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Abstract

Level set methods are a popular and powerful class of numerical al-
gorithms for dynamic implicit surfaces and solution of Hamilton-Jacobi
PDEs. While the advanced level set schemes combine both efficiency and
accuracy, their implementation complexity makes it difficult for the com-
munity to reproduce new results and make quantitative comparisons be-
tween methods. This paper describes the Toolbox of Level Set Methods, a
collection of MATLAB routines implementing the basic level set algorithms
on fixed Cartesian grids for rectangular domains in arbitrary dimension.
The Toolbox’s code and interface are designed to permit flexible combina-
tions of different schemes and PDE forms, allow easy extension through
the addition of new algorithms, and achieve efficient execution despite the
fact that the code is entirely written as m-files. The current contents of
the Toolbox and some coding patterns important to achieving its flexi-
bility, extensibility and efficiency are briefly explained, as is the process
of adding two new algorithms. Code for both the Toolbox and the new
algorithms is available from the Web.
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1 Introduction

Level set methods [29] have proved a popular technique for dynamic implicit
surfaces and approximation of the time-dependent Hamilton-Jacobi (HJ) partial
differential equation (PDE), as evidenced by the many survey papers, textbooks
and edited collections devoted to their development; for example [24,26-28, 34,
35]. The ease with which the earliest schemes could be implemented in two or
three dimensions was a key facet of their popularity, and the dimensional flex-
ibility of many advanced schemes remains a major asset. However, algorithm
simplicity has largely lost out in recent work to the competing demands of effi-
ciency and accuracy. From a scientific computing perspective improving either
or both of these is generally worth the increased complexity—users always have
the option of going back to the simpler schemes—but there are two unintended
and potentially adverse consequences of advanced methods. The first is that sci-
entists and engineers who might be interested in using dynamic implicit surfaces
in their application field but who are not experts at level set methods may give
up when they are either unable to recreate with simple schemes the impressive
published results generated by the advanced schemes, or they are overwhelmed
by the details of those advanced schemes. The second is that designers of new
schemes find it increasingly difficult to promulgate their results in a reproducible
manner and to provide quantitative comparisons with alternative methods be-
cause of the complex algorithm and software infrastructure underlying each new
advance.

The Toolbox of Level Set Methods (TOOLBOXLS) is designed to address these
concerns. Its goal is to provide a collection of routines which implement the
basic level set algorithms in MATLAB! on fixed Cartesian grids for rectangular
domains in arbitrary dimension. In using MATLAB we seek to minimize not
execution time, but the combination of coding, debugging and execution time.
In our experience the visualization, debugging, data manipulation and scripting
capabilities of MATLAB make construction of numerical code so much simpler,
when compared to compiled languages like C++ or Fortran, that the increase in
execution time is quite acceptable when designing new algorithms or exploring
proof-of-concept for new applications. If the algorithms should prove successful
but execution time and/or the restrictive class of Cartesian grids remains an
impediment to adoption, a side benefit of TOOLBOXLS is that all of the source
code is available so that recoding in a compiled language is straightforward.

The Toolbox has a lengthy, indexed user manual [18], and users interested in
applying level set methods to applications will probably find this manual a good
place to get started. In this paper we instead explore the features of the Toolbox
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that make it suitable for developers of new level set methods. In section 2, we
briefly describe the contents of TOOLBOXLS version 1.1: the kernel routines
that provide a mix and match implementation of level set methods; the coding
patterns we use to achieve efficiency, flexibility and dimensional independence;
and the many documented examples we have recreated from the literature. To
demonstrate the extensibility of TOOLBOXLS, in section 3 we describe two newly
implemented schemes. We extend a class of SSP RK integrators [38] to handle
time-dependent operators, and demonstrate their efficiency on several dynamic
implicit surface problems. Then we extend a new monotone motion by mean
curvature spatial approximation [21,41] to handle Cartesian grids with variable
Az, provide some additional order of accuracy analysis, and demonstrate that
while the new scheme’s quantitative accuracy is poor, it provides qualitatively
reasonable results in less time than the standard centered difference approxi-
mation. In the spirit of the reproducible research initiative, the code for both
the base Toolbox and the new additions are available as separate downloads
from [16].

1.1 Limitations

The decision to restrict the Toolbox to dense solutions on Cartesian discretiza-
tions of rectangular domains simplifies many aspects of the implementation. A
major benefit is that a relatively high degree of computational efficiency can be
achieved despite the fact that all of the code is written in m-files. On these grids
the level set functions, their derivatives, and the spatially varying problem data
can be represented by dense MATLAB arrays of appropriate dimension. Apply-
ing operators to these arrays can then be vectorized in the MATLAB sense; for
example, a single short m-file command like speed .* data becomes a loop per-
forming a multiplication at every node in the grid. We reap three benefits from
such code: (1) it is dimensionally independent, (2) any computational overhead
for interpreting the command is swamped by the huge number of floating point
operations that are subsequently issued, and (3) in most MATLAB installations,
such an operator will invoke compiled code highly optimized for both cache
and processor efficiency. In fact, such MATLAB operators will often outperform
equivalent looping code in naively written and compiled C/C++ or Fortran.
Consequently, the speed benefit of compiled versions of the Toolbox algorithms
is likely to be fairly small for problems where the PDEs are solved globally on
Cartesian grids.

Of course, this restriction is also the primary limitation of the Toolbox. Un-
structured and adaptive grids are not part of TOOLBOXLS and are never likely
to be included, because the spatially varying nature of their nodes’ connectivity
gives rise to irregular data access patterns. Despite the addition of just-in-time
compilation to recent versions of MATLAB, m-files that include such irregular
data access patterns are often orders of magnitude slower to execute than those



which access the same amount of data organized in a dense regular array. On the
other hand, numerical schemes for these grids are often simple—spatial refine-
ment is used to improve accuracy rather than complex schemes with high order
convergence rates—so the lack of support for these grids does not significantly
detract from the goals of the Toolbox.

Given that the Toolbox is constrained to Cartesian grids, a more glaring omis-
sion is the lack of support for narrowband [4] or local level set [31] algorithms.
These algorithms focus their computational effort only on the nodes near the
interface, so they can often achieve the same dynamic implicit surface evolution
in less time than global algorithms (such as those in the Toolbox) despite the
overhead of tracking this constantly evolving set of nodes. While localized algo-
rithms generally present a clear win in compiled implementations, in a MATLAB
m-file implementation it is not clear whether the benefits of working only on
a subset of nodes would offset the costs of identifying that subset (additional
discussion can be found in section 2.4). What is clear is that MATLAB-style
vectorization in this situation would require significantly more complex imple-
mentations throughout the kernel. Because minimum execution time is not the
primary objective of TOOLBOXLS, algorithmic simplicity has been chosen over
an uncertain speed improvement. Should compiled code ever be added to the
Toolbox, localization would become a much more appealing option (see section 4
for additional comments on including compiled code with the Toolbox).

1.2 Other Software Packages

With a version 1.0 release date of July 2004, TOOLBOXLS is to our knowledge
the first publicly released code implementing the high accuracy level set algo-
rithms, and it remains the only one that works in any dimension; however, it is
no longer the only such package.

For comparison purposes, version 1.1 of TOOLBOXLS has a 140 page indexed
user manual, supports ten different types of time-dependent evolution, includes
over twenty documented examples, and is implemented with over 120 MATLAB
m-files (each with its own help entry). TooLBOXLS is licensed under a modified
version of the ACM Software Copyright and License Agreement for free non-
commercial use; we are investigating switching to a similar Creative Commons
license [9].

