to a static Hamilton-
Jacobi Partial Differential Equation (HJ PDE) is the first arrival time of a propagating
wavefront. A level contour of the solution is the position of the wavefront at a specific
time. An intuitive and efficient method of approximating the solution on a grid is to
compute the solution values at grid nodes in the order in which the wavefront passes
through the grid nodes. The solution value at a particular grid node is based on values
of neighboring grid nodes that are smaller, in the same way that the time at which the
wavefront crosses any particular point is dependent on the earlier times the wavefront
crosses nearby points in the direction from which it emanates. Dijkstra-like methods
were developed in [30, 23] to approximate the solution to an isotropic static HJ PDE,
also known as the Eikonal equation, in a single pass through the nodes of a grid in
order of increasing solution value. Ordered Upwind Methods (OUMs) [26, 27] are
an extension of these Dijkstra-like methods that approximate the solution to static
convex HJ PDEs in a single pass.

One potential benefit of single-pass methods is that it may be possible to estimate
error and refine the grid to achieve a desired solution accuracy as the solution is com-
puted outward from the boundary condition. Because a node value is not computed
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until those node values on which it depends have already been computed, there is
the potential to control error early before it has been propagated unnecessarily to
dependent grid nodes. We are not aware of any existing adaptive single-pass methods
for static HJ PDEs that refine the grid to control error on the fly. However, such
an adaptive method would create significantly nonuniform grids for many problems.
We develop a Dijkstra-like single-pass method which constructs causal stencils that
extend beyond immediate neighbors but adjust to the local and directional grid spac-
ing. Convergence can be shown using a well-known consistency, monotonicity, and
stabililty proof [5]. A feature of our method is that the discretization of the HJ PDE
is �-causal (where � ≥ 0 is a free parameter), such that the solution value at a grid
node is dependent only on solution values that are smaller by more than �.

We present Monotone Acceptance OUM (MAOUM), a two-pass Dijkstra-like
method for which node values are accepted in nondecreasing order on a simplicial
grid. We contrast MAOUM with the OUM introduced in [26, 27], which solves the
same set of static convex HJ PDEs but does not necessarily accept node values mono-
tonically. Because one of the defining features of their method is that a front of
nodes with accepted values is maintained and the stencil is formed dynamically using
only nodes from this front, we call their method Accepted Front OUM (AFOUM).
MAOUM is a two-pass algorithm because the stencils for the discrete equation are
precomputed in an initial pass through the nodes of the grid, as opposed to being
computed in the same pass as the solution like in AFOUM. Because the stencil size
and shape adjusts to local grid spacing, MAOUM is particularly suited to problems
that benefit from nonuniform refinement in the grid (for an example, see Section 5.2).
If � > 0, MAOUM can be modified to create a Dial-like method, for which nodes are
sorted into buckets of width � according to value and buckets of nodes are accepted
in increasing value order [12, 30].

The rest of the introduction includes a definition of the problem, the computa-
tional grid, and the basic Dijkstra-like algorithm, as well as a discussion of related
work. In Section 2 we present the discretized equation and the node value update
equation, and we examine some of their useful properties. We develop three hier-
archical tests for the �-causality of a node value update from a simplex and prove
their validity in Section 3. We use these tests to define MAOUM, verify that it solves
the discretized equation, and analyze its asymptotic complexity in Section 4. Nu-
merical examples are included in Section 5 to show empirically that the algorithm is
convergent, is not much less efficient/accurate than AFOUM on uniform grids and is
significantly more efficient/accurate than AFOUM for an example with appropriately
chosen grid refinement. We also demonstrate that MAOUM can be used to solve
practical problems, such as computing the first-arrival time for a seismic wavefront
or finding optimal paths for a robot to reach a goal while fighting a strong wind and
avoiding obstacles.

1.1. The Problem. The Dirichlet problem for a static HJ PDE is to find a
function u such that

H(x,Du(x)) = 0, x ∈ Ω (1.1a)

u(x) = g(x), x ∈ ∂Ω, (1.1b)

where Du(x) is the gradient of u at x, Ω ⊂ ℝd is a bounded Lipschitz domain, and
∂Ω is the domain’s boundary.

An optimal continuous control problem which attempts to minimize the time to
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reach the boundary leads to the following Hamiltonian H in (1.1a) [27]:

H(x, p) = max
a∈A

[(−p ⋅ a)f(x, a)]− 1, (1.2)

where A = {a ∈ ℝd ∣ ∥a∥ = 1} is the set of unit vector controls, a ∈ A is a control
specifying direction of travel, x ∈ Ω ∪ ∂Ω is a state, f : Ω × A → ℝ+ is a Lipschitz-
continuous function providing the finite positive speed of travel from each state x in
each direction a, and g : ∂Ω→ ℝ gives the exit time penalty at each boundary state
x. Note that f is positive, which means that small-time-controllability is assumed.

For all x ∈ Ω, let the speed profile

Af (x) = {taf(x, a) ∣ a ∈ A and t ∈ ℝ such that 0 ≤ t ≤ 1}

be a closed convex set. Because f is positive, Af (x) contains the origin in its interior.
In an isotropic problem, f(x, a) is independent of a for all x, i.e., Af (x) is a hyper-
sphere with the origin at its center. In such a problem, the Hamiltonian H reduces
to

H(x, p) = ∥p∥2f(x)− 1 (1.3)

and (1.1) becomes the Eikonal equation. In an anisotropic problem, f(x, a) depends
on a for some x, i.e., Af (x) is a closed non-spherical but convex set.

In general, it is impossible to find a classical solution u to the static Hamilton-
Jacobi PDE (1.1) where u is differentiable for all x. We seek instead the viscosity
solution, a unique weak solution which under the above conditions on Af is continuous
and almost everywhere differentiable [9].

1.2. Computational Grid. Since we typically cannot solve for the viscosity
solution analytically, we compute an approximate solution u on a structured, semi-
structured, or unstructured simplicial grid with nodes forming both a discretization
Ω of Ω, and a discretization ∂Ω of ∂Ω. Take Ω and ∂Ω to be disjoint sets and let
X = Ω∪ ∂Ω be the set of all nodes in the grid. Let N (x) be the set of grid neighbors
of node x ∈ X . Let s be a simplex with ns vertices, and xsi be the ith vertex of s
where 1 ≤ i ≤ ns. Let S be the set of grid simplices using neighboring grid nodes in
X . Define S(ℛ) = {s ∈ S ∣ for 1 ≤ i ≤ ns, x

s
i ∈ ℛ ⊂ ℝd}, the set of grid simplices

using neighboring grid nodes in ℛ. We may specify the number of vertices using
a subscript: for example, Sd(ℛ) is the set of grid simplices with d vertices. If left
unspecified it is assumed 1 ≤ ns ≤ d, excluding simplices with d+ 1 vertices.

1.3. Dijkstra-like Methods. Algorithm 1 outlines a standard Dijkstra-like
method [13] for solving isotropic static HJ PDEs on a simplicial grid, similar to the
Fast Marching Method (FMM) [23]. MAOUM is a modification of this algorithm to
handle HJ PDEs with convex anisotropy, while taking advantage of nonuniformity in
the computational grid.

Informally, we refer to v(x) as the value of node x. When Algorithm 1 terminates,
v is the approximate solution u to (1.1). The function call Update(y, s) returns a
real number that replaces v(y) if it is less than the current value of v(y). In [23],
the FMM algorithm employs an Eulerian finite-difference discretization to calculate
Update(y, s). For MAOUM, we use the semi-Lagrangian discretization from [27] to
calculate Update(y, s). This discretization generalizes that for Eikonal equations from
[29] to anisotropic HJ PDEs. It is discussed in detail in Section 2 and Appendix A.
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foreach x ∈ Ω do v(x)←∞1

foreach x ∈ ∂Ω do v(x)← g(x)2

ℋ ← X3

while ℋ ∕= ∅ do4

x← argminy∈ℋ v(y)5

ℋ ← ℋ ∖ {x}6

foreach y ∈ N (x) ∩ℋ ∩ Ω do7

foreach s ∈ S(N (y) ∖ ℋ) such that x ∈ s do8

v(y)← min(v(y), Update(y, s))9

end10

end11

end12

Algorithm 1: Standard Dijkstra-like method

While the Update function in Algorithm 1 is determined by the underlying equa-
tion which we seek to solve, it is assumed that its execution time is independent of
grid resolution and hence it does not affect the algorithm’s asymptotic complexity.
The Update functions in this paper maintain this property. Dijkstra-like algorithms
are usually described as being O(N logN), where N = ∣X ∣ is the number of grid
nodes. This complexity is derived by noting that each node is removed from ℋ once
and, in the usual binary min-heap implementation of ℋ, extraction of the minimum
value node in line 5 costs O(log ∣ℋ∣) ≤ O(logN). For an efficient implementation a
node x ∈ ℋ need only be on the heap if v(x) < ∞. Typically, the number of such
nodes is much less than N .

In order for MAOUM to maintain the capability of computing node values in
a single pass, the update stencil for a node x ∈ X needs to be expanded beyond
N (x) to handle many convex anisotropic problems. MAOUM includes an initial pass
to compute this stencil for each x, resulting in a two-pass method. However, the
asymptotic complexity for MAOUM is only increased from that of Algorithm 1 by
a constant factor of (Ψ̂�)d, where d is the dimension, Ψ̂ measures anisotropy in the
equation, and � measures the degree of nonuniformity in the grid. This constant
factor bounds above the number of nodes in a stencil. Although � factors into the
asymptotic complexity, experiments demonstrate that grid nonuniformity does not
appear to have a large affect on the computational cost of MAOUM in practice.

1.4. Related Work. The first Dijkstra-like method for a first-order semi-Lagrangian
discretization of the isotropic Eikonal PDE on an orthogonal grid was developed in
[29]. The Dijkstra-like FMM was later independently developed in [23] for the first-
order upwind Eulerian finite-difference discretization of the same Eikonal PDE. FMM
was then extended to handle higher-order upwind discretizations on grids and un-
structured grids in ℝn and on manifolds [16, 24, 25]. By solving an isotropic problem
on a manifold and then projecting the solution into a subspace, FMM can solve cer-
tain anisotropic problems [25]; for example, (1.2) with a constant elliptic speed profile
Af (x) = Af can be solved by running isotropic FMM on an appropriately tilted
planar manifold and then projecting away one dimension. Some anisotropic etching
problems have also been solved using FMM [19]. A class of axis-aligned anisotropic
problems can be solved on a orthogonal grid using FMM [3].

AFOUM [26, 27] can solve general convex anisotropic problems on unstructured
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grids with an asymptotic complexity only a constant factor Υ̂d−1 worse than FMM,
where Υ̂ is a measure of anisotropy. FMM fails for these general problems because the
neighboring simplex from which the characteristic approaches a node y may contain
another node x such that causality does not hold: v(y) < v(x). AFOUM avoids this
difficulty by searching along the accepted front to find a set of neighboring nodes
(which may not be direct neighbors of y) whose values have been accepted, and then
constructing a virtual simplex with these nodes from which to update v(y).

Our method solves the same set of convex anisotropic problems on unstructured
grids as AFOUM. MAOUM does not maintain an accepted front but must perform an
initial pass to compute the stencils for each node and store them for the second pass
that computes the solution. The benefit of this extra initial computation and storage
is that MAOUM determines the stencil based on local grid spacing. This results in an
algorithm that can take better advantage of local refinements in the grid to perform
updates from a smaller stencil.

An alternative to these single-pass (or label-setting) algorithms are the sweep-
ing (or label-correcting) algorithms, which are often even simpler to implement than
FMM. Sweeping algorithms are also capable of handling anisotropic and even non-
convex problems. The simplest sweeping algorithm is to just iterate through the grid
updating each node in a Gauss-Seidel (GS) fashion (so a new value for a node is
used immediately in subsequent updates) until v converges. GS converges quickly if
the node update order is aligned with the characteristics of the solution, so better
sweeping algorithms [11, 7, 28, 32, 14, 22, 21] alternate among a collection of static
node orderings so that all possible characteristic directions will align with at least
one ordering. It is argued in [32] that these methods achieve O(N) asymptotic com-
plexity (assuming that the node orderings are already determined); however, unlike
single-pass methods the number of sweeps necessary for convergence may depend on
the problem.

