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Abstract

In earlier work, we showed that the set of states which can reach a
target set of a continuous dynamic game is the zero sublevel set of the
viscosity solution of a time dependent Hamilton-Jacobi-Isaacs (HJI)
partial differential equation (PDE). We have developed a numerical
tool—based on the level set methods of Osher and Sethian—for com-
puting these sets, and we can accurately calculate them for a range
of continuous and hybrid systems in which control inputs are pitted
against disturbance inputs. The cost of our algorithm, like that of
all convergent numerical schemes, increases exponentially with the di-
mension of the state space. In this paper, we devise and implement
a method that projects the true reachable set of a high dimensional
system into a collection of lower dimensional subspaces where compu-
tation is less expensive. We formulate a method to evolve the lower
dimensional reachable sets such that they are each an overapproxima-
tion of the full reachable set, and thus their intersection will also be
an overapproximation of the reachable set. The method uses a lower
dimensional HJI PDE for each projection with a set of disturbance
inputs augmented with the unmodeled dimensions of that projection’s
subspace. We illustrate our method on two examples in three dimen-
sions using two dimensional projections, and we discuss issues related
to the selection of appropriate projection subspaces.
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Figure 1: Difference between backwards and forwards reachability.

1 Introduction

Of fundamental importance in the safety verification of embedded control
systems is the ability to compute reachable sets of states. If one can accu-
rately determine the set of states from which a system may inadvertently
step or be pushed into an unsafe configuration, then system safety can be
verified by ensuring that the system state remains outside of this set. Con-
sider, for example, the automatic control laws proposed for ensuring sep-
aration between aircraft in civilian air traffic control [1], in which unsafe
configurations are those in which the distance between any pair of vehicles
is less than a required minimum. We would like to guarantee that these con-
trol laws never allow two aircraft into a situation where loss of separation is
inevitable, and reachable set analysis is an appropriate tool for this task.

There are two basic types of reachable sets, depending on whether an initial
or a final condition is specified. For a forwards reachable set, we specify
the initial conditions and seek to determine the set of all states that can be
reached along trajectories that start in that set. Conversely, for a backwards
reachable set we specify a final or target set of states and seek to determine
the set of states from which trajectories start that can reach this target set
(see figure 1). In this paper, we will primarily discuss backwards reachable
sets. For autonomous systems with no inputs the two computations may be
used interchangeably, but it is an as yet unresolved question how the compu-
tation of the two reachable sets compares for general continuous dynamical
control systems.

Computing reachability for safety specifications has been studied in the con-
trol and computer aided verification communities for many years. While effi-
cient algorithms have been designed for reachability computation in discrete
state spaces [2], the computation of reachable sets for continuous systems
whose state dimension exceeds four or five remains an open problem. In our
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previous work [3, 4, 5], we have developed a method for computing back-
wards reachable sets based on level set techniques [6, 7, 8] and viscosity
solutions [9, 10], using the ideas presented in [11, 12]. We allow for both
control and disturbance inputs in our problem formulation, we represent a
reachable set as the zero sublevel set of an appropriate function, and the
boundary of this set is propagated under a nonlinear flow field using a vali-
dated numerical approximation of a time dependent Hamilton-Jacobi-Isaacs
(HJI) partial differential equation (PDE). Our numerical methods compare
favorably in efficiency and accuracy to other methods based on solutions to
static Hamilton-Jacobi equations [13, 14] and to techniques from viability
theory [15].

Unfortunately, while these methods can find accurate approximations to the
reachable set for systems with complicated nonlinear dynamics, their com-
putational cost scales exponentially with the system’s state space dimension.
A number of more efficient methods for computing reachable sets have been
developed [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], but to achieve their effi-
ciency they are forced to specialize in the types of dynamics and/or shapes
of reachable sets with which they can operate.