We are aware of the following other packages:

e The Level Set Method Library (LSMLIB) [5] supports serial and parallel
simulation in dimensions one to three. The code is written in a mixture
of C, C++ and Fortran, with MATLAB interfaces to some components.
Ouly two types of time-dependent evolution are presently supported (nor-
mal direction and convection), but the algorithms are localized. Fast



marching algorithms for the time-independent PDEs arising in signed dis-
tance construction and velocity extension are included, as are routines for
computing surface and volume integrals. Three short manuals (overview,
users guide and reference) and complete code documentation are part of
the download. Version 0.9 contains many examples (although they are
not documented in the manuals) and several hundred files. LSMLIB does
not seem to be driven by any particular application field. The software is
restricted to noncommercial use.

e The Multivac C++ Library [15] works only in two dimensions. It includes
both localized algorithms and fast marching for signed distance construc-
tion. Six types of evolution are supported, of which two are forest fire
models. A short hypertext user manual and complete code documenta-
tion can be found at the web site. Five examples (some with multiple
versions) are included, although the user manual contains details on only
one. Applications include forest fire propagation, image segmentation,
and nanofilm growth. An optional display package and a GUI for im-
age segmentation are available (written in Python with calls to Gnuplot).
Version 1.10 includes more than 100 files, and is released under the GNU
General Public License (GPL).

e “A Matlab toolbox implementing Level Set Methods” [39] is the most
similar of these packages to TOOLBOXLS, since it is also implemented
entirely by MATLAB m-files. The application emphasis is on vision and
image processing, an important field missing from the set of examples in
the current version of TOOLBOXLS. In keeping with this emphasis, ver-
sion 1.1 of Sumengen’s package supports only two dimensional problems
and three types of evolution (normal direction, curvature and/or con-
vection). The restricted problem domain translates to a more compact
package of roughly 50 m-files. This package does not seem to have a user
manual—although the web site includes a tutorial and set of examples—
nor is any licensing arrangement specified.

The package [32] implements fast marching methods, which are used for static
(time-independent) HJ PDEs and are quite distinct algorithmically from the
level set methods discussed here.

2 Toolbox Design

In this section we discuss the structure of TOOLBOXLS, with particular atten-
tion to how it is designed to be easy to use and to extend while still maintaining
reasonably fast execution.



2.1 The Equation

TooLBOXLS is written with the vision of providing routines to approximate the
solution of degenerate parabolic PDEs of the form [8]

Dig(t,z) + G(t,x, ¢, Dyp, D2¢) = 0 for z € Q and t > t, (1)
on domain  C R? and subject to initial and possibly boundary conditions

o(to, ) = ¢o(x) for v € Q,

o(t,x) = doq(t,z) forxz € IN and t > tq. 2)

We assume that the initial conditions are bounded and continuous and that G
satisfies a monotonicity requirement

G(t,xz,r,p,X) < G(t,z,s,p,Y), whenever r < s and Y < X, (3)

where X and Y are symmetric matrices of appropriate dimension. For such
G, there may not exist a classical solution to (1), and so the Toolbox routines
are designed to approximate the viscosity solution [6], which is the appropri-
ate weak solution for many problems that lead to equations of the form (1),
although it is not the only possible weak solution. Included in the class of de-
generate parabolic PDEs are those arising in dynamic implicit surfaces and the
time-dependent HJ PDE. A key feature of the viscosity solution of (1) is that
under suitable conditions ¢ remains bounded and continuous for all time. This
property may not hold for other types of HJ PDE, such as the static equa-
tions arising in minimum time to reach problems (although see section 2.5 for
comments regarding a transformation [25] between static and time-dependent
forms).

2.2 Toolbox Components

A single scheme to handle (1) in all its generality would be impossibly complex
to design and use. Instead, the Toolbox has different routines to handle different
subclasses of this equation. In the rest of this section, we demonstrate the design
with the example equation

Dié(t,z) + a(t, z)||Dyop(t, x)|| =0 for z € Q and t > o,

d(to,z) = ¢o(z) for z € Q, (4)

which for dynamic implicit surfaces corresponds to motion in the normal direc-
tion with speed a(t,z) : R x Q — R. Ideally we would choose Q = R? because
the physical problem has no boundaries which would influence the evolution of
the implicit surface.

Approximating the solution of (4) (or the more general (1) and (2)) requires the
Toolbox to handle a number of features of the equations:



e Discretization of the domain  into a grid, including artificial boundary
conditions ¢sq for the necessarily finite computational domain.

e Construction of initial conditions ¢q.

e Approximation of spatial derivatives D,¢ (and possibly D2¢).

e Selection of appropriate versions of those spatial derivatives (for example,
upwinding) and their combination with problem parameters in terms such
as a||D,@|| (or more generally G).

e Timestepping routines for D;¢.

e Visualization of the results.

To maximize flexibility, each of these tasks is a separate component of the code.
Consequently, it is often possible to swap schemes for one component without
having to rewrite an entire example. With reference to (4), we consider each of
these features in turn.

Grid: For the rectangular Cartesian grid, the user specifies the dimension, and
for each dimension the upper and lower bounds on the domain, the number
of grid nodes (or equivalently the grid node spacing Az), and the boundary
conditions. The boundary conditions are handled by functions which insert
appropriate ghost values into the array representing ¢(t,z). The user can create
their own boundary condition functions or select among functions supplied by
TooLBOXLS, including periodic, homogenous Dirichlet, homogenous Neumann,
or an extrapolation method designed to maintain stability [12]. Since (4) does
not have physically motivated boundary conditions, homogenous Neumann or
extrapolation would normally be chosen to try to minimize the impact of the
computational boundary, and the domain would be chosen large enough that
the implicit surface would not venture too near those boundaries during the
time interval of interest.

Grid information is stored in a structure grid. During initialization, TOOL-
BOXLS populates this structure with additional useful data, such as the grid.xs
cell vector discussed in section 2.4. Scalar functions on this grid, such as ¢q(x),
are stored in a standard d dimensional MATLAB array, where each element rep-
resents the value of ¢y at the corresponding grid node.

Initial Conditions: For dynamic implicit surfaces, the Toolbox provides rou-
tines for common shapes (circles/spheres, squares/cubes, hyperplanes, cylin-
ders) and the operations of computational solid geometry (union, intersection,
complement and set difference). For general HJ PDEs, the user can often con-
struct suitable ¢q(z) through simple array operations on the data in grid.xs.

Spatial Derivatives: Level set methods use upwinding when treating first or-
der derivatives, so the routines for D,¢ all return both left and right looking
approximations. In two or more dimensions, each component of the gradient
is computed independently. TOOLBOXLS provides the standard first order ac-
curate upwind approximations [29] as well as second and third order accurate



essentially non-oscillatory (ENO) [30] and fifth order accurate weighted essen-
tially non-oscillatory (WENO) schemes [11]. The routines are interchangeable,
so switching from low to high order requires changing only one function handle.
ENO and WENO interpolants are computed with divided difference tables to
maximize information reuse between neighboring nodes.

Motion in the Normal Direction: The vector normal to the implicit surface
is given by n(t,z) = Dy¢(t,z)/||Drd(t,x)||. For motion in this direction, the
Toolbox uses a dimension by dimension Godunov upwinding scheme based on
the signs of Dgy¢(t,z) and a(t,z) [27]. One of the upwinding spatial derivative
approximation routines mentioned above is selected by the user. This routine
also handles estimation of the CFL timestep restriction for explicit integrators;
in this case, a function of a(t,x), ||D,¢(t, z)|| and the grid’s node spacing.