There are also a number of sweeping algorithms which use dynamic node order-
ings; for example [20, 6, 4]. These algorithms attempt to approximate the optimal
ordering generated by single-pass methods such as FMM without the overhead asso-
ciated with managing an accurate queue. These methods have been demonstrated to
be comparable to or better than single-pass methods for certain problems and grid
resolutions. However, in general these methods may need to revisit nodes multiple
times.

Sweeping methods have been used to solve static convex Hamilton-Jacobi equa-
tions on semi-structured grids [8] and unstructured grids [6, 22]. These methods have
the advantage that the update of node value depends only on immediate neighbors,
so they naturally take advantage of local refinement in the grid to compute accurate
updates. However, the discretizations used lack an easy way of determining dependen-
cies in the solution, which makes it difficult to know when the solution is computed
correctly on a part of the domain before the algorithm has terminated. On the other
hand, for single-pass methods like OUMs it is clear when the solution is computed
correctly on a part of the domain and this might allow adaptive error estimation and
grid refinement to be done as the solution is computed. For this reason, we develop
an OUM algorithm that is suited to exploiting local refinement.

The algorithm described in [10] combines aspects of OUMs and sweeping methods.
It computes solutions iteratively for a propagating band of grid nodes, but determines
periodically which band nodes’ values can no longer change and removes them from
the band. This method is found to be more efficient than the Fast Sweeping method
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of [28, 32] for a problem with highly-curved characteristics but less efficient for a
highly-anisotropic problem with straight characteristics. The asymptotic complexity
of this method is not analyzed.

We believe that �-Negative-Gradient-Acuteness, our first criterion for �-causality
of a node value update, is nearly equivalent to the criterion for the applicability
of Dijkstra-like and Dial-like methods to anisotropic problems given in [31, Section
4]. However, �-Negative-Gradient-Acuteness was derived independently and does not
require differentiability of the cost function (2.11).

2. Discretization. We use the semi-Lagrangian discretization and notation from
[27]. All norms are Euclidean unless otherwise stated. Let � be an n-vector barycen-
tric coordinate such that

n∑
i=1

�i = 1 (2.1)

and �i ≥ 0 for 1 ≤ i ≤ n. Let Ξn be the set of all possible n-vector barycentric coor-
dinates. State x̃s ∈ s can be parameterized by � ∈ Ξns

, that is, x̃s(�) =
∑ns

i=1 �ix
s
i .

Let x ∈ Ω and define

�s(x, �) = ∥x̃s(�)− x∥ (2.2)

and

as(x, �) =
x̃s(�)− x
�s(x, �)

. (2.3)

Restrict x /∈ s for all x so that �s(x, �) > 0. We may write �s(�) = �s(x, �) and
as(�) = as(x, �) when x is clear from the context. We say that a ∈ A intersects s
from x if the ray x+ ta, with t > 0, intersects s. Note that as(�) intersects s from x
if and only if �i ≥ 0 for 1 ≤ i ≤ ns, a condition imposed on � above.

We define the numerical Hamiltonian H as follows:

H(x,S, �, �) = max
s∈S

max
�∈Ξns

{
�−

∑ns

i=1 �i�(xsi )

�s(x, �)
f(x, as(x, �))− 1

}
, (2.4)

where x ∈ Ω, S is a set of simplices s in Ω ∪ ∂Ω such that x /∈ s and vectors xsi − x
are independent, � : Ω→ ℝ is bounded, and � ∈ ℝ. When we are only varying �, we
write H(�) = H(x,S, �, �) for convenience.

The discretized Dirichlet problem is to find a function u : X → ℝ, such that

H(x,S(x), u, u(x)) = 0, x ∈ Ω (2.5a)

u(x) = g(x), x ∈ ∂Ω, (2.5b)

where S(x), the update simplex set of x, is chosen so that H is consistent and the
solution to the discrete equation can be computed efficiently using a Dijkstra-like
single-pass method. Note that in the definition of H in (2.4) we use the continuous
domain Ω for the proof of consistency (Proposition 2.2), while in (2.5a) we restrict
the domain to the discrete Ω, which poses no technical difficulties. Excluding the
boundary condition (2.5b), we have a system of ∣Ω∣ nonlinear equations of the form
(2.5a), one for each node x ∈ Ω. We wish to compute the ∣Ω∣ values u(x), one for
each node x ∈ Ω.
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Propositions 2.1 and 2.2 state that the numerical Hamiltonian H is monotone and
consistent, which is important for the convergence of u to the viscosity solution u of
the HJ PDE (1.1) as the grid spacing goes to zero [5]. A key property for monotonicity
of H is that �i are constrained to be nonnegative in (2.4). For consistency of H, it is
crucial that the simplices in S(x) encompass all possible directions a ∈ A. Proposition
2.3 expresses � in H(�) = 0 explicitly, which is useful for constructing Algorithm 2
to solve (2.5). All propositions in this section are proved in Appendix A.

2.1. Monotonicity. H(x,S, �, �) is monotone in the values �(xsi ), for s ∈ S
and 1 ≤ i ≤ ns. Monotonicity of H requires that if none of �(xsi ) decrease, then
H(x,S, �, �) should not increase. Monotonicity of H comes naturally for the semi-
Lagrangian form of (2.4). However, it is essential that �i ≥ 0 for 1 ≤ i ≤ d. A
negative �i can cause an increase in �(xsi ) to increase H(x,S, �, �). This requirement
is equivalent to making as(�) intersect s from x and makes the discrete equation (2.5a)
upwinding in the terminology of [27].

Proposition 2.1. Let x ∈ Ω. Let �̌ : Ω → ℝ and �̂ : Ω → ℝ be functions such
that �̌(xsi ) ≤ �̂(xsi ) for all s ∈ S and 1 ≤ i ≤ ns. Then H(x,S, �̌, �) ≥ H(x,S, �̂, �).

2.2. Consistency. For the numerical Hamiltonian H to be consistent with the
Hamiltonian H from (1.2), the set of simplices S must encompass all possible action
directions in A.

Definition. We say that S is directionally-complete (DC) for x ∈ Ω if for all a ∈ A
there exists an s ∈ S such that a intersects s from x.

Proposition 2.2. Let � : Ω→ ℝ be smooth, x ∈ Ω, and y ∈ Ω. Let S(y) be DC
for y and such that for s ∈ S(y), we have y /∈ s. Define r̂(y) = maxs∈S(y),1≤i≤ns

∥xsi−
y∥. Then

lim
y→x, r̂(y)→0

H(y,S(y), �, �(y)) = H(x,D�(x)). (2.6)

2.3. Unique Solution. There exists a unique solution � = �̃ to the equation
H(�) = 0. The value �̃ can be written explicitly in terms of the other quantities
in H(�). This is a convenient form of the discretized equation for determining the
solution u(x) at a node x in terms of the solution at its neighbors, as is done in the
Update function of Algorithm 2. It is the same form as the semi-Lagrangian update
in [27].

Proposition 2.3. The unique solution to H(�) = 0 with H defined by (2.4) is
given by

� = �̃ = min
s∈S

min
�∈Ξns

{
�s(�)

f(x, as(�))
+

ns∑
i=1

�i�(xsi )

}
. (2.7)

2.4. Convex Update Objective Function. Define the function �s� : Ξns → ℝ,
which is the objective function in (2.7):

�s�(�) =
�s(�)

f(x, as(�))
+

ns∑
i=1

�i�(xsi ). (2.8)

Define the restriction of (2.7) to a single simplex s:

�̃s = min
�∈Ξns

�s�(�). (2.9)
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The solution � = �̃ to H(x,S, �, �) = 0 is

�̃ = min
s∈S

�̃s. (2.10)

We show that �s� is convex in �. The lemma is useful for proving the truth of
Proposition 3.2, although this proof is not included here (see [1, Chapter 5] for the
proof). Also, convexity is useful when applying numerical optimization algorithms to
solve (2.7).

Lemma 2.4. The function �s� is convex.

Proof. Define a function c : ℝd × ℝd → ℝ:

c(x, y) =

{
0, if y = 0,
∥y∥

f(x, y
∥y∥ )

, otherwise.
(2.11)

Note that Af (x) = {y ∣ c(x, y) ≤ 1} and that c is homogeneous in the second param-
eter: c(x, ty) = tc(x, y) for t ≥ 0. Thus, by the convexity of the set Af (x), c(x, y) is
convex in y. We have

�s�(�) =
�s(�)

f(x, as(�))
+
∑d
i=1 �i�(xsi )

= c(x, �s(�)as(�)) +
∑d
i=1 �i�(xsi )

= c(x, x̃s(�)− x) +
∑d
i=1 �i�(xsi ).

(2.12)

Since c(x, y) is convex in y, x̃s is linear in �, and
∑d
i=1 �i�(xsi ) is linear in �, �s� is

convex.

3. Causality. Causality means that if the solution � = �̃ to H(x,S, �, �) = 0
depends on value �(xsi ) then it must be that �̃ > �(xsi ). Causality allows Dijkstra-like
algorithms to be used to compute the solution to (2.5) in a single pass through the
nodes x ∈ X in order of increasing value u(x). For isotropic problems, causality is
satisfied if the direction vectors (xsi − x)/∥xsi − x∥ for 1 ≤ i ≤ ns, when considered
pairwise, form non-obtuse angles [25]. Negative-gradient-acuteness (NGA) is a similar
property for more general anisotropic problems.

Let � ≥ 0. �-causality means that if the solution � = �̃ to H(x,S, �, �) = 0
depends on value �(xsi ) then it must be that � > �(xsi ) + �. �-causality allows Dial-
like algorithms with buckets of width � to be used to compute the solution to (2.5) in
a single pass through the nodes x ∈ X in order of increasing bucket value.

In Section 3.1 we define what it means for a simplex to be �-NGA and prove that
it implies �-causality of the discrete equation. In [31] a criterion for the �-causality
of (2.5) was presented. We believe �-NGA is equivalent to the criterion in [31], if the
function defined in (2.11) is differentiable everywhere but at the origin. In Section 3.2
we define another property on a simplex, �-anisotropy-angle-boundedness (�-AAB),
and show that it implies �-NGA. �-AAB is easier to implement in Algorithm 2, while
�-NGA is more likely to have application beyond Algorithm 2. In Section 3.3 we define
one last property on a simplex called distance-ratio-boundedness (DRB). When � = 0,
DRB implies �-AAB. DRB is used to prove the correctness of Algorithm 3 in Theorem
4.4. Note that 0-AAB and DRB are independent of specific speed profile Af (x) as
long as the degree of anisotropy remains the same.

The properties �-NGA and �-AAB allow for general � ≥ 0 so that Algorithm
2 can be easily converted into a Dial-like method. However, we set � = 0 for the
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description and discussion of Dijkstra-like Algorithm 2 in Section 4 and we test only
the Dijkstra-like algorithm in Section 5. The property DRB is not generalized to
� ≥ 0, because it is used to prove the correctness of just the Dijkstra-like algorithm.
In the future we plan to implement and test a Dial-like version of the algorithm using
�-AAB.

3.1. Negative-gradient-acuteness. We show that if S is �-negative-gradient-
acute, the discrete equation H(x,S, �, �) = 0 is �-causal. Figure 3.1(a) is a geomet-
ric aid to understanding the definition of and proofs involving �-negative-gradient-
acuteness.

Definition. Let �̌ be a minimizer in (2.9). We say that (2.9) is �-causal for x ∈ Ω
and s ∈ S if �̌i > 0 implies �̃s − �(xsi ) > �, for 1 ≤ i ≤ d. When � = 0, we may say
(2.9) is causal for x and s.

Definition. We say that s ∈ S is �-negative-gradient-acute (�-NGA) for x ∈ Ω if

for all p ∈ ℝd and �̂ ∈ Ξns such that

max
a∈A

(−p ⋅ a)f(x, a) = (−p ⋅ as(�̂))f(x, as(�̂)) = 1 (3.1)

holds, we have (xsi − x) ⋅ (−p) > � for i such that �̂i > 0. We say that S is �-NGA for
x if all s ∈ S are �-NGA for x. When � = 0, we may say s (or S) is NGA for x.

Theorem 3.1. Let s ∈ S be �-NGA for x ∈ Ω and let ns = d. Let (2.9) hold.
Let �̌ be a minimizer in (2.9) such that �̌i > 0 for 1 ≤ i ≤ d. Then (2.9) is �-causal
for x and s.