In this paper, we present our own attempt to tackle the “curse of dimen-
sionality”. Instead of computing the true reachable set in the system’s full
state space, we work in a collection of lower dimensional subspaces to com-
pute an overapproximation. We present the technique in the context of our
time dependent Hamilton-Jacobi formulation of reachability, but it could be
applied to any of the reachability methods mentioned above that can handle
systems with disturbance inputs. The basic idea is simple: in each projec-
tion we calculate the reachable set assuming that the projection’s unmodeled
dimensions are added to the collection of disturbance inputs. We conjecture
that each lower dimensional reachable set is provably an overapproximation
of the projection of the true reachable set, so that the intersection of the
back projections of the lower dimensional sets will also be an overapproxi-
mation. As such, we gain significant computational savings for high dimen-
sional systems, at the expense of overapproximation. However, because we
are interested in verifying system safety, computing an overapproximation
of the set of states which evolve into an unsafe set and then proving that
the system never enters that overapproximation is sufficient.

Our work is inspired by the ideas of [27, 28] for continuous systems and those
of [29, 30, 31] for discrete systems, as well as research which uses intersections
and projections to treat curves [32] and geometric optics [33, 34].
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The outline of this paper is as follows. In section 2, we define the reach-
ability problem and its solution, and we present an example derived from
aircraft collision avoidance. In section 3, we describe our reachability tech-
nique based on projections; for clarity, we explain the method with a simple
linear rotation example in three dimensions using projections into two di-
mensional subspaces. The method is then demonstrated on the aircraft
collision avoidance example, for which significant computation time savings
is demonstrated. We conclude the paper with a discussion of issues that
remain to be investigated.

2 Reachable Sets

In this section we define backwards reachable sets, explain how they can be
represented as the solution of an HJI PDE, and review computational tech-
niques for their approximation. Our methods will be applicable to linear and
nonlinear systems, whose dynamics are modeled by differential equations de-
pending on control and disturbance parameters. For the kinds of practical
systems in which we are interested, the controls represent parameters which
may be manipulated to force the system to satisfy a property or achieve
a goal, while the disturbances represent uncertainties in the system, envi-
ronmental disturbances or unknown actions of a component or subsystem.
We will be interested in formulating control strategies which will achieve
the goal, despite the worst possible disturbance action. Hence, we use the
framework of optimal control and dynamic games. We will first introduce an
example of a system for which we would like to compute a reachable set, in
order to make the subsequent informal discussion more concrete. A formal
presentation of reachable set computation can be found in [3].

Throughout the discussion that follows, we use the notation xi to refer to
the ith component of the vector x.

2.1 Collision Avoidance Example

As our demonstration example we will adopt a classical pursuit evasion game
involving two identical vehicles moving in the plane (see [35, 36] for more
details). If the vehicles get too close together, a collision occurs. One of the
vehicles (the pursuer) wants to cause a collision, while the other (the evader)
wants to avoid one. Each vehicle has a three dimensional state consisting of
a location in the plane and a heading. The model for an individual vehicle
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Figure 2: Coordinate system for the collision avoidance example.

is

d

dt





z1

z2

z3



 =





v cos z3

v sin z3

ω



 , (1)

where
[

z1 z2

]T
∈ R

2 is the vehicle’s location in the plane, z3 ∈ [0, 2π] is its
heading, v ≥ 0 is its linear velocity and ω is its angular velocity. We draw our
vehicles as airplanes, although as a simple kinematic model, (1) is equally
applicable to a car or even a unicycle. We have used the solution to this
example as inspiration for verifying two-aircraft tactical conflict avoidance
strategies in air traffic control, in which the logic within each aircraft may
be uncertain about the possible actions of the other aircraft [1].

In order for the two vehicles to pursue their respective goals, they must be
able to affect their vehicles’ dynamic evolution in some manner. We use
the term inputs to refer to the free parameters in a system’s ODE that can
be modified to achieve some goal. For this particular game we allow each
player to choose an angular velocity ω ∈ [−1,+1]. To distinguish between
the two players’ inputs, we replace the variable ω by a ∈ A = [−1,+1]
for the evader’s input angular velocity and by b ∈ B = [−1,+1] for the
pursuer’s input angular velocity. The remaining parameters are fixed; for
the visualizations shown below their values are linear velocity v = 5 and
collision distance dc = 5.
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Figure 3: Notation for system trajectories and the backwards reachable set.