Explicit Time Integration: As can be seen in the previous paragraphs,
TooLBOXLS adopts a method of lines approach to increase flexibility. The
result of the term approximation routine (in this case, an approximation of
a||D.¢||) is treated as the right hand side of an ODE, which is solved by an ex-
plicit strong stability preserving (SSP) Runge-Kutta (RK) integrator (formerly
called total variation diminishing (TVD) Runge-Kutta). The Toolbox provides
the standard first, second and third order accurate SSP RK schemes [36], which
are also designed to be used interchangeably. The actual timestep size is cho-
sen by the integrator, based on the CFL factor and the estimates of the CFL
bound provided by the term approximation. The user can set parameters (such
as CFL factor), choose routines to execute after each timestep (such as event
detection routines to force early termination), and choose one or more of the
term approximation routines described in section 2.3 (such as the motion in the
normal direction term discussed above).

Visualization: One of the primary benefits of working directly in MATLAB is
access to all of its two and three dimensional visualization routines at all times;
for example, even within the debugger. The Toolbox does not provide any new
visualization features, although there are helper routines to simplify function
calls and the grid.xs arrays often prove useful in this context.

2.3 Current Features

As mentioned in section 2.2, no single numerical scheme can achieve maximum
accuracy, efficiency and ease-of-use for (1) in its full generality. Instead, the



current Toolbox implements a variety of special cases:

0 =D.o(t,z) (5)
+v(t,z) - Dyop(t, x) (6)
+a(t, z)[|[Deo(t, )| (M)
+ sign(¢(0,2)) (|| Do 8(t, z) ]| — 1) (8)
+H(t,z, ¢, D:9) (9)
= b(t, 2)k(t, @) || D2 p(t, o) | (10)
— trace[o(t, z)o " (t,x)D2¢(t, x)] (11)
+ A(t,z)o(t, x) (12)
+ F(t,x, ), (13)
subject to constraints
Dyo(t,z) > 0, Dyig(t, x) <0, (14)
o(t,x) < (. z), o(t, ) > P(t, ), (15)

Note that the time derivative (5) and at least one term involving a spatial
derivative (6)—(11) must appear, otherwise the equation is not a degenerate
parabolic PDE.

In addition to the routines discussed in section 2.2, TOOLBOXLS also provides
numerical approximations for each of the terms (5)—(15). Except where noted
below, D, ¢(t,z) is approximated dimension by dimension by ENO/WENO up-
wind finite difference schemes with user chosen order of accuracy between one
and five [11,30], as described above.

Time derivative (5): Treated by the standard explicit SSP RK schemes with
order of accuracy one to three [36], as described in section 2.2. Also, see sec-
tion 3.1 for some new SSP RK schemes that are now available.

Motion by a velocity field (6) (also called advection or convection): The
user provides the velocity vector field v : R x Q — R?. Upwinding is used to
choose the spatial derivative.

Motion in the normal direction (7): The user provides the speed of the
interface a : R x 2 — R. See section 2.2.

Reinitialization equation (8): In steady state, the solution of this equation is
a signed distance function [40], a class of functions often used in dynamic implicit
surfaces. For localized implementations of level set methods reinitialization
is mandatory, but because the Toolbox solves the PDE(s) throughout € it is
often possible to avoid the extra expense. However, there are some examples
whose motion sufficiently distorts the initial implicit surface function so that
reinitialization is necessary. While there are advantages and disadvantages to



using this equation for reinitialization, it is at present the only reinitialization
procedure available in the Toolbox. This term is implemented in TOOLBOXLS
with a specifically designed Godunov scheme [10], and uses the “subcell fix”
from [33] to minimize movement of the zero isosurface.

General Hamilton-Jacobi term (9): The user provides the analytic Hamil-
tonian H : R x @ x R x R — R. Any dependence of H on ¢ must satisfy the
monotonicity requirement (3). The average of the upwinded approximations of
D, ¢ is used, and Lax-Friedrichs schemes [7,30] are available for stabilizing the
approximation of H (t,z,r,p) with different amounts of artificial dissipation.
For scaling the dissipation, the user must provide bounds on |0H/dp| given
bounds on p determined by the Toolbox and the specific Lax-Friedrichs scheme.
This term can be used for optimal control, differential games, and reachable set
approximation.

Motion by mean curvature (10): The user provides the speed b: R x 2 —
R™, while the mean curvature x(t, ) and gradient D,¢(¢,z) are approximated
by centered second order accurate finite differences [27]. See section 3.2 for a
new monotone scheme for mean curvature motion.

Potentially degenerate second order derivative term (11): The user
provides the rectangular matrix o : R x  — R%** (where k < d) while the Hes-
sian matrix of mixed second order spatial derivatives D2¢(t, ) is approximated
by centered second order accurate finite differences. The current implementa-
tion of this term suffers from the same non-monotonicity as the current mean
curvature approximation. If the new mean curvature approximation described
in section 3.2 proves effective, it can be extended to handle this type of term.
Expectations of stochastic differential equations (whose diffusion coefficient is
o) give rise to this term in the form of Kolmogorov or Fokker-Planck equa-
tions [13,23]. In the Toolbox documentation this term is referred to as “motion
by the Trace of the Hessian,” which is in retrospect a confusing and poor choice
of name.

Discounting terms (12) and forcing terms (13): The user provides A :
RxQ — Rt or F: RxQ xR — R respectively, and must ensure that the result
satisfies the monotonicity requirement (3). Because there are no derivatives,
implementation of these terms is trivial.

Constraints on the change in ¢ (14) or on ¢ itself (15): For dynamic
implicit surfaces, the former controls whether the surface is allowed to shrink or
grow, and the latter can be used to mask a region into which the surface cannot
enter [34]. The user provides ¢ : R x 2 — R. Although not treated in [8],
viscosity solution theory has been extended to handle these constraints [22], and
the Toolbox’s implementation simply applies them to ¢ after each timestep.

In addition to these specific terms, the toolbox allows multiple terms to be
combined, arbitrary callback functions which are executed after each timestep,

10



and vector level set equations where ¢ : R x Q@ — R* for some constant k
and each component of ¢ can be subject to a separate PDE. This collection of
terms covers most of the cases arising in applications, although the Toolbox is
organized so that adding more types of terms is relatively straightforward (as
demonstrated in section 3).

2.4 Coding Patterns

Users of TooLBOXLS—particularly those interested in adding new schemes—
should be aware of three design patterns used in the code to achieve efficiency,
flexibility and dimensional independence. The first is the method by which
parameters of the PDE and numerical schemes are passed up and down through
the different layers of routines in the Toolbox. The second is the method by
which functions of € ) are stored and computed. The third is the method by
which we achieve dimensional independence when indexing into arrays.

Passing parameters: As can be seen in sections 2.2 and 2.3, there are many
parameters related to the PDE and/or the numerical schemes which must be
passed through a sequence of function calls. While object oriented programming
is the typical approach adopted for such tasks, in TOOLBOXLS we have chosen
a more light weight design. Apart from the temporal integrator, all parameters
are collected into a single structure schemeData, whose contents are visible to
(almost) all user and Toolbox routines in the call stack. Typical members of
schemeData include the grid structure, function handles for the spatial deriva-
tive operator, and PDE parameters like velocity fields or speeds. By packing all
of this information into a single structure, the Toolbox can maintain parameter
compatibility between the various term and derivative approximation routines
despite their very different internal details. The schemeData structure has been
so successful that a similar protocol for the temporal integrator’s parameters is
proposed in section 3.1.