Proof. Since xsi − x are independent, we define p ∈ ℝd by

p =

⎡⎢⎢⎢⎣
xs1 − x
xs2 − x

...
xsd − x

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

�(xs1)− �̃s
�(xs2)− �̃s

...
�(xsd)− �̃s

⎤⎥⎥⎥⎦ .
It follows that for 1 ≤ i ≤ d

�(xsi ) = �̃s + (xsi − x) ⋅ p. (3.2)

By (3.2), (2.1), and (2.3),∑d
i=1 �i�(xsi ) =

∑d
i=1 �i[�̃s + (xsi − x) ⋅ p]

= �̃s +
(∑d

i=1 �ix
s
i − x

)
⋅ p

= �̃s + �s(�)as(�) ⋅ p.

(3.3)

By (3.3) and because �̌ is a minimizer in (2.9),

(−p ⋅ as(�̌))f(x, as(�̌)) =
�̃s −

∑d
i=1 �̌i�(xsi )

�s(�̌)
f(x, as(�̌)) = 1

On the other hand, by (2.9) and (3.3),

1 ≥ max
�∈Ξd

{
�̃s −

∑d
i=1 �i�(xsi )

�s(�)
f(x, as(�))

}
= max
�∈Ξd

[(−p ⋅ as(�))f(x, as(�))].

9



So,

�̌ ∈ argmax
�∈Ξd

[(−p ⋅ as(�))f(x, as(�))].

Since �̌i > 0 for 1 ≤ i ≤ d, �̌ is strictly feasible. In other words, �̌ is a local maximum of
(−p ⋅as(�))f(x, as(�)). Since as(�) is a continuous mapping, as(�̌) is a local maximum
of (−p ⋅ a)f(x, a). Because Af (x) is convex, any local maximum â of (−p ⋅ a)f(x, a)
must be a global maximum over all a ∈ A. Thus, we have

max
a∈A

(−p ⋅ a)f(x, a) = (−p ⋅ as(�̌))f(x, as(�̌)) = 1

This equation is just (3.1) with �̌ in place of �̂. Since s ∈ S is �-NGA for x and �̌i > 0
for 1 ≤ i ≤ d, we have (xsi − x) ⋅ (−p) > � for 1 ≤ i ≤ d. Therefore, by (3.2), for
1 ≤ i ≤ d

�̃s > �̃s + (xsi − x) ⋅ p+ � = �(xsi ) + �.

Proposition 3.2. Let s ∈ S be �-NGA for x ∈ Ω. Let (2.9) hold and �̌ be the
minimizer in (2.9). Then (2.9) is �-causal for x and s.

Proposition 3.2 is slightly more general than Theorem 3.1 in that the simplex s
may have 1 ≤ ns < d and it does not require �̌i > 0 for all i such that 1 ≤ i ≤ ns. For
example, in 3 dimensions s could be an edge instead of a triangle, or x̃s(�) could be
on an edge of a triangular s. However, we can make Proposition 3.2 fit the form of
the proof for Theorem 3.1 by making some adjustments. We do not include a formal
proof because we believe the proof of Theorem 3.1 concisely illuminates the reason
why �-NGA implies �-causality. The proof of Proposition 3.2 is more complicated but
not much more explanatory and is included in [1, Chapter 5].

(a) (b) (c)

Fig. 3.1. Depiction of symbols used in the definition of (a) �-NGA and the proof of Theorem
3.1 (b) �-AAB and the proof of Theorem 3.3 (c) DRB and the proof of Lemma 3.4.

3.2. Anisotropy-angle-boundedness. A less general but more concrete way
of ensuring causality of the discrete equation H(x,S, �, �) = 0 is to bound the max-
imum angle between any two direction vectors in A that intersect a simplex s ∈ S

10



from x. We show that �-AAB of a simplex s implies �-NGA, which in turn implies
�-causality. �-AAB is easy to implement, so we use it in Algorithm 2. Figure 3.1(b) is
a geometric aid to understanding the definition of and proofs involving �-anisotropy-
angle-boundedness.

Define f̌(x) = mina∈A f(x, a) and f̂(x) = maxa∈A f(x, a). Let Υ(x) = f̂(x)/f̌(x)

be the local anisotropy coefficient. Note that 0 < f̌(x) ≤ f̂(x) <∞, so 1 ≤ Υ(x) <∞.
Denote asi = (xsi − x)/∥xsi − x∥. Define �si,j to be the angle between asi and asj . Let
�̂s = maxi,j �

s
i,j . Let rs(x) be the minimum distance between x and any vertex of s:

rs(x) = min
i
∥xsi − x∥. (3.4)

Definition. We say that s ∈ S is �-anisotropy-angle-bounded (�-AAB) for x ∈ Ω

if �f̂(x)/rs(x) ≤ 1 and

�̂s < arccos(�f̂(x)/rs(x))− arccos(1/Υ(x)). (3.5)

We say that S is �-AAB for x if all s ∈ S are �-AAB for x. When � = 0, we may say
s (or S) is AAB for x.

Theorem 3.3. If s ∈ S is �-AAB for x ∈ Ω, then s is �-NGA for x.
The following proof builds on analysis done in [27, Section 3.4] that bounds the

angle between the optimal action and the negative gradient of the viscosity solution
u of (1.1).

Proof. Let p ∈ ℝd and â ∈ A be such that â intersects s from x and

max
a∈A

(−p ⋅ a)f(x, a) = (−p ⋅ â)f(x, â) = 1.

We have

(−p ⋅ â)f(x, â) ≥ (−p ⋅ (−p/∥ − p∥)) f (x,−p/∥ − p∥) ≥ ∥p∥f̌(x).

Let � be the angle between −p and â. Since ∥â∥ = 1, we have

cos(�) =
−p ⋅ â
∥ − p∥∥â∥

≥ f̌(x)

f(x, â)
≥ 1

Υ(x)
. (3.6)

Because s is �-AAB for x and by (3.6), � ≤ arccos(1/Υ(x)), we have

�̂s + � < arccos(�f̂(x)/rs(x)). (3.7)

Let 1 ≤ i ≤ ns. Let i be the angle between â and asi . Since â intersects s from
x, we have i ≤ �̂s. Let �i be the angle between −p and asi . By (3.7), we have

�i ≤ i + � ≤ �̂s + � < arccos(�f̂(x)/rs(x)). (3.8)

Since ∥â∥ = 1, we have

∥p∥f̂(x) = (−p ⋅ (−p/∥ − p∥))f̂(x) ≥ (−p ⋅ â)f(x, â) = 1,

and by (3.4), we have

0 ≤ �

∥xsi − x∥∥p∥
≤ �f̂(x)

rs(x)
≤ 1.

11



By this inequality and (3.8), it follows that cos(�i) > �f̂(x)/rs(x) ≥ �/(∥xsi − x∥∥p∥).
Consequently, we have (xsi − x) ⋅ (−p) = ∥xsi − x∥∥ − p∥ cos(�i) > � for 1 ≤ i ≤ ns.
Therefore, s is �-NGA.

Remark 1. We describe a way to consider the shape of the speed profile and not
just the anisotropy coefficient Υ(x) when determining whether a simplex is �-NGA.
The upper bound on �̂s for the �-AAB of a simplex s can often be increased. First we
define some simplex specific notation. Let f̌s(x) = mina∈Ǎs

f(x, a), where

Ǎs = {p ∈ A ∣ argmax
a∈A

(−p ⋅ a)f(x, a) intersects s from x}.

Let f̂s(x) = maxa∈Âs
f(x, a), where

Âs = {a ∈ A ∣ a intersects s from x}.

Then let Υs(x) = f̂s(x)/f̌s(x) be a simplex specific anisotropy coefficient. We have

f̌s(x) ≥ f̌(x) since Ǎs ⊂ A and f̂s(x) ≤ f̂(x) since Âs ⊂ A. It follows that Υs(x) =

f̂s(x)/f̌s(x) ≤ f̂(x)/f̌(x) = Υ(x).

If it is possible to compute f̂s(x) and f̌s(x), we can modify the definition of �-

AAB to use the loosened restriction �f̂s(x)/rs(x) ≤ 1 and �̂s < arccos(�f̂s(x)/rs(x))−
arccos(1/Υs(x)), and Theorem 3.3 still holds. This modification may result in more
simplices satisfying the definition, which may allow us to find a DC and �-NGA set
of update simplices S(x) occupying a smaller region around x and thereby reduce the
truncation error and computation cost.

The definition of �-AAB can be simplified if we restrict the problem in several
ways. If we take Υ(x) = 1, (3.5) becomes �̂s < arccos(�f̂(x)/rs(x)) or, equivalently,

cos(�̂s) < �f̂(x)/rs(x). This resembles a formula for the optimal bucket width � for a
Dial-like algorithm to solve the Eikonal equation derived in [31]. On the other hand,
if we take � = 0, (3.5) becomes �̂s < arcsin(1/Υ(x)). We use this condition in the
Dijkstra-like Algorithm 2. Finally, if we take both Υ(x) = 1 and � = 0, (3.5) becomes
�̂s < �/2. In the appendix of [27], it is shown that the slightly looser condition
�̂s ≤ �/2 is sufficient for causality of (2.9).

3.3. Distance-ratio-boundedness. If the ratio of the minimum distance be-
tween x and any node in simplex s and the maximum distance between nodes in s is
large enough then s ∈ S must be AAB for x. Proposition 3.6 provides a lower bound
for this ratio that is sufficient for AAB. We use DRB in the proof of correctness of
Algorithm 3 in the case when � = 0. We do not parameterize DRB by � because
it is difficult to determine a simple and tight lower bound on the ratio for general
positive �. Figure 3.1(c) is a geometric aid to understanding the definition of and
proofs involving distance-ratio-boundedness.

Let ℎ̂s be the maximum grid edge distance in s:

ℎ̂s = max
i,j
∥xsi − xsj∥. (3.9)

Lemma 3.4. Let ℎ̂s/(2rs(x)) ≤ 1. The inequality �̂s ≤ 2 arcsin(ℎ̂s/(2rs(x)))
holds.

Proof. Let i, j be such that 1 ≤ i ≤ ns, 1 ≤ j ≤ ns, and i ∕= j. Let b =
min{∥xsi − x∥, ∥xsj − x∥}. Form an isosceles triangle with apex A = x and the other
two vertices B = x+ basi , and C = x+ basj . We bound the length of the base above:

∥B − C∥ ≤ ∥xsi − xsj∥ ≤ ℎ̂s.
12



By (3.4) we bound the length of either side below:

b = ∥A−B∥ = ∥A− C∥ ≥ rs(x).

We split the isosceles triangle ABC in half to obtain a right-angle triangle with vertices
A = x, B = x+ basi , and D = x+ b(asi + asj)/2. We have

sin

(
�si,j
2

)
=
∥B −D∥

b
=
∥B − C∥

2b
≤ ℎ̂s

2rs(x)
. (3.10)

By the properties of the simplex s, 0 < �si,j/2 < �/2. By (3.10), �si,j ≤ 2 arcsin(ℎ̂s/(2rs(x)))

for any i and j. This implies that �̂s ≤ 2 arcsin(ℎ̂s/(2rs(x))).

Proposition 3.5. Let x ∈ Ω and s ∈ S. If �f̂(x)/rs(x) ≤ 1 and

2 arcsin(ℎ̂s/(2rs(x))) < arccos(�f̂(x)/rs(x))− arccos(1/Υ(x)) (3.11)

then s is �-AAB for x
Proof. By (3.11), Lemma 3.4, and (3.5) in the definition of �-AAB, s is �-AAB

for x.
Equation (3.11) can be simplified if we restrict the problem in several ways. If we

take Υ(x) = 1, (3.11) becomes 2 arcsin(ℎ̂s/(2rs(x))) < arccos(�f̂(x)/rs(x)). On the

other hand, if we take � = 0, (3.11) becomes 2 arcsin(ℎ̂s/(2rs(x))) < arcsin(1/Υ(x)).

From this condition, we can determine a lower bound Ψ(x) on the ratio rs(x)/ℎ̂s:

rs(x)

ℎ̂s
>

[
2 sin

(
arcsin(1/Υ(x))

2

)]−1

= Ψ(x). (3.12)

Finally, if we take both Υ(x) = 1 and � = 0, (3.11) becomes ℎ̂s/rs(x) <
√

2, which
implies �̂s < �/2, the condition for AAB in this case.