Because we are not interested in the absolute location of a collision, but
only in whether or not one will occur, we study the problem in relative
coordinates (see figure 2). Fixing the evader at the planar origin and facing
to the right, the model becomes:

ẋ =
d

dt





x1

x2

x3



 =





−v + v cosx3 + ax2

v sinx3 − ax1

b − a



 = f(x, a, b), (2)

where the three state dimensions are relative planar location
[

x1 x2

]T
∈ R

2

and relative heading x3 ∈ [0, 2π]. A collision occurs if
√

x2
1 + x2

2 ≤ dc for
any value of x3—in R

3 this collision set is a cylinder of radius dc centered on
the x3 axis. To solve this pursuit evasion game, we would like to determine
the set of initial states from which the pursuer can cause a collision despite
the best efforts of the evader.

2.2 Defining the Reachable Set

As was discussed previously, the backwards reachable set is the set of initial
conditions giving rise to trajectories that lead to some target set. More
formally, let G0 be the target set, G(τ) be the backwards reachable set over
finite horizon τ < ∞, x(·) denote a trajectory of the system, and x(τ) be
the state of that trajectory at time τ . Then G(τ) is the set of x(0) such that
x(σ) ∈ G0 for some σ ∈ [0, τ ] (see figure 3).

We partition any input parameters in the system’s dynamics into two sub-
sets: those inputs trying to reach the target set, and those inputs trying to
avoid it. The names we give these two subsets are based on the fact that in
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our examples the target set is usually a set of dangerous states. The control

inputs are those whose values we can choose to drive the system away from
the target set, while the disturbance inputs are those we conservatively as-
sume will take on a worst case value and drive the system toward the target
set. Control inputs will be designated by a (such as the evader’s input) and
disturbance inputs will be designated by b (such as the pursuer’s input).

The choice of input values over time influences how a trajectory x(·) evolves.
For systems with inputs, the backwards reachable set G(τ) is the set of x(0)
such that for every possible control input a there exists a disturbance input
b that results in x(σ) ∈ G0 for some σ ∈ [0, τ ]1

The solution to the pursuit evasion game described in section 2.1 is a back-
wards reachable set. Let the target set be the collision set

G0 =

{

x ∈ R
3|

√

x2
1 + x2

2 ≤ dc

}

. (3)

Then G(τ) is the set of initial configurations such that for any possible
control input chosen by the evader, the pursuer can generate a disturbance
input that leads to a collision within τ time units.

2.3 Computing the Reachable Set

Analytic determination of a reachable set is only possible in rare instances;
consequently, we have developed a numerical method to find these sets. We
have chosen to use the very general implicit surface function representation
for our reachable sets. To demonstrate this representation, consider the
cylindrical target set (3) for the collision avoidance example. We represent
this set as the zero sublevel set of a scalar function φ0(x) defined over the
state space

φ0(x) =
√

x2
1 + x2

2 − dc,

G0 =
{

x ∈ R
3|φ0(x) ≤ 0

}

.

In words, a point x is inside G0 if φ0(x) is negative, outside G0 if φ0(x) is
positive, and on the boundary of G0 if φ0(x) = 0.

Let the backwards reachable set G(τ) = Sτ (G(0)) = Sτ (G0), where the
Sτ (·) operator computes the backwards reachable set of its set valued ar-

1The control and disturbance inputs are technically signals over time, but here we refer
interchangeably to the signal over time and its instantaneous value. A formal discussion
of the admissible non-anticipative input sets and strategies is provided in [3].
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gument over time τ . In [3] we proved that Sτ (·) can be accomplished on
sets represented by an implicit surface function by solving the modified HJI
PDE

∂φ(x, t)

∂t
+ min [0,H(x,∇φ(x, t))] = 0, (4)

with t = −τ , Hamiltonian

H(x, p) = max
a∈A

min
b∈B

p · f(x, a, b), (5)

and terminal conditions
φ(x, 0) = φ0(x). (6)

If G0 is the zero sublevel set of φ0(x), then the zero sublevel set of the
viscosity solution φ(x, t) to (4)–(6) specifies the backwards reachable set as

G(τ) =
{

x ∈ R
3|φ(x,−τ) ≤ 0

}

. (7)

Notice that (4) is solved from time t = 0 backwards to some t = −τ ≤ 0.