Functions of € Q: Remembering that @ C RY, a scalar function p(z),
p: Q — Ris stored as a d dimensional MATLAB array rho of doubles. Exam-
ples include ¢g(z) or ¢(t, z) for fixed t. If there are n nodes in each dimension,
these arrays contain n¢ elements and are typically very large. The key to the
Toolbox’s efficiency is to perform “vectorized” operations on these arrays. For
example, when taking a time step at time ¢ according to motion in the nor-
mal direction (4), the speed function a(t,z) is collected into one array speed
and the magnitude of the gradient ||D,¢(t,z)|| into another magnitude. The
normal motion term approximation a(t,z)||D,¢(t, z)|| is stored in a third array
delta computed by delta = speed .* magnitude as a single vectorized oper-
ation (no explicit loops). This syntactic structure has the side benefit of being
dimensionally independent, but its primary benefit is speed of execution. For
grids with many nodes, it is memory access time that dominates total execu-
tion time. Most MATLAB installations have compiled versions of elementwise

11



(such as “.*”) and basic linear algebra operations that are optimized for mem-
ory access efficiency. Consequently, the operation above will often run faster
in MATLAB than its straightfoward translation into explicit C/C++ or Fortran
loop(s). For this strategy to be successful, every node by node operation in the
PDE solver must be performed in this manner. In the example above, speed
and magnitude must be constructed without any explicit loops by the user and
the derivative approximation routine respectively. Likewise the update delta
must be applied as a single operation by the integrator to the current solution
approximation data (which stores ¢(t,x)). All of the core Toolbox is coded in
this efficient manner.

It turns out that these full grid operations are so much more efficient than
any type of looping that if we wish to modify only a selected set A/ containing
any significant number of nodes, it is faster to modify all nodes (where that
modification will be zero for nodes not in N') than it is to loop through only
the nodes in N. As a consequence, there does not appear to be any benefit to
implementing narrowbanded [4] or local level set [31] algorithms in TOOLBOXLS.

A vector function w : © — R¥ is just a collection of k scalar functions. Each
scalar function is stored in a d dimensional array as above, and these k different
arrays are collected together into a MATLAB cell vector? of size k by 1. For
example, a velocity field v(z) for motion by convection (6) is stored in a d
element cell vector v, where v{i} is a d dimensional array representing v;(x)
(the i*" component of the velocity field as a function of x € Q). While such
vector functions w(x) could have been stored in a single d+ 1 dimensional array,
the indexing for elementwise operations becomes quite cumbersome. Matrix
functions of = can similarly be stored in cell arrays of appropriate size.

One particular vector function used extensively in the Toolbox is the mapping
from a node to its own location. This function is stored in the cell vector
grid.xs, an automatically constructed part of the grid data structure grid.
Two examples of how this vector function can be efficiently used:

e For constructing other functions of z; for example, the distance to the
origin in two dimensions can be efficiently calculated for all nodes in 2 by
sqrt(grid.xs{1}."2 + grid.xs{2}.72).

e For calls to MATLAB functions; for example, surf(grid.xs{:}, data)
generates a properly scaled surface plot of ¢(t,z) for @ C R2. Another
common command is interpn for interpolation in arbitrary dimension.

It should be noted that grid.xs is constructed through a call to ndgrid, which
is more dimensionally consistent than the incompatible meshgrid but which is

2A cell array is a MATLAB data structure where each element can store any other MATLAB
object (including other cell arrays). Element i of cell vector w is accessed by the syntax
w{i} (the “squiggle braces” instead of the regular round braces). The syntax w{:} generates
a comma separated list of the elements of w, such as might be passed as parameters to a
function or used as indices into a regular array.

12



index0 = cell(grid.dim, 1);
for d = 1 : grid.dim

index0{d} = (1 : grid.N(d)) + ghostNodes;
end

indexL = indexO0;
indexL{diffDim} = indexL{diffDim} - 1;
indexR = indexO0;
indexR{diffDim}

indexR{diffDim} + 1;

Dx2 = (data(indexR{:}) - 2 * data(indexO{:})
+ data(indexL{:})) / grid.dx(diffDim)"2;

Figure 1: Sample code for computing the standard centered difference approx-
imation of 8?¢(t,z)/0z? for all x € Q C R? for any d. The array data stores
¢(t,z) and the scalar diffDim = i. It is assumed that data has been padded
with ghostNodes > 1 ghost nodes in each direction in dimension i. Cell arrays
are used to generate appropriately dimensioned index lists.

also consequently incompatible with interp2, interp3, and some (but not all)
three dimensional MATLAB visualization routines. For additional comments on
this incompatibility and some workarounds, see the Toolbox documentation.

Dimensional independence when indexing: Without any additional tricks,
this method of storing functions of = allows most of the Toolbox code to be writ-
ten in a dimensionally independent manner. The two exceptions which require
more advanced MATLAB syntax are the finite difference stencils in the spatial
derivative approximations and the boundary conditions. Figure 1 illustrates
how the former code is written, and a similar indexing method is used for the
latter. By creating a cell vector of dimension d with indices to every node in
the grid, we can then produce appropriate offsets for every element of a finite
difference stencil; for example, in figure 1 the stencil consists of nodes with off-
sets —1, 0 and +1 in dimension i. The operations in the actual finite difference
computation are vectorized in the same manner as described earlier by the final
line of code in figure 1.

Through these coding methods, we have removed almost all hardcoded depen-
dence on the domain’s dimension d from the Toolbox’s implementation. There
are a few special cases related to d = 1, because MATLAB arrays must have at
least two dimensions for historical reasons. Visualization remains dimension-
ally dependent: function plots in one dimension, contours and surfaces in two,
isosurfaces and slices in three. We have successfully run a few applications in
four dimensions and one test case in five; however, for these high dimensional
problems the grid resolution is low due to memory constraints and we have not
determined any particularly good methods of visualizing the results.
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Figure 2: Dynamic implicit surface combining motion in the normal direction
with a radially dependent rotational convection. Computed with second order
accurate spatial and temporal approximations on a 2012 grid.

2.5 Current Examples

Learning how to use and modify a software package written by somebody else
is never a trivial task, particularly since coding conventions that seem obvious
to the original programmer may be much less so to others. To help new users
get started, the basic TooLBOXLS download package includes complete code
and documentation for more than twenty examples taken from the level set
literature. Some additional examples are available separately from the same
web site [16].

The Toolbox provides the infrastructure code for the grid, initial and bound-
ary conditions, approximations of the spatial derivatives and terms, and time
integrators. Consequently, the code for most examples is primarily concerned
with initialization—in the form of data structures containing simulation param-
eters and selecting among the Toolbox’s options—and visualizing intermediate
results. In some cases, parameters are provided by short functions, such as time
dependent velocity fields for (6) or general Hamiltonian terms (9). It is expected
that when tackling new applications, users can cut and paste the majority of
this initialization and visualization code from existing examples.

The most basic example uses motion by convection (6) and is fully annotated
in the Toolbox documentation [18]. By modifying just one parameter, the user
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Figure 3: Counter-rotating spirals simulating a growth pattern in crystals [37].
Note that the curve is not closed, so this simulation requires the use of vector
level sets.

can try a variety of schemes with different orders of accuracy. Modifying a
single number allows the example to be run in dimensions one, two or three
(higher dimensions will run, but there is no way to visualize the results). Time
dependent motion is also supported.