Definition. We say that s ∈ S is distance-ratio-bounded (DRB) for x ∈ Ω if � = 0
and (3.12) holds. We say that S is DRB for x if all s ∈ S are DRB for x.

Proposition 3.6. If s ∈ S is DRB for x ∈ Ω then s is AAB for x.
Proof. By the definition of DRB, (3.12) holds, which is equivalent to (3.11), when

� = 0. Since �f̂(x)/rs(x) = 0 ≤ 1, by Proposition 3.5 s is AAB for x.
Remark 2. If we simplify the definition of DRB by replacing Ψ(x) with Υ(x)

in (3.12), Proposition 3.6 still holds. However, Ψ(x) < Υ(x), so using Ψ(x) to de-
fine DRB results in a looser restriction on simplices. For 1 ≤ Υ(x) < ∞, since
arcsin(1/Υ(x)) > 2 arcsin(1/(2Υ(x))), we have Ψ(x) < Υ(x). When Υ(x) = 1,
Ψ(x) = 1/

√
2 and limΥ(x)→∞[Ψ(x)/Υ(x)] = 1. Finally, for 1 ≤ Υ(x) < ∞, Ψ(x)

increases as Υ(x) increases.

4. Algorithm. In Algorithm 2 we define MAOUM. Algorithm 2 solves the dis-
crete system (2.5). For (2.5) to be well-defined S(x) must be determined. The update
simplex set S(x) is chosen to ensure H(x,S(x), �, �) is consistent and the discrete
equation H(x,S(x), �, �) = 0 is causal. Let

S(x) = {s ∈ S(
−→
Y (x)) ∣ s is AAB for x}, (4.1)

where
−→
Y (x) is the stencil or update node set of x. Let v(x) be the temporary value

of node x. We update v(x) from simplex s using Update(x, s), which evaluates to the

13



symbol type or definition description
X = Ω ∪ ∂Ω set of all grid nodes
Ω subset of X discretized domain
∂Ω subset of X discretized domain boundary
x ℝd domain point or grid node
N (x) X → subset of X set of grid neighbors of node x
s convex subset of ℝd simplex
S(ℛ) set of simplices grid simplices with all vertices in ℛ

and 1 ≤ ns ≤ d−→
Y (x) X → subset of X update node set of x,

i.e., nodes upon which x might depend
S(x) X → set of simplices update simplex set of x

H(x,S, �, �) see (2.4) numerical (discrete) Hamiltonian
u(x) X → ℝ solution of (2.5) at node x
v(x) X → ℝ (temporary) value of node x
ℋ subset of X min-value heap of unaccepted nodes
←−
Y (x) X → subset of X dependent node set of x,

i.e., nodes which might depend on x
Sd set of simplices grid simplices with ns = d

Update(x, s) X × S → ℝ value update of node x from simplex s,
i.e., �̃s from (2.9) with �(xsi ) = v(xsi )

Q subset of X queue to become update nodes
ℳ(s) S → subset of X set of neighbors of all vertex nodes in s

ℬ(x, r) convex subset of ℝd ball of radius r centered on x
ℬ1(x) convex subset of ℝd ball centered on x defined in (4.3)
ℬ2(x) convex subset of ℝd ball centered on x defined in (4.4)
Ψ(x) Ω→ ℝ a measure of anisotropy from (3.12)

Table 4.1
Summary of symbols. The first group is used in defining the numerical problem, the second

group is used in Algorithm 2, the third group is used only in Algorithm 3, and the fourth group is
used in the analysis of algorithm correctness and complexity.

solution �̃s of (2.9), where �(xsi ) = v(xsi ). The dependent node set
←−
Y (x) is the set of

nodes that is dependent on x for their updates:
←−
Y (x) = {y ∈ Ω ∣ x ∈

−→
Y (y)}. Note

that
−→
Y (x) is not symmetric, meaning that it is usually not the case that

−→
Y (x) =

←−
Y (x).

In Algorithm 2, the node x is included in
−→
Y (x) and

←−
Y (x), which does need to be true

for the correctness of the algorithm, but it does not hurt and is done for convenience
of proofs in Section 4.1.

In Section 4.1 we describe how the subroutine ComputeUpdateSet defined in Al-

gorithm 3 determines
−→
Y (x), such that S(x) satisfies DC and AAB for x. We note

that Algorithm 3 as defined does not result in the smallest possible such set
−→
Y (x). In

Section 4.2 we explain how Algorithm 2 computes the solution u to (2.5) in a single
pass (after initialization) over the nodes in X . Because H(x,S(x), �, �) = 0 is causal,
when Algorithm 2 terminates, v(x) = u(x) for all x ∈ X . We revisit the convergence
of u to the solution u of the HJ PDE (1.1) as the grid spacing goes to zero in Section
4.3. In Section 4.4 we examine the computational and storage complexity of MAOUM.

4.1. Computing the Update Set. The status of Algorithm 3 during different

stages of computing
−→
Y (x) is shown in Figure 4.1. To achieve more accurate and

efficient computations in locally-refined parts of the grid, we desire the maximum
extent of the update node set, r̂(x) = max

y∈
−→
Y (x)
∥x − y∥, to shrink towards zero

as the local grid spacing goes to 0. Section 4.3 discusses why this property is also
needed for convergence. By proving Theorem 4.4, we show that the subroutine call
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foreach x ∈ Ω do v(x)←∞1

foreach x ∈ ∂Ω do v(x)← g(x)2

foreach x ∈ X do
←−
Y (x)← {x},

−→
Y (x)← {x}3

foreach x ∈ Ω do ComputeUpdateSet(x)4

ℋ ← X5

while ℋ ∕= ∅ do6

x← argminy∈ℋ v(y)7

ℋ ← ℋ ∖ {x}8

foreach y ∈
←−
Y (x) ∩ℋ ∩ Ω do9

foreach s ∈ S(
−→
Y (y) ∖ ℋ) such that x ∈ s and s is AAB for y do10

v(y)← min(v(y), Update(y, s))11

end12

end13

end14

Algorithm 2: Monotone Acceptance Ordered Upwind Method (MAOUM)

Q ← N (x)1

while Q ∕= ∅ do2

y ← Pop(Q)3
−→
Y (x)←

−→
Y (x) ∪ {y}4

←−
Y (y)←

←−
Y (y) ∪ {x}5

foreach s ∈ Sd(
−→
Y (x)) such that x /∈ s and y ∈ s do6

if s not AAB for x then7

Q ← Q∪
(
ℳ(s) ∖

−→
Y (x)

)
8

end9

end10

end11

Algorithm 3: ComputeUpdateSet(x)

ComputeUpdateSet(x) given in Algorithm 3 terminates in a finite number of iterations
with a bound on r̂(x) that varies linearly with the local grid resolution. We further

show that a subset of S(
−→
Y (x)) is DC and AAB for x not too near the boundary ∂Ω.

Corollary 4.5 states that for x not too near the boundary ∂Ω, S(x) defined in (4.1)
is DC and NGA, which is sufficient for consistency and causality. First we define
notation and prove some useful lemmas.

Let Z ⊆ X . The set Sd+1(Z) contains the d-dimensional grid simplices with all
vertex nodes in Z. Define UZ =

∪
s∈Sd+1(Z)(s), which is the d-dimensional set covered

by the simplices in Sd+1(Z).

Define ℱ∂(Z) = {s ∈ Sd(Z) ∣ ℳ(s)∖Z ∕= ∅ or for all j, xsj ∈ ∂Ω}. The set ℱ∂(Z)
contains the (d − 1)-dimensional grid simplex faces with all vertex nodes in Z, such
that there is a neighbor of all vertex nodes which is not in Z or all vertex nodes are on
the boundary of the grid. Define U∂Z =

∪
s∈ℱ∂(Z)(s), which is the (d−1)-dimensional

surface covered by the simplices in ℱ∂(Z).

Lemma 4.1. Let ∂UZ be the boundary of UZ . Then ∂UZ ⊆ U∂Z .
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Fig. 4.1. The status of Algorithm 3 during different stages of the computation of the update
node set of x. The star is node x. Squares are nodes in the update node set. Circles are nodes in
Q. Thin solid lines are grid edges that are AAB for x. Thin dotted lines are grid edges which are
not AAB. Thick lines are grid edges on the frontier of the update node set. Thick solid lines are
AAB and thick dashed lines are not AAB. The top-left shows the moment just after neighbors of x
have been added to the update node set and the frontier edges for which they are vertices have failed
the AAB test. As a result, all nodes opposite these edges have been added to Q. Note that the order
in which nodes are removed from Q is arbitrary, although our implementation uses first-in first-out
order. Subsequent plots show subsequent but not sequential stages left to right and top to bottom.
The bottom-right shows the status at the termination of Algorithm 3. All grid edges on the frontier
of the update node set have passed the AAB test. Note that all AAB simplices on and within this
frontier are part of the update simplex set S(x) (see Remark 3).

Proof. Since Sd+1(Z) contains only grid simplices which do not overlap except at
their boundary, Sd+1(Z) is a partition of UZ . It follows that any point z ∈ ∂UZ must
be on a (d − 1)-dimensional face of at least one d-dimensional simplex in Sd+1(Z).
Furthermore, there exists such a (d− 1)-dimensional face s ∈ Sd(Z) such that either
ℳ(s)∖Z ∕= ∅ or for all j, xsj ∈ ∂Ω. If there did not then z would necessarily be in the
interior of UZ , contradicting the assumption that z ∈ ∂UZ . By definition s ∈ ℱ∂(Z).
Thus, z ∈ U∂Z =

∪
s∈ℱ∂(Z)(s).
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Lemma 4.2. If x ∈ Ω ∖ ∂Ω and N (x) ⊆ Z, then ℱ∂(Z) is DC for x.
Proof. Let x ∈ Ω ∖ ∂Ω and N (x) ⊆ Z. Then Sd+1(Z) includes all d-dimensional

simplices which have x as a vertex. Since x /∈ ∂Ω, we have x ∈ UZ ∖ ∂UZ .
Any path � : [0, 1] → Ω, such that �(0) = x and �(1) /∈ UZ intersects ∂UZ . In

particular, any path � of the form �(t) = x + tCa, where t ∈ [0, 1], C ∈ ℝ+ is a
constant, a ∈ A, and �(1) /∈ UZ intersects ∂UZ . By Lemma 4.1, such a path also
intersects U∂Z . Since this fact holds for any a ∈ A and U∂Z is the union of simplices
in ℱ∂(Z), ℱ∂(Z) is DC for x.

Let

ℎ̂ = max{∥y − z∥ ∣ y ∈ X and z ∈ N (y)} (4.2)

be the maximum grid edge length for the entire grid. Let ℎ̂(ℛ) = max{∥y − z∥ ∣ y ∈
ℛ ∩ X and z ∈ N (y)} be the maximum length of grid edges with at least one end
node in ℛ ⊂ ℝd. Let ℬ(x, r) be a closed ball of radius r around point x ∈ ℝd. The
following lemma establishes that we can define a ball centered on x with radius linear
in the maximum length of grid edges within the ball. This concept is used to define
local grid spacing in Theorem 4.4.

Lemma 4.3. For all x and all b ∈ ℝ+ there exists r̃ ∈ ℝ+ such that 0 < r̃ =
bℎ̂(ℬ(x, r̃)) <∞.

Proof. We have bℎ̂(ℬ(x, 0)) = bmax{∥x − y∥ ∣ y ∈ N (x)} > 0, bℎ̂(ℬ(x, r̃))

nondecreasing on r̃, and limr̃→∞ bℎ̂(ℬ(x, r̃)) = bℎ̂ <∞. Therefore, there exists r̃ such

that 0 < r̃ <∞ and r̃ = bℎ̂(ℬ(x, r̃)).
As allowed by the previous Lemma, choose b = Ψ(x) + 1 where Ψ(x) is defined

in (3.12) and define ř(x) to be the minimum r̃ such that ℎ̂(ℬ(x, r̃)) = r̃/(Ψ(x) + 1).
Define

ℬ1(x) = ℬ(x, ř(x)Ψ(x)/(Ψ(x) + 1)) (4.3)

and

ℬ2(x) = ℬ(x, ř(x)). (4.4)

Since Ψ(x) > 0, we have ℬ1(x) ⊂ ℬ2(x). Define ℬC1 (x) = Ω ∖ ℬ1(x), and ℬC2 (x) =
Ω ∖ ℬ2(x). Let �(x) = miny∈ℬ1(x),z∈ℬC

2 (x) ∥y − z∥ be the minimum distance between

ℬ1(x) and ℬC2 (x). We have

�(x) > ř(x)− ř(x)Ψ(x)/(Ψ(x) + 1) = ř(x)/(Ψ(x) + 1).