There are several interesting points to make about the HJI PDE (4)–(6).
First, the min [0,H] formulation in (4) ensures that the reachable set only
grows as τ increases; thus, states labeled unsafe cannot become safe at some
later time. Second, the “max min” operation in the Hamiltonian (5) may
give a slight advantage to the disturbance, since it chooses a value second
and hence may observe the action of the control. In the examples presented
here the inputs are independent, but this choice of order is conservative in
those cases where order matters. Third, we show in [3] that the viscosity
solution is the correct weak solution of (4)–(6) to generate an implicit surface
representation of the reachable set. Therefore, we can draw on the well
developed numerical schemes of the level set literature to compute accurate
approximations of φ(x, t). Finally, the solution φ(x, t) can be used to create
a weakest safe controller : if the state is outside the reachable set, any control
policy for input a is safe, but on the boundary the control must choose the
optimal a from (5) to ensure that the system remains outside the reachable
set and hence to guarantee safety. In practice, we gradually introduce input
constraints as the system approaches the boundary to avoid a chattering
controller, using the distance and gradient information in φ(x, t).

To compute numerical approximations of the viscosity solution to (4)–(6),
we have developed a C++ implementation based on high resolution level set
methods (an excellent introduction to these schemes can be found in [8]). To
approximate ∇φ(x, t) we rely primarily on a fifth order accurate weighted,
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Figure 4: Growth of the reachable set (animation at [42]).

Figure 5: Other views of the reachable set (animation at [42].)

essentially non-oscillatory (WENO) stencil [37, 7], although we have also
implemented a basic first order scheme for speed [6, 38]. While upwinding
would be the least dissipative way to numerically approximate the Hamil-
tonian (5), the optimizations over a and b make it difficult to implement.
Instead, we use the well studied Lax-Friedrichs (LF) approximation [39, 40].
We have considered the Local Lax-Friedrichs and Roe with entropy fix nu-
merical approximations of the Hamiltonian [7], but neither demonstrated a
significant reduction in dissipation for our problems. We suspect that regu-
lar reinitialization of the level set function and the switching nature of the
optimal inputs a and b in (5) effectively reduces these more involved approx-
imations to the basic LF approximation in those regions where dissipation
must be introduced for stability (near shocks), while away from these regions
none of the schemes introduce significant dissipation. Finally, we treat the
time derivative in (4) with the method of lines and a second order total vari-
ation diminishing (TVD) Runge-Kutta scheme [41]. Although TVD schemes
of higher order are available, we found this one to be sufficiently accurate
for our purposes.

2.4 Collision Avoidance Example Results

We can apply this code to the collision avoidance problem. In figure 4, the
collision cylinder/target set G0 for the example appears on the far left; the
remaining images show how G(τ) grows as τ increases from zero. For the
parameters chosen in section 2.1, the reachable set converges to a fixed point
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Figure 6: Annotated frame from collision avoidance example animation.

Figure 7: Evader keeps pursuer from entering reachable set, and hence avoids
collision (animation at [42]).

for τ & 2.6. Figure 5 shows several views of this fixed point. Should the
pursuer start anywhere within this reachable set, it can cause a collision by
choosing an appropriate input b, no matter what input a the evader might
choose. Conversely, if the pursuer starts outside this reachable set, then
there exists an input a that the evader can choose that will avoid a collision
no matter what input b the pursuer might choose.

We can build some intuition for the shape of the reachable set in figure 5
by considering a few horizontal slices through it. The relative heading coor-
dinate x3 is the vertical coordinate in these images. The largest horizontal
slice of the reachable set lies at the vertical midpoint x3 = π, which is when
the two aircraft are flying in opposite directions. The horizontal slice at top
x3 = 0 or bottom x3 = 2π (which are equivalent) represents the case in
which the aircraft are flying in the same direction; this slice is nothing more
than the initial collision set.