Among the other examples that are included with the Toolbox download:

e Conversion of an implicit surface function for the seven pointed star (see
the initial conditions in figure 2) into a signed distance function via the
reinitialization equation (8).

e Motion by convection (6) subject to masking constraints (15).

e Motion by mean curvature (10) replicating [34, figures 2.6, 2.7 and 14.2]
as well as replicating [27, figures 4.1 and 4.2] and extending to time-
dependent motion.

e Motion in the normal direction (7) replicating [27, figure 6.1] and extend-
ing to time-dependent motion.

e The combination of convection and motion in the normal direction repli-
cating [27, figure 6.2] with both radially independent and radially depen-
dent velocity. The latter is shown in figure 2, animations of that motion
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Figure 4: The initial conditions are the signed distance function for a circle, so
applying the reinitialization equation should not change the function or its zero
isosurface. Both figures show contours at iterations 160¢ for ¢ = 0,1,...,5. The
case without the subcell fix shows that over many iterations the zero isosurface
incorrectly shrinks, while the contours are indistinguishable when the subcell
fix is applied. The two subplots correspond to [33, figures 7 and 8], except that
the nodes of the 9 x 17 grid are denoted by small dots and these nodes have
twice the spacing in the horizontal direction as in the vertical.

are available from [16], and the code for generating the animation is also
part of the download package.

e The convex (Burgers’ equation) and nonconvex general HJ PDEs from [30,
figures 1(d),2(d), 3(b) and 3(d)] in both one and two dimensions.

e The continuous reach set computations for the game of two identical vehi-
cles [19] and the acoustic capture game [3], as well as a multimode hybrid
reach set for collision avoidance [17].

e Approximation of the solution of several static HJ PDEs using the trans-
formation proposed in [25]. Time to reach the origin for both holonomic
dynamics and a double integrator can be computed, although quantitative
accuracy is disappointing.

e Expected values from one dimensional stochastic differential equations
whose analytic solutions are known [13,23]. Reinitialization cannot be
used in these examples because the value of ¢ is meaningful throughout
the domain. The approximate solution’s error is much larger near the
domain boundary, thus demonstrating some shortcomings of the boundary
condition choices currently implemented in TOOLBOXLS.

¢ Evolution of open curves using vector level sets, including recreation of [37,
figures 4 and 12]. The former is shown in figure 3. Even qualitative
recreation of these results has required very high resolution simulations
and regular reinitialization, so these particular examples take hours to
run on a typical machine, unlike most of the others.

e Several examples from [33] demonstrating the effectiveness of the subcell
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fix proposed there for maintaining the location of the interface while ap-
plying the reinitialization equation. Figure 4 shows how effectively the
subcell fix maintains the location of the interface over many iterations.

Separate downloads available from [16] include code for computing the expected
transmission rate and standard deviation of a stochastic hybrid system model of
the Transmission Control Protocol for transmitting packets on the Internet [20]
and an example of optimal control under state constraints [14].

While the examples in the Toolbox are primarily aimed at those new to level
set methods, the combination of these examples and the description of internal
coding patterns in section 2.4 should be sufficient for level set researchers to
easily build and test new numerical schemes while leveraging the infrastructure
provided by the Toolbox.

3 Adding New Features

In order to demonstrate the ease with which new schemes are added to TOOL-
BOXLS, we implement an entire class of SSP RK schemes and a monotone
motion by mean curvature approximation. Not only are the implementations
relatively straightforward, but once they are completed we can easily run a vari-
ety of examples to compare the new schemes against existing ones. This ability
to rapidly compare against and build on existing work is one of the primary
benefits that the Toolbox provides to designers of level set methods.

All of the code for the schemes and examples in this section is available as
a separate download from [16]; the download also contains some additional
examples which could not be included in this paper for reasons of length. Tests
were performed on a 1.7 GHz Pentium M laptop (from 2004) with 1 GB memory
running Windows XP version 2002 with Service Pack 2.

3.1 New Temporal Integration Schemes

The explicit SSP RK schemes in [36] were originally directed at approximating
the solution of conservation laws, but have since been extensively applied to HJ
PDEs by the level set community. Let p denote the order of the scheme and s
the number of stages. Although schemes with up to p = 5 are given in [36], the
restriction to p = s permits only schemes with p < 3 to be implemented without
providing a special backward temporal operator; furthermore, the largest CFL
coefficient that maintains SSP status for the p < 3 schemes is one.

A new class of SSP schemes was proposed for conservation laws in [38] with
s > p. Relaxing the connection between s and p permits construction of a p = 4
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scheme without the need for the backward temporal operator, as well as more
efficient p < 3 schemes: s > p, but a larger timestep size due to a larger CFL
coefficient more than offsets the cost of the additional stages.

Following on a tradition in level set methods, we implement these schemes
in TooLBOXLS and apply them to dynamic implicit surfaces. The s = p =
1,2,3 schemes from [36] that are part of the basic Toolbox download are each
implemented in separate routines, but in the interests of flexiblity we implement
a major subset of the entire class of SSP schemes here. The SSP schemes are
designed to solve a system of ODEs of the form

d

—®(t) = L(t, P(t

Sa(t) = L1, 2 (1)

which are generated by applying the method of lines to a time-dependent PDE.
The vector ®(t) is a discretization of ¢(t, ) storing the values of ¢(¢,z) at the
grid nodes = € Q. Adopting the a-f parameterization from [36], but extending
to time-dependent L requires definition of the substep sample times for i =
0,...,sas

i—1 i—1
D =t + At Z Ciks where cik = Bk + Z Q3 Cjk s
k=0 j=k+1

(the c;1, can be computed recursively [38]). Given these times (Y, we write the
SSP schemes for the ODE as

30 = &(t,),

o) = [aikqﬂ'@ + AtB LR, <1><’€>)] . i=1,2,...,5, (16
k=0
B(tpyq) = ).

where a;; > 0 and ZZ:O air = 1. Because the Toolbox term approximation
routines presently generate only the forward temporal operator £, we stick to
the subclass of SSP schemes where B;; > 0. Given the relatively low priority
attached to memory conservation by MATLAB and TOOLBOXLS, we have not
yet worked on specifically low storage SSP schemes either.

The routine odeCFLab implements CFL constrained timestepping with the gen-
eral scheme (16). The routine’s interface is copied from the routines odeCFLn
for n = 1,2,3 included with the Toolbox, and the basic integration options
(such as CFL factor and callbacks) are handled in the same manner through
an options structure controlled by odeCFLset. This method of controlling in-
tegrator options is designed to be similar to MATLAB’s odeset mechanism and
has been effective for parameters that are common to all integrators; however,
it does not have the flexibility of the schemeData structure pattern adopted by
TooLBOXLS for the term approximation routines and requires modification of
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Figure 5: The rectangle spins by convection with a velocity field that is counter-
clockwise rotational motion around the origin. The rectangle also moves out-
ward in its normal direction at unit speed for ¢ € [0, 1] and inward in its normal
direction at twice that speed for ¢ € [1,1.5]. This particular run used the (2,2)
scheme from [36] on a 101% grid.

odeCFLset whenever an integrator with new parameters is introduced.®> As an
experiment, the a-f parameters for the SSP scheme are provided to odeCFLab
through a structure integratorData added to the end of the parameter list.

Although odeCFLab can be directly called by the user to test new schemes, for
the schemes in [36,38] it is easier to call it indirectly through odeCFLsp, which
chooses the appropriate a-8 values from a collection of tables and then calls
odeCFLab to do the work. The user must appropriately set the CFL factor to
take advantage of the larger timesteps permitted by the s > p schemes.

To test the accuracy and efficiency of these schemes, five simple examples were
run. The first three involved a three-quarter rotation about the origin under
convective flow of three different initial conditions: (1) a circle centered at the
origin, (2) a rectangle centered at the origin, (3) a pair of slotted disks offset
from the origin (a vertically symmetric version of Zalesak’s disk [42]). The effect
of this flow should be rigid body rotation of the initial conditions. The last two
examples use the circle and rectangle as initial conditions, but in addition to the
rotational convection the front moves outward at unit speed for the first two-
thirds of the simulation, and then inward at twice that rate for the final third of
the simulation. This combined motion with the rectangular initial conditions is

3A problem that MATLAB’s odeset shares: consider all of the properties related to Jaco-
bians, mass matrices and backward/numerical differentiation formulas that odeset contains
but which are entirely ignored by the most commonly used routines ode23 and ode45.
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shown in figure 5. The end result of the combined motion should be the same
as that produced by the purely rotational flow—a fact which would not be true
for Zalesak’s disk, which is why that initial condition was not used for this flow
field.