When x is clear from the context, we may abbreviate ℬ1 = ℬ1(x), ℬ2 = ℬ2(x),
ℬC1 = ℬC1 (x), ℬC2 = ℬC2 (x), and � = �(x). Let m(ℛ) = ∣X ∩ℛ∣ be the number of grid
nodes in ℛ ⊂ ℝd.

For the proof of Theorem 4.4 below we are only concerned with a single execution

of Algorithm 3. Also, we are only considering the update node set
−→
Y (x) and not the

dependent node set
←−
Y (x), so we abbreviate Y =

−→
Y (x), to make the notation less

cluttered. Let a subscript i ≥ 0 represent the state of a variable at the beginning of
the (i+ 1)st iteration of the while loop in Algorithm 3. For example, Yi is the state
of the update node set Y at the beginning of iteration i + 1. From Lines 3 and 4 of
Algorithm 3, we have yi+1 = Pop(Qi) and Yi+1 = Yi ∪ {yi+1}.

Theorem 4.4. Let x ∈ Ω. Let ∂Ω∩ℬ1 = ∅. The subroutine call ComputeUpdateSet(x)
terminates before iteration m(ℬ2) of the while loop with r̂(x) ≤ ř(x). The set

ℱ∂(
−→
Y (x)) is DC for x and AAB for x.
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Section 4.3 explains why requiring that x be sufficiently far from the boundary
by assuming ∂Ω ∩ ℬ1 = ∅ does not impact convergence.

Proof. A node w may be added to Y at most once. Since Y0 = {x}, we have
∣Yi∣ = i+ 1.

Suppose there exists {̌ ≥ 1, such that y{̌ ∈ ℬC2 and for 1 ≤ i ≤ {̌, yi ∈ ℬ2. In other
words, y{̌ is the first node outside of ℬ2 to be added to Y. By Lines 3 and 4, y{̌ must
have entered Q. So, by Lines 1 and 8, either y{̌ ∈ N (x) or y{̌ ∈ℳ(s) for s ∈ Sd(ℬ2).

If y{̌ ∈ N (x), then ∥x− y{̌∥ ≤ ℎ̂(ℬ2) = ř(x)/(Ψ(x) + 1) < ř(x), which contradicts the
supposition that y{̌ ∈ ℬC2 . So y{̌ /∈ N (x), which means y{̌ ∈ ℳ(s), for s such that
xsk ∈ ℬ2 ∩ X for 1 ≤ k ≤ d. Since

∥xsk − y{̌∥ ≤ ℎ̂(ℬ2) = ř(x)/(Ψ(x) + 1) < �,

it must be that xsk ∈ ℬC1 for 1 ≤ k ≤ d. By (3.4) and the definition of ℬC1 , we have

rs(x) > ř(x)Ψ(x)/(Ψ(x) + 1). Thus, by (3.9), since ℎ̂s ≤ ℎ̂(ℬ2) = ř(x)/(Ψ(x) + 1) we
have

rs(x)

ℎ̂s
>
ř(x)Ψ(x)/(Ψ(x) + 1)

ℎ̂(ℬ2)
= Ψ(x). (4.5)

By definition, s is DRB for x. By Proposition 3.6, s is AAB for x and by the if
condition in Line 8, y{̌ did not enter Q, which is a contradiction.

Thus, there does not exist {̌ ≥ 1, such that y{̌ ∈ ℬC2 . Because ∣Yi∣ = i + 1, the
algorithm terminates before iteration m(ℬ2) of the while loop. Let {̃ be the last while
iteration. We have ∣N (x)∣ ≤ {̃ < m(ℬ2) and r̂(x) = maxy∈Y{̃

∥x− y∥ ≤ ř(x).
Consider each (d−1)-dimensional simplex face s ∈ ℱ∂(Y{̃). Because ∂Ω∩ℬ1 = ∅,

x /∈ ∂Ω. So, since N (x) ⊆ Y{̃, x is not a vertex of s. There exists |̌ ≤ {̃ such that
y|̌ = xsk for some k such that 1 ≤ k ≤ d and xsk ∈ Y|̌ for all k such that 1 ≤ k ≤ d.
In other words, |̌ is the first while iteration when all vertices of s are in Y. By the
foreach loop, if s is not AAB for x then ℳ(s) ⊂ Q|̌, which implies ℳ(s) ⊂ Y{̃,
meaning ℳ(s) ∖ Y{̃ = ∅. But by definition, ℳ(s) ∖ Y{̃ ∕= ∅ or for all k, xsk ∈ ∂Ω. It
follows that s is AAB or for all k, xsk ∈ ∂Ω. Since ∂Ω ∩ ℬ1 = ∅, if for all k, xsk ∈ ∂Ω,
then for all k, xsk ∈ ℬC1 . Thus, by (4.5), s is DRB for x, implying s is AAB for x.
Therefore, we have ℱ∂(Y{̃) is AAB for x, and by Lemma 4.2, DC for x.

The following corollary states that for x not too near the boundary ∂Ω, S(x) is
DC for x and NGA for x. By Proposition 2.2, DC for x implies the consistency of the
Hamiltonian H(x,S(x), �, �). By Proposition 3.2, NGA for x implies the causality of
the discrete equation H(x,S(x), �, �) = 0.

Corollary 4.5. Let ∂Ω ∩ ℬ1 = ∅. Then S(x) is DC for x and NGA for x.

Proof. By definition, ℱ∂(
−→
Y (x)) ⊆ Sd(

−→
Y (x)) ⊆ S(

−→
Y (x)). By the definition of

S(x) and since, by Theorem 4.4, ℱ∂(
−→
Y (x)) is AAB for x, we have S(x) ⊃ ℱ∂(

−→
Y (x)).

By Theorem 4.4, ℱ∂(
−→
Y (x)) is DC for x, so its superset S(x) is DC for x. By definition

S(x) is AAB for x, so by Theorem 3.3, S(x) is NGA for x.

Remark 3. Note that nodes are never removed from
−→
Y (x) in Algorithm 3. This

subroutine call ComputeUpdateSet(x) expends most of its effort adding nodes to
−→
Y (x)

such that the frontier ℱ∂(
−→
Y (x)) is DC and AAB; however, by (4.1) the update simplex

set S(x) contains not just the simplices in F∂(
−→
Y (x)), but also all simplices within this

frontier which are AAB. In particular, any zero dimensional simplex is automatically

AAB, so direct updates from all nodes in
−→
Y (x) are always possible even if those nodes

are not part of any higher dimensional AAB simplex.

18



Remark 4. Although the update simplex set S(x) contains many simplices in-

terior to ℱ∂(
−→
Y (x)), during the execution of the main Algorithm 2 MAOUM will not

use updates from a simplex whose nodes are in
−→
Y (x) but which is not AAB, even if

all nodes of that simplex have known value. This behavior is in contrast to AFOUM,
which will use updates from any simplex on the accepted front. Because MAOUM may
ignore an update from a non-AAB but closer simplex with known node values which
AFOUM uses, it is possible that MAOUM will display higher local truncation error
than AFOUM on problems with curved characteristics (such as those with inhomoge-

nous cost). MAOUM could be modified to use all simplices whose nodes are in
−→
Y (x)

and have known value in its updates, at the cost of abandoning its precomputed stencil
property.

4.2. Discrete Solution. If the discrete equation H(x,S(x), �, �) = 0 is causal,
then Algorithm 2 computes the solution to (2.5) in a single pass (not including initial-
ization) of the nodes in X . Causality is the property that allows Dijkstra’s algorithm
to be used to compute a minimal path to a goal node on a weighted graph in a single
pass over the nodes of the graph. Both the semi-Lagrangian discretization in [30] and
the Eulerian finite differences discretization in [23] of the Eikonal equation are causal
and a single-pass algorithm can be used to find a solution to the respective discretized
systems of equations. Our argument for the applicability of Algorithm 2 to solving
(2.5) is based on those in [30, 23].

All nodes in X are added to ℋ in Line 5. When a node x ∈ X is removed from ℋ
we say that x is accepted. A node x is accepted just once in Line 7, since x is never
re-added to ℋ once it has been removed. Once x is accepted, its value v(x) is fixed.

We argue that the nodes are accepted in non-decreasing order. This is because
the node x that currently has the smallest value v(x) is accepted in Line 7. However,
by Theorem 3.1, any node y whose value is updated in Line 11, must not have a
smaller value than x, that is v(y) ≥ v(x). So the next node to be accepted in Line 7
must not have a smaller value than v(x). It follows by induction on the iterations of
the while loop that the nodes are accepted in non-decreasing value order.

When a node x is accepted, its final value v(x) has been calculated using only
simplices s ∈ S(x) such that all vertex nodes xsi are already accepted. But since the
nodes are accepted in non-decreasing value order, v(x) has been calculated using all
simplices s ∈ S(x) such that all vertex nodes xsi have final values v(xsi ) such that
v(xsi ) ≤ v(x). By the causality of the discrete equation, we have H(x,S(x), v, v(x)) =
0.

4.3. Convergence. For convergence of u to u, it is important that for all x ∈ X
the maximum extent of the update node set, r̂(x), goes to zero as the grid spacing
goes to zero. A more rigorous treatment of convergence can be found in [1].

Propositions 2.1 and 2.2 state that H is monotone and consistent. Noting that
the update simplex set S(x) always contains the immediate neighbours of x (see Re-
mark 3) it can be shown that u is uniformly bounded independent of the grid spacing

ℎ̂ (a straightforward extension of [1, Theorem 4.23], since the simplex update set of
MAOUM is always a superset of the update set used in the axis-aligned anisotropy
algorithm in that theorem). Consequently, we can prove the convergence of u to the
solution u of the HJ PDE (1.1) as the grid spacing goes to zero [5]. However, consis-
tency of H(x,S, �, �) requires that S be DC for x. In Corollary 4.5, ∂Ω∩ℬ1 = ∅ is a
sufficient condition for S to be DC, but for x near the computational boundary the
condition may not hold.
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Fortunately, if we examine the requirements for convergence [5] carefully, we see
that the problem goes away. If for any x ∈ Ω there is a sequence of grids Xk and
grid nodes xk ∈ Xk, such that the grid spacing of Xk goes to 0, xk → x, and S(xk)
is DC for xk, then we can use Proposition 2.2 to prove convergence. It can be shown
that such sequences exist. For example, consider x ∈ Ω to be at distance � > 0
from ∂Ω. For a grid with small enough spacing, there exists a node y close to x and
ř(y) such that the radius ř(y)Ψ(y)/(Ψ(y) + 1) of ℬ1(y) is sufficiently small so that
∂Ω ∩ ℬ1(y) = ∅.

Although u converges to u, for many problems
−→
Y (x) is not symmetric (i.e., in

general
−→
Y (x) ∕=

←−
Y (x)) and the approximate solution u may not be geometric in the

sense that it is possible that u(x) < u(y) even though at a coarser scale the node
values are increasing in the y to x direction. In other words, x may be accepted
before y even if more generally the order of node acceptance is roughly in the y to x
direction. Furthermore, for nodes near ∂Ω this effect may persist as ℎ→ 0. However,
the local range over which u may not be geometric is bounded by r̂(x), which shrinks
to 0 as ℎ→ 0.

4.4. Complexity. We analyze the asymptotic computational complexity of Al-
gorithm 2. We argue that executing the while loop in Algorithm 2 is more compu-
tationally complex than initialization before the while loop. Of the tasks performed
during execution of the while loop, maintaining the nodes in value order using a
heap determines the complexity of the while loop and, therefore, the complexity of
Algorithm 2. Recall that N = ∣X ∣ is the number of grid nodes.