Figure 6 shows an annotated frame from an animation of the collision sys-
tem, and a series of frames from that animation are shown in figure 7. The
evader starts on the left surrounded by the solid collision circle, while the
pursuer starts on the right. The dotted shape surrounding the evader is the
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Figure 8: Pursuer starts within the reachable set, and can thus cause a
collision despite the best efforts of the evader (animation at [42]).

slice of the reachable set for the current relative heading of the two vehi-
cles; for example, in the leftmost figure the vehicles have relative heading
x3 ≈ π and so the horizontal midplane slice of the reachable set is shown. By
choosing an appropriate input, the evader keeps the pursuer from entering
the reachable set and thus from causing a collision as time progresses from
left to right. Figure 8 shows a sequence in which the pursuer starts within
the reachable set and causes a collision.

The numerical techniques described here can be applied to general asym-
metric versions of this game; for example, cases in which the two vehicles’
linear velocities and/or their range of angular velocities are not identical.
For the special case of identical vehicles examined above, we can find an
analytic solution for points on the boundary of the reachable set. We have
used this solution to show convergence of our numerical approximation as
the computational grid is refined, and thus validate our implementation. For
more details, see [36].

3 Reachability Computation in Projections

The Hamilton-Jacobi-Isaacs formulation and level set solution described in
the previous section provide a computationally elegant method to determine
the set of reachable states of a continuous dynamic game. The main problem
with this method is the expense of computing the full reachable set. To
reduce this cost, we wish to represent a high dimensional reachable set as
the intersection of a collection of lower dimensional reachable sets. If we
can formulate a way to evolve the lower dimensional reachable sets—called
the projections—such that they are each an overapproximation of the full
reachable set, then their intersection will also be an overapproximation.
The key is to evolve the projections without referring explicitly to the full
dimension reachable set. It turns out that the HJI formulation provides this
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for free: in any projection, we simply augment the space of disturbances with
the unmodeled dimensions and form a new HJI PDE in a lower dimensional
space.

Throughout the remainder of the paper, we will consider for clarity the
specific case in which the true reachable set is of dimension three, and we
will work with a set of projections in two dimensional spaces spanned by
subsets of the coordinate axes. The generalization both to higher dimension,
as well as to projections of different dimension, is not theoretically difficult,
yet issues regarding the selection of projective subspaces are important, and
will be discussed following the presentation of an example.

3.1 Subspaces and Projections

We consider as state space R
3 spanned by its coordinate axes e1, e2 and e3.

Let Yi be the subspace spanned by coordinate axis ei, and Yij the subspace
spanned by coordinate axes ei and ej . Note that Y123 = R

3.

Define the projection operators:

• pi [x], which projects a point x ∈ R
3 into the subspace Yi, defined as:

pi [x] = xi.

• pij [x], which projects a point x ∈ R
3 into the subspace Yij , defined

as:

pij [x] =

[

xi

xj

]

.

We will sometimes write the pair
[

xi xj

]T
as xij.

• p
−1
ij [yij], which represents the back projection of the point yij ∈ Yij

into R
3, defined as:

p
−1
ij [yij] = {x ∈ R

3|pij [x] = yij}.

Note that p
−1
ij [yij ] is a subset of R

3.

We will sometimes abuse notation by applying these operators to sets instead
of points. For example, if X ⊂ R

3, then the projection of X into Yij is
represented as

pij [X ] = {yij ∈ Yij |∃x ∈ X with pij [x] = yij}.
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As defined in (7), we represent the true, full dimensional reachable set G(t) as
the zero sublevel set of the scalar function φ(x, t). In subsequent discussions
we will have reason to refer to sublevel sets other than the zero sublevel set.
In those cases we use a superscript to denote the particular sublevel set in
which we are interested—for some constant d ∈ R,

Gd(t) =
{

x ∈ R
3|φ(x, t) ≤ d

}

.

The projections’ reachable sets are represented by implicit surface functions
defined in their respective subspaces

Yij(t) = {yij ∈ Yij|φij(yij , t) ≤ 0},

where φij : Yij × R → R. The intersection of the projections is given by

X (t) =

3
⋂

i=1

3
⋂

j=i+1

p
−1
ij [Yij(t)]

= {x ∈ X|pij [x] ∈ Yij(t) for i, j ∈ {1, 2, 3}, j > i},

= {x ∈ X|φij(pij [x] , t) ≤ 0 for i, j ∈ {1, 2, 3}, j > i}.