The goal of these simulations was to study the effect of the order of accuracy
of the time integrator on the error in the final solution. Unfortunately, error
due to the spatial approximation will inevitably effect the outcome. In order to
minimize its effect, we use a spatial approximation with higher order of accuracy
than any of the temporal integrators that we are testing, chose very simple initial
conditions, and simulate flow fields under which the spatial complexity of the
front will not increase.

The spatial approximation scheme should achieve its full degree of accuracy for
the circular initial conditions because there are no kinks (derivative disconti-
nuities) in the implicit surface function near the interface; however, the lack of
corners in the interface make this example too simple to be representative of
typical level set problems. The interface in Zalesak’s disk has both convex and
concave corners, but we cannot run the second flow field for this initial condi-
tion. Consequently, we report the results for the rectangular initial conditions
here.

The exact implicit surface function for the final condition is known: in every
case it is just the initial implicit surface function rotated three-quarters of a
turn. To test convergence and order of accuracy, the error at a node is defined
as the difference between the computational solution and the analytic solution
at the final time. In the case of the rectangular initial conditions, only the errors
at the nodes within £1/4 Az of the final rectangle are included; in other words,
a band of width one of nodes lying closest to the rectangle. For the other two
initial conditions, only the errors at the nodes within +3/2 Az of the interface
are included.

Code for the Toolbox’s convection example was modified to construct the appro-
priate initial conditions and term approximations, call odeCFLsp, and compute
the error. A wrapper routine was then written to execute each of the (s,p)
integrators on a sequence of grids for each example.

The spatial derivative approximation in all cases was the fifth order accurate
WENO approximation from [11]. No reinitialization was performed, and linearly
extrapolated boundary conditions were used at the edge of the computational
domain. All runs were performed with a CFL coefficient of 75% of the theoretical
maximum for stability. Additional details can be found by examining the code
in the download package. We specify the integration schemes by the pair (s, p).
The schemes tested were the (2,2) and (3,3) schemes from [36] and the (3,2),
(4,2), (4,3), (5,3), and (5,4) schemes from [38]. As expected, the (1,1) scheme
(Forward Euler) was unstable with WENOS5, so it was not tested.
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Figure 6: Convergence plots for the dynamic implicit surface representation
of a rectangle integrated by a variety of explicit SSP RK schemes. A fifth
order accurate WENO scheme was used in all cases for the spatial derivatives.
The line style legend in the upper right plot applies to all plots. Top row:
Purely convective motion. Bottom row: Convection plus motion in the normal
direction (“combination”) as shown in figure 5. Left column: Average error.
Right column: Maximum error. Error is measured only at nodes closest to
the analytic solution’s interface, and the error is the magnitude of the difference
between the computational and analytic solution at these nodes. For comparison
purposes, the dotted line in each plot is the grid spacing Az.

A few representative results are shown in figure 6. As can be seen in the first
row, the errors for all of the schemes were essentially identical for the purely
convective case and the rectangular shape. As expected, the convergence rate is
far below that predicted by the formal order of accuracy for the schemes because
the level set function is not sufficiently smooth. The second row is slightly more
interesting, as the third and fourth order accurate schemes do show a slight
advantage over the second order accurate schemes, although all of the schemes
still fail to achieve their formal order of accuracy. The maximum error for this
combination of motion is essentially the same for all schemes. It should be noted
that this combination motion for the rectangle is actually easier than the purely
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Scheme Steps Order CFL | Convection Combination
Source s D Bound | Time (sec) Time (sec)
Shu & 2 2 1.0 530 957
Osher [36] 3 3 1.0 853 1662
Spiteri & 3 2 2.0 390 1097
Ruuth [38] 4 2 3.0 385 840
4 3 2.0 602 1110

5 3 ~2.65 542 1257

) 4 ~1.51 847 2221

Table 1: Execution time for the rectangular initial conditions and either pure
convection or convection plus motion in the normal direction (“combination”).
Timings are for a 2012 grid run in MATLAB version 7.2 (R2006a).

rotational motion for level set methods to accurately approximate, because the
shrinking phase of the combination motion causes the corners of the rectangle
to sharpen, and it is in the corners that the maximum error develops.

Interested readers can generate the results for the other three examples from
the code in the download package. For the circular initial conditions and purely
convective motion, all schemes achieved nearly fifth order of accuracy in both
average and maximum error. This super-resolution can perhaps be explained
by the fact that the initial conditions are a fixed-point of the motion. For
the circular initial conditions and the combination motion, all schemes were
first order accurate in both average and maximum error, although there was a
difference of a constant factor between the schemes—the higher order schemes
had lower error, with the schemes falling in the same relative order as that seen
in the lower left subplot of figure 6. For the Zalesak’s disk initial conditions, the
results were essentially the same as for the convective motion of the rectangle,
although the maximum error was larger in magnitude and the convergence rate
was noisier.

The test for the spinning rectangle was repeated with a third order accurate
ENO spatial derivative approximation [30]. All errors were about 50% worse,
but the relative errors among the various temporal schemes remained very sim-
ilar.

While the accuracy of the new schemes from [38] was similar to or slightly
worse than the standard schemes from [36], the new schemes did show improved
performance. Table 1 gives some representative timings for the various schemes
on the rectangular examples. Similar results were seen for the other examples.

These results seem to confirm the general wisdom that for dynamic implicit
surfaces the accuracy of the spatial derivative approximation more strongly
determines the overall accuracy than that of the time integrator. Furthermore,
temporal schemes with orders of accuracy above two are for these examples
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largely a waste of effort. The most efficient scheme was the new (4, 2), although
the standard modified Euler (2,2) scheme was nearly as effective and in some
cases had slightly lower error.

The decision to break odeCFLab’s parameter compatibility with MATLAB’s ODE
integrators is an experiment, and could be reversed when this routine is brought
into the base Toolbox. When the integrators were originally created, it was
hoped that compatibility with MATLAB’S ODE routines would make the transi-
tion to PDE solvers easier for users and would allow interoperation. Experience
in the field seems to indicate instead that the near but not complete compat-
ibility is potentially confusing, does not allow interoperation, and is definitely
limiting when adding new schemes. If the experiment with the new parame-
ter list for odeCFLab proves successful, the existing Toolbox routines could be
modified to accept it (while still remaining backward compatible).

Creation of the routines odeCFLab and odeCFLsp required a few hours of coding,
plus another few hours to create the examples and debug.

3.2 A Monotone Mean Curvature Term

While new temporal integrators are useful, the form of (1) gives much more flex-
ibility to the spatial operator(s), and hence it is new schemes for these terms
that are more often proposed. To demonstrate addition of a new spatial scheme
to ToOLBOXLS, we implement the monotone scheme for motion by mean cur-
vature proposed in [21] and further analyzed in [41].

The standard approach to the parabolic term (10) is to use the formula

. [ D.¢
Ay = = 1
16 = 1D, 4l (4) IIDm“dV(anII)
- o Lo b do

(17)
81:3 ||Dm¢||2 ij=1 6371633] Ox; 83?]

and approximate the derivatives with centered differences [29]. This method
is implemented in the base Toolbox by routines curvatureSecond (which com-
putes a second order accurate centered difference approximation of the curvature
and gradient) and termCurvature (which handles the operations in (10) and
estimates the CFL timestep bound).