To analyze computational complexity it is useful to prove a lemma bounding the
maximum number of nodes in any update region or dependent region as N →∞. Let
� = ℎ̂/ℎ̌, where ℎ̂ is the maximum grid edge length defined in (4.2) and ℎ̌ = min{∥y−
z∥ ∣ y ∈ X and z ∈ N (y)} is minimum grid edge length. Let

−→
M = maxx∈Ω ∣

−→
Y (x)∩X ∣

and
←−
M = maxx∈X ∣

←−
Y (x)∩Ω∣ be the maximum number of nodes over all update node

sets and dependent node sets, respectively. Let Ψ̂ = maxx∈Ω Ψ(x).

Lemma 4.6. As N →∞,
−→
M = O((Ψ̂�)d) and

←−
M = O((Ψ̂�)d).

Proof. By Theorem 4.4, after executing Algorithm 3,

r̂(x) ≤ (Ψ(x) + 1)ℎ̂(ℬ2) ≤ (Ψ̂ + 1)ℎ̂,

for all x ∈ Ω. Given ℎ̌ is the minimum spacing between nodes, we bound above the
number of nodes that can be packed into ℬ(x, r̂(x)), for all x:

∣ℬ(x, r̂(x)) ∩ X ∣ = O

((
r̂(x)

ℎ̌

)d)
= O

⎛⎝( Ψ̂ℎ̂

ℎ̌

)d⎞⎠ = O((Ψ̂�)d)

Therefore,
−→
M = O((Ψ̂�)d).

The symmetry y ∈
←−
Y (x) if and only if x ∈

−→
Y (y) is evident from Line 3 of

Algorithm 2, and Lines 4 and 5 of Algorithm 3. Since r̂(x) ≤ (Ψ̂+1)ℎ̂ for all x ∈ Ω, the
same holds for the maximum extent of the dependent node set: max

y∈
←−
Y (x)
∥x− y∥ ≤

(Ψ̂ + 1)ℎ̂ for all x ∈ Ω. Following the same argument as above,
←−
M = O((Ψ̂�)d).

We first consider the computational cost of initializing the update regions of
nodes x ∈ Ω (and dependent regions of nodes x ∈ X ) using the subroutine Algo-
rithm 3. In Line 4 of Algorithm 2, ComputeUpdateSet is called N times, once for
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each node x. For each call to ComputeUpdateSet, there are O(
−→
M) iterations of the

while loop in Algorithm 3. For each while iteration, a foreach loop visits the
(d− 1)-dimensional simplex faces that include node y for a total of O(Ps) iterations,
where Ps = maxy∈X ∣{s ∈ Sd ∣ y ∈ s}∣. Each iteration of the foreach loop per-
forms a constant number of operations. Thus, the number of operations to execute

ComputeUpdateSet N times is O(N
−→
MPs)). Assuming Ps is bounded as N →∞, the

computational complexity of initializing the update node sets is O(N
−→
M).

Now we examine the complexity of executing the while loop of Algorithm 2. For
each iteration of the while loop, a node x is accepted. A node is accepted only once,

so there are N iterations in total. For each iteration, a foreach loop visits the O(
←−
M)

unaccepted nodes in the dependent node set of x. For each such dependent node y,

each neighbor of x must be tested for membership in
−→
Y (y) to determine the update

simplices in Line 10 at a cost of O(Pn log
−→
M), where Pn = maxx∈X ∣N (x)∣ and

−→
Y (y)

is implemented as a self-balancing binary search tree. Also, for each y, O(Ps) updates
are performed at Line 11 and the binary min-heap implementation of ℋ must be
updated at a complexity of O(logN). Thus, the number of operations in executing

the while loop is O(N
←−
M(Pn log

−→
M +Ps + logN)). Assuming Pn and Ps are bounded

as N →∞, the complexity is O(N
←−
M logN), which is determined by the heap update

operations.
The complexity of executing the while loop of Algorithm 2 dominates the com-

plexity of the initialization, including that of the calls to the subroutine Algorithm 3,

which we determined above to be O(N
−→
M) and the initialization of the heap which is

O(N logN). So, by Lemma 4.6, the overall asymptotic complexity of Algorithm 2 is

O(N
←−
M logN) = O(N(Ψ̂�)d logN).

Single-pass algorithms for isotropic problems [30, 23] and limited anisotropic prob-
lems [25, 3] have a complexity of O(N logN). The extra (Ψ̂�)d factor in the com-
plexity of MAOUM is due to the number of nodes in the update node set, which in
MAOUM has been expanded beyond direct grid neighbors. In [27] a complexity of
O(NΥ̂d−1 logN) is derived for AFOUM, where Υ̂ = maxx∈Ω Υ(x). As shown in Re-

mark 2, Ψ̂ is smaller than Υ̂. However, AFOUM’s complexity has a reduced exponent
of d− 1 because the update node set lies on the lower dimensional accepted front.

The complexity claim from [27] does not consider �, even though it plays an
important role when the grid is highly nonuniform. If we assume � is bounded as
N → ∞, then MAOUM’s complexity is O(NΨ̂d logN). However, the optimal allo-
cation of grid nodes for Algorithm 2 may cause the grid to be more nonuniform as
N → ∞. In Section 5 we examine the relationship between the solution accuracy
and the computational cost experimentally on several problems with a progression of
increasingly-refined uniform and nonuniform grids.

For practical grid sizes, it is often the CPU time spent computing node value
updates which dominates the CPU time of executing the entire algorithm, despite the
fact that the computational complexity of the heap updates dominates in asymptotic
analysis. Computing a node value may involve iteratively solving a nonlinear equation
or a numerical optimization which can be quite computationally intensive. For this
reason, in Section 5 we use the number of updates as our measure of computational
cost.

The asymptotic storage complexity for MAOUM is dominated by that of storing

the sets
−→
Y (x) and

←−
Y (x) for each node x ∈ X , which is O(N(

−→
M+
←−
M)) = O(N(Ψ̂�)d) =
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O(N). Asymptotically this is the same as AFOUM but the factor of (Ψ̂�)d does have
a significant impact on practical memory requirements which is reported in Section
5.

One of the drawbacks of MAOUM is that the sets
−→
Y (x) and

←−
Y (x), must be

precomputed and stored for each x. While this stencil precomputation does not
affect the asymptotic computational and storage complexity as shown above, it is a
significant portion of the computational and storage cost in practice (see Section 5).
The computational and storage overhead may become less of a concern if the same
HJ PDE is repeatedly solved on the same grid with different boundary conditions,
allowing the precomputed stencils to be reused several times. Also, stencils could
be reused to solve a different HJ PDE with the same anisotropy Υ(x) on the same
grid. Furthermore, in order to reduce storage requirements, it is possible to store a

reasonably tight superset of
−→
Y (x) and

←−
Y (x) with a compact polygonal representation

[1, Chapter 5]. In preliminary experiments we found that the number of stencil nodes
was not greatly increased, which is important for keeping local truncation error and
update counts down.

5. Experiments. We present numerical experiments to test the convergence,
computational cost, and accuracy of Algorithm 2. We also demonstrate that MAOUM
can be used to solve practical problems, such as a seismic imaging problem [27] and
a robot navigation problem with obstacles and wind. The experiments indicate that
MAOUM is particularly suited to problems in which the characteristics are highly-
curved in some regions of Ω and straight or nearly straight elsewhere. For such
problems it is more efficient to refine the grid only in the regions with curved charac-
teristics.

Although we assume continuity of function f for the theoretical consistency of
the numerical Hamiltonian H, one of the examples in Section 5.3 and the example in
Section 5.4 have discontinuous f . Despite this property, our experiments indicate that
the respective numerical solutions converge. For all experiments reported below d = 2
and Ω ⊂ ℝ2. However, Algorithm 2 can be used for problems in any dimension. In
the following, let x = (x1, x2)T ∈ ℝ2 and y = (y1, y2)T ∈ ℝ2. Note that the boundary
conditions are defined only on internal boundaries in the following examples, which is
not the case in general. In this section we use the notation ∂Ω to specify the internal
boundary where the boundary conditions are defined, which differs from the usual use
of ∂Ω as the topological boundary of Ω.

We use a Maubach grid [18] in our implementation but MAOUM works with any
simplicial grid (even unstructured or obtuse grids). Examples of uniform Maubach
grids are shown in Figure 5.1 and nonuniform Maubach grids in Figure 5.2. It is a semi-
structured simplicial grid that can be adaptively refined and used in any dimension.

For the Update function we must solve (2.9), which involves finding the minimum
of a convex function �sv for each s. We use the golden section optimization [15] which is
sufficient for d = 2. This optimization method is likely slower than more sophisticated
alternatives that use derivative information but it is very simple to implement and can
minimize all convex functions in one dimension, even those for which the derivative
is sometimes undefined.

For the experiments below we use implementations of MAOUM and AFOUM
that include some minor optimizations. Our implementation of both MAOUM and
AFOUM does not perform an update for node x from a grid edge s with vertices xs1
and xs2 in the update set when (x− xs1) and (x− xs2) are collinear. Furthermore, our
implementation of AFOUM does a local visibility check when deciding whether to
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update x from a segment s on the accepted front. If x is behind s in the sense that s
is an edge of a grid triangle with all vertices accepted and any line segment with end
points at x and s cuts through the interior of the triangle, then AFOUM does not
perform the update. However, our implementation does not perform a global visibility
check that tests if all line segments with end points at x and s pass through some
segment other than s on the accepted front. These implementation optimizations
could be generalized when solving problems with d > 2 using MAOUM or AFOUM.

In order to ensure that MAOUM indeed computes the solution to (2.5) in a single
pass, we have computed the residual of (2.5a) for all of the examples below and have
not found a case where it is significantly larger than machine epsilon.

Fig. 5.1. A sequence of uniformly-refined Maubach grids with 0, 1, 2, and 3 levels of refinement.

5.1. Convergence. We demonstrate numerically that the output v of MAOUM
converges to the solution u of an anisotropic HJ PDE as the grid spacing goes to zero.
For this experiment we use a series of increasingly fine uniform Maubach grids, such
as those in Figure 5.1.

We use a homogeneous Hamiltonian (i.e. H(x, p) = H(p)) and Af that is a
non-grid aligned ellipse. For the purpose of implementation it is easiest to define
c(x, y) = c(y) from (2.11). Let c(y) = ∥By∥2, where B is the 2× 2 matrix

B =

[
1 0
0 4

] [
cos(�/6) − sin(�/6)
sin(�/6) cos(�/6)

]
The cost function c rotates y by �/6 counterclockwise around the origin and then
scales it by 4 in the vertical axis before taking the Euclidean norm.

Level N M ℎ Updates e∞ rℎ∞ e1 rℎ1
10 1089 56.6 6.3e-2 36750 3.1e-2 2.9e-3
12 4225 60.2 3.1e-2 152080 8.9e-3 1.8 1.2e-3 1.3
14 16641 62.1 1.6e-2 619062 3.8e-3 1.2 4.7e-4 1.3
16 66049 63.0 7.8e-3 2498574 1.8e-3 1.1 2.1e-4 1.2
18 263169 63.5 3.9e-3 10040504 8.2e-4 1.1 9.6e-5 1.1

Table 5.1
The problem has a homogeneous Hamiltonian and Af that is a non-grid aligned ellipse with

anisotropy Υ = 4. The table shows grid spacing ℎ versus maximum errors and average errors of
approximate solutions computed on a progression of uniform grids by MAOUM. Level is the level of
grid refinement. M is the average over x ∈ Ω of the number of nodes in the update node set. ℎ is the
grid spacing in the horizontal and vertical directions. Updates is the number of times Update(y, s)
is called. e∞ is the ℒ∞-error in the approximation u to the true solution u of (1.1). e1 is the
ℒ1-error. The error convergence rates rℎ∞ and rℎ1 are computed with respect to the grid spacing ℎ.
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Let D = {x ∈ ℝ2 ∣ c(x) ≤ 0.4}. The domain for this problem is Ω = [−1, 1]2 ∖ D
and the boundary is ∂Ω = ∂D. The boundary conditions are given as g(x) = c(x)
for x ∈ D. Notice that the boundary conditions are defined throughout D and thus
extend beyond ∂Ω. We also allow S(x) to extend beyond ∂Ω. We define the boundary
to be the ellipse D to exclude errors caused by poor approximation of the solution
u near the origin, where u is not differentiable. It is not necessary to give boundary
conditions on the external boundary of Ω since all characteristics flow out of this
boundary. The grid resolutions and corresponding errors are listed in Table 5.1.