(8)

Notice that p
−1
ij [Yij(t)] will be a prism in R

3 whose cross section is Yij(t);

for example, p
−1
12 [Y12(t)] is a prism aligned with the e3 axis whose cross

section in the e1-e2 plane is Y12(t). Therefore, X (t) from (8) is simply the
intersection of three orthogonal prisms.

We overload the projection operators to apply them to implicit surface func-
tions. First, define the depth of a point yij ∈ Yij as

D(yij, t) = min
x∈p

−1

ij [yij ]
φ(x, t).

There are a number of possible ways to define a projection of the full di-
mensional function φ(x, t), but we will use the depth operator:

pij [φ] : Yij × R → R, pij [φ] (yij, t) = D(yij , t). (9)

With this definition,

G(t) =
{

x ∈ R
3|φ(x, t) ≤ 0

}

=⇒ pij [G(t)] = {yij ∈ Yij |pij [φ] (yij, t) ≤ 0} .

The inverse projection for the implicit surface function of a subspace is easier
to define

p
−1
ij [φij ] : R

3 × R → R, p
−1
ij [φij ] (x, t) = φij(pij [x] , t). (10)

Under this definition, p
−1
ij [φij ] (x, t) is an implicit surface function in R

3 for

the prism p
−1
ij [Yij ] aligned normal to the ei-ej plane whose cross section is

Yij(t).
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3.2 The Linear Rotation Example

To illustrate these definitions and the projection evolution procedure, we use
a simple example involving purely rotational dynamics (about the e3 axis)
and no inputs. The dynamics are given by the linear rigid body rotation

ẋ = Ax = f(x), (11)

with x ∈ R
3 and A ∈ R

3×3

A = π





0 −1 0
1 0 0
0 0 0





For this example, we will compute the forward evolution of the initial set un-
der the rotation rather than a forwards or backwards reachable set, because
it is easier to visualize the progress of this evolution and its projections. The
entire region swept out by this evolution would be the forwards reachable
set. If the initial set is represented implicitly by φ0(x), we can compute the
evolution of this initial set by solving a regular HJI PDE forward in time
(note that t ≥ 0 in this case)

∂φ(x, t)

∂t
+ H(x,∇φ(x, t)) = 0,

φ(x, 0) = φ0(x),

H(x, p) = p · f(x).

(12)

The projection based overapproximation method outlined below will assume
that St (·) set evolution is accomplished with the forward time PDE (12).
The method can be directly adapted to the computation of regular reachable
sets by instead using (4)–(6) for Sτ (·) set evolution.

For the purposes of this example, let G0 be our initial set and G(t) be the
same set rotated under (11) for time t (in the future we will call G(t) a reach-
able set, even though it is only a forward time evolution in this particular
example). The dynamics are scaled such that G(2) = G(0) = G0. Ideally,
we would like G0 to be a sphere of radius r = 0.30 centered at the point

c =
[

0.00 0.55 0.00
]T

. Solving for the viscosity solution φ(x, t) of (12)
with f(x) from (11) and

φ0(x) =
√

(x1 − c1)2 + (x2 − c2)2 + (x3 − c3)2 − r (13)

would generate an implicit surface representation of G(t), but would require
solving (12) over three spatial dimensions. To reduce computational costs,
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Figure 9: Initial projection sets.

we will instead seek a method of overapproximating G0 and G(t) that requires
solving PDEs in only two spatial dimensions.

We work on three separate two dimensional projections into the subspaces
Y12, Y13, and Y23. The corresponding reachable sets are Y12(t), Y13(t),
and Y23(t). The initial sets Yij(0) for each of these subspace reachability
problems are constructed by projecting the full dimensional initial sphere
G0 down into the subspace as Yij(0) = pij [G0]. These Yij(0) and their
intersection X (0) are shown in figure 9. Since X (0) is restricted by our
projective geometry to be the intersection of three axis aligned prisms, it is
unavoidably an overapproximation of the initial sphere G0.