In [21] it is argued that this scheme is not monotone, and hence we cannot use
the theory in [2] to prove convergence. The proposed alternative for approxi-
mating (17) at a node Z € 2 begins by gathering a stencil of nodes S; such that
each zj, € S; is roughly the same distance from &: ||z — &|| &~ d,. This stencil
will be roughly circular, must be symmetric with respect to all coordinates, and
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will thus have an even number of member nodes. The median value of ¢ on this
stencil is then computed

4 (Z) = median{d(zy) | xx € Sz}, (18)
and the approximation of (17) is

W + O(& +dy), (19)

T

A1¢(§7) =

(note that (19) fixes several typos in [21, equation (6)]). The small parameter
dg measures the angular distance between the members of S;.

For some intuition as to why (19) approximates (17), we consider planar  (so
d = 2). In this case A;¢ is just a second derivative of ¢ in the direction tangent
to the local isosurface of ¢. Notice that ¢.(Z) from (18) will be the average
of the two middle values of {¢(xy) | zx € Sz}. Let the nodes at which these
values occur be zj, and z}/. In regions where ¢ is sufficiently smooth, the three
points x}, ¢ and z} will lie on a line ¢, and ¢ will be roughly tangent to the
isosurface of ¢ at Z. Straightforward algebra shows that (19) is a standard
centered difference approximation of the second derivative along ¢. We can
then interpret the two components of the error term in (19) as the error in the
standard centered difference approximation of the second derivative in a given
direction (O(d2)), and the error between the direction of £ and the true tangent
direction of the isosurface (O(dy)).

This method is implemented in termCurvatureByMedian and oneLaplacian.
The former has the same parameter list and is internally almost identical to
termCurvature, since it handles various methods by which the user can supply
b(t, z), estimation of the CFL timestep restriction, and (if necessary) bookkeep-
ing related to vector level sets. It calls oneLaplacian to compute (18) and (19).
Evaluation of these two formulas is straightforward, although it can be memory
intensive depending on the size of the stencil set S;. Because the Toolbox uses
a uniform mesh, the stencil set S; is the same for all nodes z € 2, so we drop
the subscript from S in the remainder of this presentation. The vast majority of
code in oneLaplacian is devoted to construction of S and its memoization (per-
sistent storage of S between function calls so that it need not be reconstructed
at each timestep).

The user can control the stencil pattern through a stencil width parameter w (a
positive integer). We extend the algorithm in [21] to handle grids with different
node spacing in each dimension. Let Az(? be the spacing in dimension i, and
consider constructing the stencil for node z; this stencil can be moved to any
other node by appropriate offsets. Then we set

Az = max Az® and d, = wAzx
1<i<d
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Figure 7: Stencil sets S for stencil width w = 3 on grids with different node
spacings in the different coordinate directions are shown in the three leftmost
subplots. The stencils are built for the node z, denoted by a star in the center
of the stencil. The ratio below each plot is (horizontal Az) : (vertical Az). For
comparison purposes, the intermediate stencil set S’ is shown in the rightmost
subplot for the grid ratio 1 : 5. Note that many of the nodes in S’ lie in similar
or identical directions from the center node.

and create an initial stencil set
S = {a:k EQ|dI—%A7£US ||.Z'k—ii'|| <dz+%A7m}

By including nodes in a band of width Az around the desired stencil radius d,,
we ensure that S’ includes at least nodes along every coordinate axis. However,
when the Az() are not equal for all i, the nodes in S’ may show considerable bias
toward some directions; for example, there may be multiple nodes in exactly the
same direction (along the coordinate axis) if 2Az) < Az for some dimension
j. To reduce this bias, we add node z; € S’ to the final stencil set S only if

Iy — T T — T ZCOS(,U,JQ)

llze — 2| [z — 2]
for all {zy € S' | |||z — & — de| < [|lz1 — #]| — de]}-

In words, a node is added to the final stencil set S only if it is in a direction which
makes an angle of at least ,ucig with all nodes in &' which are closer to the desired
stencil width d, where dy is an estimate of the angular accuracy parameter dy
and p is some fractional constant (we use p = 1/4). The goal is to choose a
stencil set S whose angular sampling in every direction is roughly constant.
The resulting stencil sets for several two dimensional grids with varying ratios
of Az to Az(? are shown in figure 7 for w = 3.

Any procedure for constructing S inevitably chooses nodes that are not precisely
distance d, from Z. As proposed in [41], we can adjust for this inconsistency
using linear interpolation. Instead of (18), we use the definition

b« (%) = median{p(zy) | T € Sz}, (20)
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(a) ¢1(x) (b) Analytic Aj¢1(x) (¢) Median-based approxi-
mation of Aj¢(x)

Figure 8: The test polynomial ¢;(x), the analytic Aj¢;(z), and the median-
based approximation of A;¢;(x) for a stencil with w = 3 on a 1012 grid. Note
that for better visualization the view of ¢;(x) is rotated 180° in azimuth com-
pared to the other two plots. Because S only includes eight distinct directions
for this w, the median-based approximation displays significant quantization.

where we interpolate a value @(xy) at a point exactly d, along the line between

T and xy p
P(ax) = ¢(&) + ——— (d(wx) — 6(&)).

Such interpolation also makes it possible to use a square stencil for S, instead of
the approximately circular one discussed above. Although originally proposed
in [21] without interpolation, such square stencils are only consistent approxi-
mations of A; when interpolation is used.

[lzx — 2|

To study the accuracy of the median-based approximation, we use a polynomial
proposed in [21]

b)
(]51 (m) = 6$1 + —T2 +

1 + —2129 + —

2 2
9z7 U4 26 x5 , (21)
22 5 5 2

whose analytic curvature can be derived. Results similar to those described
below are also observed for the other test polynomial proposed in [21]. Repre-
sentative plots of the value of ¢ (z), the analytic A;¢;(x) and the median-based
approximation for w = 3 are shown in figure 8. Notice the stair-step nature of
the median-based approximation—because only a small number of directions
is available in the stencil, there are only a small number of possible values for
the approximation. We do not include a plot of the standard centered differ-
ence approximation of A; ¢ (z) because it is visually indistinguishable from the

analytic solution.

While the error in the median-based scheme (19) is O(d2 + dy), for a grid with
fixed connectivity we do not have direct control over dy in the algorithm de-
scribed above because we are constrained to use neighboring nodes to construct
o« (x). We decrease dy indirectly by increasing the stencil width w. For a
grid with fixed Az, increasing w leads to an increase in d, = wAz. It is not
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Circular Stencil Square Stencil
Ratio  Stencil Grid w/o interp w/ interp w/ interp
Ax Radius Size Mean Max | Mean Max | Mean Max
1:1 1 101 x 101 | 1.995 6.523 | 1.439 5.459 | 1.439 5.459
2 284 x 284 | 1.425 3.704 | 1.191 3.554 | 0.896  2.960
3 521 x 521 | 0.878 2.652 | 0.796 2.654 | 0.708  2.302
4 801 x 801 | 0.560 1.647 | 0.433 1.197 | 0.604 2.013
5 1119 x 1119 | 0.565 1.696 | 0.493 1.591 | 0.547 1.854
1:2 1 101 x 51 | 1.720 6.436 | 1.094 5.353 | 1.094 5.353
2 284 x 142 | 0.929 3.669 | 0.670 2.580 | 0.737  2.782
3 521 x 261 | 0.614 2.179 | 0.445 2.047 | 0.579 2.293
4 801 x 401 | 0.476 1.642 | 0.347 1.488 | 0.512 2.007
5 1119 x 560 | 0.401 1.216 | 0.295 1.162 | 0.477 1.849
1:5 1 126 x 26 | 1.517 6.271 | 0.938 5.125 | 0.888 5.125
2 355 x 72 | 0.825 2.739 | 0.607 2.536 | 0.601 2.896
3 651 x 131 | 0.593 2.137 | 0.429 1.830 | 0.503 2.271
4 1001 x 201 | 0.482 1.751 | 0.351 1.464 | 0.458 1.996
5 1399 x 281 | 0.378 1.173 | 0.271 1.040 | 0.437 1.843