5.2. Nonuniform Grid. To determine what benefit MAOUM gains from refin-
ing a grid intelligently, we use an anisotropic HJ PDE which has a solution with kinks
where the gradient is undefined. We run Algorithm 2 on a series of increasingly-fine
uniform grids and a series of increasingly nonuniform grids, where newly added nodes
are concentrated around the parts of the solution where the gradient is undefined. For
comparison, we run also AFOUM on both the uniform and nonuniform grid series.
For all four combinations of algorithm and grid series we plot the solution error vs
computational cost to see if MAOUM performs better on a well-chosen nonuniform
grid.

We use a homogeneous Hamiltonian (i.e. H(x, p) = H(p)) and Af that is a
non-grid aligned rectangle. Let c(y) = ∥By∥∞, where B is the 2× 2 matrix

B =

[
1 0
0 2

] [
cos(�/8) − sin(�/8)
sin(�/8) cos(�/8)

]
The cost function c rotates y by �/8 counterclockwise around the origin and then
scales it by 2 in the vertical axis before taking the maximum norm. The domain for
this problem is Ω = [−1, 1]2 ∖O and the boundary is ∂Ω = O, where O is the origin.
The boundary conditions are given as g(O) = 0.

Fig. 5.2. The sequence of nonuniformly-refined Maubach grids with 10, 12, and 14 levels of
refinement used for the problem with homogeneous Hamiltonian and Af that is a non-grid aligned
rectangle with length that is twice its width.

Part of the nonuniform grid series used is shown in Figure 5.2. The grids are
refined within distance 2ℎ̌Υ of the two lines

x2 =
sin(−�/8) + 1

2 cos(−�/8)

cos(−�/8)− 1
2 sin(−�/8)

x1
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and

x2 =
sin(−�/8)− 1

2 cos(−�/8)

cos(−�/8) + 1
2 sin(−�/8)

x1,

where ℎ̌ is the minimum grid edge length after refinement is complete.

Fig. 5.3. Error versus number of updates for the problem with homogeneous Hamiltonian and
Af that is a non-grid aligned rectangle with length that is twice its width. The values plotted are
from Table 5.2.

The results for all four combinations of algorithm and grid series are compared
in Table 5.2 and Figure 5.3. Note that in order to compare results from uniform
and nonuniform grids we use the number of updates rather than the grid spacing as
the independent variable in the plots and rate calculations. To properly interpret the
relative performance of MAOUM and AFOUM in Figure 5.3, one needs to understand
the extra cost involved in the initialization of the update sets in Algorithm 3 of
MAOUM. Between 45 and 54 percent of MAOUM’s total run time was spent in
Algorithm 3. If we consider the ratio of total run time (including initialization) to
number of updates, MAOUM took between 122 and 168 percent of the time per
update of AFOUM. Consequently, AFOUM gets nearly the same error as MAOUM
is significantly less time for uniform grids but MAOUM clearly wins for nonuniform
grids. The memory footprint of MAOUM was as much as 3.0 times that of AFOUM,
because of the overhead of storing computed stencils.

5.3. Seismic Imaging. We consider the seismic imaging examples from the
top-left and bottom-right of Figure 6 in [27]. The domain for this problem is Ω =
[−0.5, 0.5]2 ∖ O and the boundary is ∂Ω = O, where O is the origin. The boundary
conditions are given as g(O) = 0. A wave propagates from the origin and passes
through Ω, which is split into four layers by three vertically-shifted sinusoidal curves.
The problem is to compute the first arrival time for the seismic wave.

The set Af (x) is an ellipse with the long axis aligned with the tangent of the
sinusoidal curves at x1 and hence the problem is both anisotropic and inhomogeneous.
The dimensions of the elliptical Af (x) are constant within a layer. The layers in the
top-left example are homogeneous, although Af (x) is still inhomogeneous in x1. In
all layers, this example has elliptical Af (x) with a length of 0.8 and width of 0.2.
We call this example nonlayered. On the other hand, the layers in the bottom-right
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MAOUM AFOUM

Grid Level N Updates e∞ rU∞ Updates e∞ rU∞
Nonuni 10 621 9908 5.3e-2 55509 5.4e-2

12 1443 23756 3.6e-2 0.42 182632 3.9e-2 0.26
14 3051 51488 2.6e-2 0.45 490629 2.8e-2 0.35
16 6305 108008 1.8e-2 0.51 1203283 1.9e-2 0.41
18 12911 223248 1.2e-2 0.47 2837945 1.4e-2 0.40

Uni 10 1089 18668 5.3e-2 19040 5.4e-2
12 4225 76184 3.6e-2 0.26 75887 3.9e-2 0.22
14 16641 307868 2.6e-2 0.25 303647 2.8e-2 0.25
16 66049 1238000 1.8e-2 0.27 1216300 1.9e-2 0.27
18 263169 4965536 1.2e-2 0.25 4869733 1.4e-2 0.25

e1 rU1 e1 rU1
Nonuni 10 621 9908 2.3e-3 55509 2.5e-3

12 1443 23756 1.1e-3 0.85 182632 1.2e-3 0.60
14 3051 51488 5.2e-4 0.94 490629 5.9e-4 0.72
16 6305 108008 2.6e-4 0.95 1203283 3.0e-4 0.77
18 12911 223248 1.3e-4 0.90 2837945 1.6e-4 0.75

Uni 10 1089 18668 2.3e-3 19040 2.5e-3
12 4225 76184 1.1e-3 0.53 75887 1.2e-3 0.52
14 16641 307868 5.2e-4 0.52 303647 5.9e-4 0.51
16 66049 1238000 2.5e-4 0.51 1216300 2.9e-4 0.51
18 263169 4965536 1.2e-4 0.51 4869733 1.4e-4 0.51

Table 5.2
The problem has a homogeneous Hamiltonian and Af that is a non-grid aligned rectangle with

length that is twice its width. The table shows the number of updates versus maximum errors (top)
and average errors (bottom) of approximate solutions computed on a progression of nonuniform and
uniform grids by MAOUM and AFOUM. Nonuni indicates the use of a nonuniform grid, while Uni
indicates a uniform grid. Level is the maximum level of grid refinement. Updates is the number of
times Update(y, s) is called. e∞ is the ℒ∞-error in the approximation u to the true solution u of
(1.1). e1 is the ℒ1-error. Because we use both uniform and nonuniform grids, the error convergence
rates rU∞ and rU1 are computed with respect to Updates rather than ℎ as in Table 5.1. If we computed
the rates for uniform grids with respect to ℎ instead, they would be approximately double those listed
in the table because Updates is proportional to N (which is O(1/ℎ2)), but in that case we could no
longer sensibly compare the rates for uniform and nonuniform grids.

example are inhomogeneous. Moving through the layers in the positive x2 direction,
the lengths/widths of the elliptical Af (x) are 0.8/0.2, 1.0/1.0, 3.0/1.0, and 0.8/0.2.
We call this example layered. More details can be found in [27].

We test MAOUM on the layered example using uniform Maubach grids from levels
13 to 18. The computed solution for levels 13 and 18 grids are shown in Figure 5.4.
Experiments indicate that refining the grid along the sinusoidal layer boundaries does
not improve accuracy significantly. We believe this is because the characteristics are
curved to roughly the same degree throughout Ω due to the inhomogeneity of Af (x).
Localized grid refinement is most beneficial when characteristics are highly-curved in
some parts of Ω and nearly straight elsewhere.

We compare MAOUM and AFOUM on both the nonlayered and layered seismic
examples by running all four algorithm/example combinations on a series of uniform
Maubach grids with even levels from 12 to 18. Since we do not have an analytic
solution to these examples, the error is computed relative to the solutions computed
by AFOUM on a level-20 Maubach grid. The solution error vs grid spacing for all
four algorithm/example combinations is plotted in Figure 5.5. For these examples on
the range of uniform grid resolutions tested both algorithms produce similar results,
although MAOUM has a much larger memory footprint. For the nonlayered example,
the total run time (including initialization) of MAOUM was between 1.17 and 1.22
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Fig. 5.4. Contours of first-arrival times of a seismic wave for the layered example computed
using a uniform Maubach grid of level 13 with 8321 nodes (on left) and level 18 with 263169 nodes
(on right).

times that of AFOUM. The memory footprint of MAOUM was as much as 4.5 times
that of AFOUM. For the layered example, the total run time (including initialization)
of MAOUM was between 0.71 and 0.79 times that of AFOUM. The memory footprint
of MAOUM was as much as 3.3 times that of AFOUM. For both examples between
26 and 29 percent of MAOUM’s total run time was spent in Algorithm 3.

Fig. 5.5. Error versus grid spacing ℎ for first-arrival time of a seismic wave. The values plotted
are from Table 5.3.

Despite the discontinuities in the speed function for the layered case, the average
error is significantly larger for the nonlayered case because the layered case has less
anisotropy in two of the four layers, and is in fact isotropic in one layer. It is not
clear whether the slightly smaller average error displayed by AFOUM on the finer
grids in both the layered and nonlayered cases is a manifestation of the potentially
larger local truncation error of MAOUM (see Remark 4). These two examples are
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MAOUM AFOUM

Example Level N ℎ Updates e∞ rℎ∞ Updates e∞ rℎ∞
Nonlay 12 4225 1.6e-2 152906 3.0e-1 136869 3.4e-1

14 16641 7.8e-3 622304 7.7e-2 2.0 546776 9.1e-2 1.9
16 66049 3.9e-3 2510808 3.4e-2 1.2 2184552 3.7e-2 1.3
18 263169 2.0e-3 10078844 1.1e-2 1.5 8745903 1.2e-2 1.7

Lay 12 4225 1.6e-2 102962 2.4e-1 138878 2.8e-1
14 16641 7.8e-3 411006 7.2e-2 1.8 548440 9.1e-2 1.6
16 66049 3.9e-3 1641828 3.1e-2 1.2 2181326 3.5e-2 1.4
18 263169 2.0e-3 6557579 1.0e-2 1.6 8700919 1.1e-2 1.7

e1 rℎ1 e1 rℎ1
Nonlay 12 4225 1.6e-2 152906 8.4e-2 136869 9.7e-2

14 16641 7.8e-3 622304 3.0e-2 1.5 546776 3.3e-2 1.5
16 66049 3.9e-3 2510808 1.3e-2 1.2 2184552 1.3e-2 1.3
18 263169 2.0e-3 10078844 5.0e-3 1.4 8745903 4.3e-3 1.6

Lay 12 4225 1.6e-2 102962 3.5e-2 138878 4.1e-2
14 16641 7.8e-3 411006 1.2e-2 1.6 548440 1.3e-2 1.7
16 66049 3.9e-3 1641828 5.0e-3 1.3 2181326 4.7e-3 1.4
18 263169 2.0e-3 6557579 2.0e-3 1.5 8700919 1.5e-3 1.7

Table 5.3
The problem is to calculate the first-arrival time of a seismic wave. The table shows the

grid spacing ℎ versus maximum errors (top) and average errors (bottom) of approximate solutions
computed on a progression of uniform grids by MAOUM and AFOUM for the nonlayered and layered
example. Nonlay/ Lay indicates the nonlayered/layered example from the top-left/bottom-right of
Figure 6 in [27] is being solved. Level is the maximum level of grid refinement. ℎ is the grid spacing
in the horizontal and vertical directions. Updates is the number of times Update(y, s) is called. e∞
is the ℒ∞-error in the approximation u to the solution computed by AFOUM on a level-20 grid.
e1 is the ℒ1-error. The error convergence rates rℎ∞ and rℎ1 are computed with respect to the grid
spacing ℎ.

inhomogenous and hence have curved characteristics; however, the error is measured
against a higher resolution AFOUM solution, which may bias the results. What is
clear is that any such increase in error is relatively small for these examples.

5.4. Robot Navigation with Wind and Obstacles. An optimal time-to-
reach problem with obstacles is a natural candidate for exploiting localized grid re-
finement. An optimal trajectory that must go around an obstacle to achieve the goal
will closely track the obstacle boundary for some portion. Refining the grid to better
resolve these obstacle boundaries should allow for a more accurate solution in portions
of the domain that do not have an obstacle-free optimal path to the goal. Although
this specific example is not physically realistic, it does use data of suitable complex-
ity for realistic scenarios and demonstrates MAOUM on a spatially-inhomogeneous
anisotropic problem.