3.3 Evolving a Projection

Our goal in this section is to develop an HJI PDE which can be applied in a
lower dimensional subspace to evolve an overapproximative projection of the
true reachable set, thus avoiding the need to solve an expensive full dimen-
sional PDE. First, however, we look at how to evolve an overapproximative
projection using a PDE defined over the full dimensional space.
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Focus on a single projection whose index is ij, and denote the index of the
unmodeled dimension as k. If Yij(t) is an overapproximative projection of
G(t), then G(t) ⊆ p

−1
ij [Yij(t)]. Conceptually, Yij(t) could be evolved by an

inverse projection into R
3, evolution by δt and projection back down into

Yij , written as

Yij(t + δt) = pij

[

Sδt

(

p
−1
ij [Yij(t)]

)]

(14)

Then
G(t) ⊆ p

−1
ij [Yij(t)] =⇒ Sδt (G(t)) ⊆ Sδt

(

p
−1
ij [Yij(t)]

)

,

=⇒ pij [G(t + δt)] ⊆ Yij(t + δt).

Consequently, we can ensure that Yij(t) remains an overapproximative pro-
jection of G(t) provided that we can perform the three steps of (14) on our
implicit surface function representation φij(x, t) of Yij(t). Projection is ac-
complished by (9) and inverse projection by (10). For this example Sδt (·)
is accomplished in R

3 by solving (12). Let

p(x) = ∇
(

p
−1
ij [φij ] (x, t)

)

,

and pi(x), pj(x) and pk(x) be its components. Since p
−1
ij [Yij(t)] is a prism in

R
3, pk(x) = 0 for all x ∈ R

3; furthermore, pi(x) and pj(x) are independent
of xk. Examining the Hamiltonian of (12) more closely

H(x, p(x)) =p(x) · f(x),

=pi(xi, xj , xk)fi(xi, xj , xk) + pj(xi, xj , xk)fj(xi, xj , xk)

+ pk(xi, xj , xk)fk(xi, xj , xk),

=pi(xi, xj)fi(xi, xj , xk) + pj(xi, xj)fj(xi, xj , xk).

Thus, the only dependence of the Hamiltonian (and thus the time evolution
in general) on dimension k is through the xk dependence in fi and fj. Ge-
ometrically, this dependence will manifest itself as a rotation of the prism
p
−1
ij [Yij(t)] so that it is no longer parallel to ek. When this rotated prism is

projected back down into Yij, the projection’s boundary will be determined
by those parts of the prism that rotated the most. Maximum rotation occurs
where the flow field is most closely aligned with the outward normal of the
initial prism—precisely those states x where p(x) · f(x) is minimized (the
gradient p(x) points in the direction of the inward normal).

From this argument, we deduce that using the modified Hamiltonian

H ′(x, p(x)) = min
xk

pi(xi, xj)fi(xi, xj, xk) + pj(xi, xj)fj(xi, xj , xk) (15)
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in (12) for all x ∈ R
3 will not modify the projection into Yij of the time

evolved prism. Although the time evolved prism itself would not be the
same, in the end we are only concerned with its projection.

The only reason that one would have to work with the projective overap-
proximation in R

3 would be the dependence of the time evolution operation
Sδt (·) on the missing dimension xk. After substituting the Hamiltonian (15)
into the evolution PDE (12), Sδt (·) no longer has any dependence on xk,
and we can therefore work entirely in the lower dimensional Yij.

The final concern is how to bound the range of xk when minimizing in (15).
We know that xk ∈ Yk, but minimizing over such an unbounded range could
lead to a negative value of arbitrarily large magnitude for (15). Fortunately,
we have access to some sets within which all feasible reachable states should
lie. If it were available, G(t) would provide a tight bound on possible values
of xk. In practice, we will have to settle for the overapproximation X (t);
however, expanding the interval of feasible xk by using X (t) instead of G(t)
can only cause the Hamiltonian (15) to be more negative and hence Yij(t)
to grow more than necessary during the time evolution step. Since Yij(t)
was an overapproximative projection of G(t) to begin with, further growth
cannot cause the overapproximation to fail.

To formalize the bounds on xk, define the set valued slice function for some
M ⊂ R

3 and yij ∈ Yij as

Fk(M, yij) = {yk ∈ Yk|∃x ∈ M with pij [x] = yij and pk [x] = yk},

= {pk [x] ∈ Yk|x ∈ p
−1
ij [yij] ∩M}.