Table 2: Error in the median approximation of Ay¢y () as dy and d, are de-
creased at roughly the optimal theoretical rate. The polynomial ¢;(x) is given
n (21). The error in this median-based scheme is enormous and does not con-
sistently achieve its theoretical order of accuracy.

discussed in [21,41] and it is not immediately obvious that we can achieve a
consistent scheme O(d2 + dp) — 0 through some combination of Az — 0 and
w — 400. To show that consistency is possible, note that the number of nodes
in the stencil |S| has asymptotic behaviour

S| =0 <c1rcumference of stencﬂ) _0 <27rd$

- > = O(Az" ),

distance between xy,
where we have used the ansatz d, = Az” for some unknown constant 7. Since
dg = O(|S]71), we see that the error in (19) is O(Az?? + Az!~7). Balancing
the exponents leads to the choice v = 1/3, asymptotic error O(Az**) and con-
sistency. Of course, our control over d,, is indirect through stencil width w, so to
study the convergence of the scheme experimentally using the algorithm above
we choose a sequence of w values and adjust Az according to

wAzr =d, = AzY = Az = Az =w

Using this relationship between w and Az we approximate Aj ¢ (x) on a variety
of grids and record the error in the approximation in table 2. When compared
to a typical error of ~ 10719 in the standard centered difference approximations
of Aj¢; for these grids, the error in the median-based approach is terrible. Fur-
thermore, although the error is decreasing as the grid is refined, the theoretical
order of accuracy (Az)*? is not always achieved; in fact, the error for w = 5 on
the 1 : 1 grid is actually larger than for w = 4. It should be noted that using

27



interpolation (20) provides a significant benefit at all stencil sizes when com-
pared to computing the median without interpolation (18). The square stencil
is cheaper to construct (no need to search for a set of nodes approximating a
circle) but is more expensive to evaluate (there are more nodes) and is generally
not as accurate as the circular stencil with interpolation.

Given that the quantitative error in the median-based approximation is so large,
why use it? The monotonicity of the median-based approximation is a nice fea-
ture from a theoretical perspective, but we know of no practical problems where
the failure of the standard centered difference approximation to be monotone
results in a significant degradation of the approximate solution when compared
with the results from the median-based scheme.

Instead, the reason to use the new scheme is its speed. Motion by mean cur-
vature (10) is often used as a regularizing term in applications like image seg-
mentation. In these applications it is the qualitative flattening of the front
generated by Ay that is more important than a specific quantitative solution.
To examine the qualitative effectiveness of the median-based approximation, in
figure 9 we apply a variety of approximations of (10) to a star-shaped initial
interface [27, figure 4.2]. Despite the poor quantitative accuracy of the median-
based approximation, in motion by mean curvature the results are qualitatively
very similar to the much higher accuracy standard centered difference approx-
imation. Furthermore, the CFL timestep restriction is O(d2) = O(w?Az?), so
for large w much longer timesteps can be taken and execution is considerably
faster. In fact, the implementation in oneLaplacian becomes quite memory in-
tensive for large w and hence rather slow; it is likely that a compiled implemen-
tation of the median-based scheme would have an even larger speed advantage
over the standard centered difference scheme.

In addition to code for the tests presented here, the download package includes

code recreating many of the examples from [21]. Creation of termCurvatureByMedian
and oneLaplacian took several days, most of which was devoted to designing

the algorithm to generate and memoize stencils on grids with variable Az. The
collection of examples and tests took about two days to fill in, using existing ex-
amples as a starting point. While termCurvatureByMedian and onelaplacian

are written to be dimensionally independent, they have not yet been tested in
dimensions greater than two.

4 Conclusion and Future Work

We intend for TOOLBOXLS to be useful to the research community in at least
three ways. The first is to make easy-to-use and reasonably efficient implementa-
tions of high accuracy methods available to application scientists and engineers
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(a) Standard centered difference approximation (132 seconds)
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b) Circular stencil w = 1 with interpolation (619 seconds)
t=0 t=025 t=05 t=1
1 1 1 - 1
05 05 0.5 : 05
0 0 0 0 O
-0.5 -0.5 -0.5 / -0.5
-1 -1 -1 : -1
-1 0 1 0 1 0 1 0 1
(c) Circular stencil w = 3 with interpolation (78 seconds)
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(e) Square stencil w = 3 with interpolation (87 seconds)

Figure 9: Motion by mean curvature of a star-shaped front using various approx-
imations of A;. The grid is 2012 nodes and the standard (2,2) time integration
scheme is used. The median-based approximation may have poor quanitative
accuracy, but its qualitative results are very similar to those of the standard
centered finite difference, and for larger stencils it is significantly faster.
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unfamiliar with the details of level set methods. The second is to furnish a flex-
ible environment in which designers of level set methods can experiment with
new schemes. The third is to provide a common software infrastructure that
will aid in testing, comparison and distribution of those schemes in the spirit
of reproducible research. This article has emphasized the latter two goals by
presenting only a brief overview of the current Toolbox contents and devoting
significant space to explaining some common internal design patterns used in
the code that promote both efficiency and flexibility. The implementation of
two new schemes for the Toolbox was also described, including an experimental
modification of the time integrator’s parameter list based on user feedback.

For the level set methods that it implements, TOOLBOXLS manages reasonable
efficiency by MATLAB-style vectorization, which involves sequential access to
large data arrays. Syntactic tricks involving MATLAB’s cell array data type per-
mit almost all level set operations to be written in a dimensionally independent
manner. Furthermore, all of TOOLBOXLS is written in m-files, so there is no
overhead to installing, executing or examining the code.

Additional level set features that we eventually hope to add to TOOLBOXLS
include:

e More general and higher order accurate boundary conditions.

e Additional spatial derivative approximation schemes (such as third order
accurate WENO).

e ENO/WENO function value interpolation (not just gradients) throughout
Q (not just at nodes).

¢ Evolution of codimension two curves in R® using vector level sets.

e The “Roe with entropy fix” numerical Hamiltonian [30], which may intro-
duce less artificial dissipation that Lax-Friedrichs.

A significant shortcoming of the present Toolbox is the lack of a Fast Marching
style algorithm [34] for solving the Eikonal equation ||D,¢|| = 1 and similar
static HJ PDEs. These equations play a key role in many dynamic implicit
surface applications requiring reinitialization and/or velocity extension [1]. Un-
fortunately, these algorithms also have a random data access pattern for which
MATLAB m-file implementations are extremely inefficient. It is possible to cre-
ate compiled implementations that interface through MEX to MATLAB. We
have performed some experiments with such implementation schemes, but their
potential inclusion into TOOLBOXLS raises issues with distribution (users would
have to compile), debugging (breakpoints cannot easily be set inside MEX rou-
tines), flexibility (MEX files are much more difficult to modify than m-files),
and readability (users would need to know another language). We are open to
comments regarding methods by which these issues might be minimized.

In fact, users of TOOLBOXLS should consider it to be a work in progress, and
suggestions related to interfaces, schemes, implementations and/or applications
are welcome.
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