The objective is for a robot to navigate from any location in the domain to a
goal in optimal time. To make the task difficult the robot must avoid obstacles on
its way to the goal and there is an inhomogeneous but static wind that pushes the
robot. The goal is x∗ = (80.75, 46.25)T , g(x∗) = 0, and ∂Ω = {x∗} The domain
is Ω = [72, 112] × [17.5, 57.5] ∖ ∂Ω. The robot is circular with a radius of 1.1429.
The obstacles are a set of points obtained from a laser range finder map downloaded
with the Saphira robot control system software [17]. The same point data was used
for a isotropic path planning problem in [2], but we map the data from the square
domain [−4000,−500]× [−3500, 0] to Ω. The point obstacles are shown in Figure 5.6
(top-left). To prevent the robot from attempting to plan a path through obstacles, it
moves at a very slow speed of f(x, a) = 0.5 for any a ∈ A and any x ∈ C, where C is
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Fig. 5.6. The problem of navigating a robot with wind and obstacles. The top-left shows the
laser-rangefinder data (red) of the obstacles and the grid (blue) refined in a band around the collision
set C and the goal x∗. The other three figures show C in solid black. The top-right includes the wind
vector field, the contours of the computed time-to-reach function, and four optimal trajectories from
different starting locations to the goal. The bottom-left compares the optimal trajectories computed
with the wind and without. The contours are of the isotropic (i.e. without wind) time-to-reach
function. The solid lines are trajectories with the wind and the dash-dotted lines are trajectories
without the wind. The bottom-right shows contours of the time-to-reach function and trajectories,
computed using a level 15 uniform Maubach grid with roughly the same number of nodes. Note that
for trajectories 2 and 4 the characteristic ODE computation of the optimal trajectories gets stuck
near the boundary of C, which is insufficiently resolved by the uniform grid.

the set of states such that the robot is in collision with a point obstacle. The collision
set C is depicted in black in Figure 5.6. The wind velocity is represented by a vector
field shown in Figure 5.6 (top-right). We used a vector field from the wind arrays in

Matlab to obtain the wind velocity vector function f⃗w : Ω→ R2.∗

∗To load the wind data into Matlab type load wind;. The data is a 3D vector field. We used
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In the absence of wind, the robot moves with speed fr = 75.0, resulting in an
isotropic speed profile Afr = {y ∣ ∥y∥ ≤ fr}. Although not physically realistic, we
shift the isotropic speed profile by the local wind velocity, so the anisotropic speed
profile is

Af (x) = {y ∣ ∥y − f⃗w(x)∥ ≤ fr}.

Note that fr = 75.0 > maxx∈Ω ∥f⃗w(x)∥, so Af (x) contains the origin in its interior.
In order to determine the cost c(x, y), we first find the point by lying on ∂Af (x) by

solving the quadratic ∥by − f⃗w(x)∥2 = f2
r for b ∈ ℝ+:

b =
y ⋅ f⃗w(x) +

√
(y ⋅ f⃗w(x))2 − ∥y∥2(∥f⃗w(x)∥2 − f2

r )

∥y∥2
.

Then since f(x, y/∥y∥) = b∥y∥, we have

c(x, y) =
∥y∥

f(x, y/∥y∥)
=

1

b
.

We note that an HJ PDE with the same form of isotropic control and advection
component was derived and solved in [26].

To compute an optimal trajectory �(⋅) from a starting location z to x∗, we solve
the characteristic ordinary differential equation (ODE)

d�(t)

dt
= f(x, a∗)a∗ = f⃗w(x)− fr

p

∥p∥
(5.1)

with initial condition �(0) = z, where a∗ ∈ argmaxa∈A[(−p ⋅ a)f(x, a)], p = Du(x),
and x = �(t). Note that this is not gradient descent, because the gradient and the
optimal characteristic will not generally align in anisotropic problems. To solve the
ODE we used the function ode23 in Matlab. In order to determine f(x, a∗)a∗ in (5.1)
for any x, we first approximate p = Du(x) as the constant gradient of the linearly
interpolated u in the grid simplex containing x.

We use a Maubach grid that is additionally refined within a distance ℎ̌Υ of C and
the goal x∗. The grid is uniformly refined to level 10 and then refined a further 8 levels
near C and x∗. The resulting grid is shown in Figure 5.6 (top-left) and has 38728 nodes.
We compute the time-to-reach function u for the anisotropic problem (i.e. with the
wind) and the isotropic problem (i.e. without the wind) on the nonuniformly refined
grid. Solution contours are shown in Figures 5.6 (top-right) and 5.6 (bottom-left),
respectively. Optimal trajectories for the anisotropic problem are shown in Figure 5.6
(top-right). Notice how trajectories 2 and 4 minimize the distance traveled through
regions where the wind is strong and blowing away from the goal. Contrast these
trajectories with the straight line optimal trajectories for the isotropic problem in
Figure 5.6 (bottom-left). We also solve the anistropic problem on a uniform level 15
Maubach grid of 33025 nodes. Solution contours and optimal trajectories are shown
in Figure 5.6 (bottom-right). Although the solution contours are smoother away from
C in this uniform grid case, the ODE computation gets stuck near C for trajectories
2 and 4, likely due to insufficient grid refinement and poor solution quality near C.

only the 6th page of the data and ignored any component in the 3rd dimension. In other words, we
used u(:,:,6) and v(:,:,6) for the arrays of wind vector components and x(:,:,6) and y(:,:,6)

for the arrays of spatial coordinates. This discrete data was linearly interpolated to form f⃗w.
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6. Conclusion. We presented three simple criteria for the �-causality of the
discretization of a static convex HJ PDE. We showed that with respect to a node,
�-anisotropy-angle-boundedness of a simplex implies �-negative-gradient-acuteness of
the simplex, which in turn implies �-causality of the equation for the node value up-
date from the simplex. We defined the MAOUM algorithm, which in the initial pass
through the grid determines a causal and consistent set of discretized equations by
computing stencils for each node which are directionally-complete and anisotropy-
angle-bounded. The second pass solves the causal discretized equations in a Dijkstra-
like fashion. This pass is essentially FMM with a first-order semi-Lagrangian update
and an enlarged stencil. In comparison to AFOUM, the extra computation and stor-
age for the precomputed stencil allows MAOUM to accept node values monotonically
and to use a stencil size which adjusts to the local grid refinement. The latter prop-
erty makes MAOUM efficient for solving static convex HJ PDEs on highly nonuniform
grids. This strength of MAOUM was demonstrated in a problem with a homogeneous
rectangular speed profile and in a robot navigation problem involving wind and ob-
stacles.

We hope in future work to investigate inhomogenous problems more fully. The
lack of an analytic solution to the seismic imaging problem in section 5.3 confounded
our attempts to experimentally measure the difference in local truncation error be-
tween AFOUM and MAOUM under inhomogeneity. It would be very useful to develop
a benchmark problem with smoothly varying (and perhaps adjustable) inhomogene-
ity and an analytic solution, in order to better study the effects of stencil and grid
adaptation in algorithms such as these.

Although demonstrated only in 2D with Maubach grids, the algorithms described
here will work in any dimension on any simplicial grid. However, Algorithm 3 does

not generate the smallest possible stencil
−→
Y (x) such that S(x) satisfies DC and AAB

for x; for example, Figure 4.1(bottom-right) shows a
−→
Y (x) that is not minimal. Con-

sequently, Algorithm 3 could be improved. Ideally, it would generate a
−→
Y (x) that is

minimal without substantially increasing the computational cost.

MAOUM is best suited to solving problems with a suitably-refined grid which
have highly-curved characteristics in some regions of the domain and straight or nearly
straight characteristics elsewhere. However, in many cases it is not obvious where the
grid should be refined without approximating the solution first. We plan as future
work a single-pass method that estimates error in the solution and refines the grid
appropriately as the solution is being computed. Another potential future project
is to modify MAOUM to be a Dial-like algorithm with bucket width �, which may
be more suitable for parallelization [30]. An open question is how to choose � for a
given problem and grid. This leads to an investigation of the tradeoff between bucket
width and stencil size [31]. A larger bucket width would likely make the algorithm
more parallelizable, but the accompanying large stencil size would lead to greater
truncation error.

Acknowledgments. We would like to thank Professor Alexander Vladimirsky
for many constructive comments about our work, and in particular for pointing out
connections to [31] and the reasons for the larger error in the nonlayered case of the
seismic examples in section 5.3 taken from [27]. We would also like to thank Professor
Hongkai Zhao for his work as external examiner on the first author’s thesis [1].

Appendix A. Discretization Proofs.

We prove the Propositions of Section 2, demonstrating important properties of
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the discrete equation such as monotonicity and consistency. These proofs are not
a novel contribution, but can be helpful for a more complete understanding of the
convergence properties of the discretization.

A.1. Monotonicity. We prove Proposition 2.1, showing H(x,S, �, �) is mono-
tone in �(xsi ).

Proof. Let s ∈ S(x) and 1 ≤ i ≤ ns. Since �̌(xsi ) ≤ �̂(xsi ), �i ≥ 0 for 1 ≤ i ≤ ns,
and summation is monotone, we have

�−
ns∑
i=1

�i�̌(xsi ) ≥ �−
ns∑
i=1

�i�̂(xsi ).

Therefore, since f is positive, �s is positive, and max is monotone, we have from (2.4)

that H(x,S, �̌, �) ≥ H(x,S, �̂, �).

A.2. Consistency. We prove Proposition 2.2, showing that the numerical Hamil-
tonian H is consistent with the Hamiltonian H, where consistency is defined by (2.6).

Proof. By (2.4), the smoothness of � and the continuity of max and f , (2.3), the
DC for y of S(y), and (1.2)

lim
y→x, r̂(y)→0

H(y,S(y), �, �(y))

= lim
y→x, r̂(y)→0

max
s∈S(y)

max
�∈Ξns

{
�(y)−

∑ns

i=1 �i�(xsi )

�s(y, �)
f(y, as(y, �))− 1

}
= lim
y→x, r̂(y)→0

max
s∈S(y)

max
�∈Ξns

{
�(y)− �(

∑ns

i=1 �ix
s
i ) +O

(
r̂(y)2

)
�s(y, �)

f(y, as(y, �))− 1

}
= max
s∈S(y)

max
�∈Ξns

[(−D�(x) ⋅ as(x, �))f(x, as(x, �))]− 1

= max
a∈A

[(−D�(x) ⋅ a)f(x, a)]− 1

= H(x,D�(x))

A.3. Unique Solution. Lastly, we prove Proposition 2.3, showing the unique
solution to H(�) = 0 is given by (2.7).

Proof. Let s ∈ S and � ∈ Ξns . Define function Hs
�(�) : ℝ→ ℝ to be

Hs
�(�) =

�−
∑ns

i=1 �i�(xsi )

�s(�)
f(x, as(�))− 1.

The functionHs
�(�) is strictly increasing, since it is linear with positive slope f(x, as(�))/�s(�).

Furthermore, Hs
�(�) = 0 has a unique solution

� = �̃s� =
�s(�)

f(x, as(�))
+

ns∑
i=1

�i�(xsi ).

Now define function �s�(�) : ℝ→ ℝ to be

�s�(�) =
�s(�)

f(x, as(�))
Hs
�(�) = �−

ns∑
i=1

�i�(xsi )−
�s(�)

f(x, as(�))
.
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The function �s�(�) is also strictly increasing, since it is linear with a slope of 1. Note
that � = �̃s� is also the unique solution to �s�(�) = 0. Because Hs

�(�) and �s�(�) are
both increasing and �̃s� is the unique solution to both Hs

�(�) = 0 and �s�(�) = 0 for
all s ∈ S and � ∈ Ξns , the solution � = �̃ to

H(�) = max
s∈S

max
�∈Ξns

Hs
�(�) = 0,

must also be the solution to

max
s∈S

max
�∈Ξns

�s�(�)

= max
s∈S

max
�∈Ξns

{
�−

ns∑
i=1

�i�(xsi )−
�s(�)

f(x, as(�))

}
= 0.

By negating both sides of this equation and rearranging the terms, we get the formula
(2.7) for the unique solution � = �̃.
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