(16)

In words, Fk(M, yij) is a slice through M along the subspace Yk at the
point yij; its value will therefore be an interval in Yk. If M is described
by the zero sublevel set of function φM : R

3 → R, then we can write a
mathematical description of Fk

Fk(M, yij) = {yk ∈ Yk|φM(yi, yj, yk) ≤ 0}. (17)

Given this definition, we can formulate a time evolution HJI PDE operating
entirely in Yij for the implicit surface function φij(yij , t) of the overapprox-
imative projection Yij(t). Instead of (12), use

∂φij(yij , t)

∂t
+ H(yij ,∇φij(yij, t)) = 0,

φij(yij, 0) = pij [φ0] (yij),
(18)
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for those yij ∈ pij [X (t)], with Hamiltonian

H(yij, p) = min
yk∈Fk(M,yij)

pifi(yi, yj, yk) + pjfj(yi, yj, yk), (19)

where M is either G(t) or X (t).

The derivation above is informal, but its conclusion has a fascinating im-
plication. Comparing (19) with (5), we see that the unmodeled dimension
is in effect a disturbance input to the dynamics in the lower dimensional
subspace.

This observation leads to an alternative interpretation of (18) and (19). For
the linear rotation example, G(t) is the set of trajectory points x(t) for
those trajectories with initial points x(0) ∈ G0. If Yij(t) is to be a pro-
jective overapproximation of G(t), then Yij(t) must contain pij [x(t)] for all
these trajectories. Consider any time s ∈ [0, t] and the point x(s) along
the full dimensional trajectory. By choosing the unmodeled dimension yk

from the set Fk(G(s), yij), we allow yk = pk [x(s)]. Therefore pij [ẋ(s)] =
pij [f(pi [x(s)] , pj [x(s)] , pk [x(s)])] will be among the possible flow fields for
the subspace’s dynamics. Since s was arbitrary, pij [x(·)] is a feasible trajec-
tory of the subspace’s dynamic system, and so pij [x(t)] ∈ Yij(t).

Conjecture. Let G(t) be time evolved by some HJI PDE in R
3 and Yij(t)

by some HJI PDE in Yij. If the unmodeled dimension xk ∈ Yk of the full

dimensional system dynamics ẋ = f(x) is treated as a disturbance input to

the subspace’s dynamics, then

pij [G(t)] ⊆ Yij(t),

where that input xk is drawn from a slice Fk(M, yij) of an appropriate M
for points yij ∈ Yij.

We initially formulated this conjecture based on our numerical success in
computing overapproximating projections. Sections 3.4 and 3.5 showcase
some of those results. In the remainder of this section we outline what might
be required to prove the conjecture, and then discuss some implementation
details.

If M = G(t), proving the conjecture requires showing that Fk(G(t), yij) is
a valid set from which to draw disturbance inputs such that the viscosity
solution of the appropriate HJI PDE (either (18)–(19) or (4)–(6)) will still
result in the reachable set in which we are interested. The problem is that
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the input constraint set Fk(G(t), yij) depends on both time t and state yij.
In [3] we turned the computation of backwards reachable sets into a ter-
minal payoff differential game, and used results in [10] to show that the
differential game could be solved with an HJI PDE; however, those results
assumed that the control and disturbance input constraint sets were con-
stant. State dependent input constraints were investigated in [43], but only
for the optimal control case (no disturbance inputs). It is not clear whether
a differential game with time and state dependent input constraints would
satisfy a dynamic programming principle. Without satisfying such a princi-
ple, it is unlikely that the viscosity solution of an HJI PDE would solve the
differential game.

However, in practical terms, we do not have access to G(t) and must use
M = X (t). To prove the conjecture in this case would require the additional
step of showing that

G(t) ⊆ X (t) =⇒ Sδt (G(t)) ⊆ Sδt (X (t)) .

We are currently investigating methods of proving or disproving the con-
jecture. In addition, we are concentrating our efforts on implementation
of the projection technique, in order to determine whether it can be ap-
plied to practical problems. A number of implementation details arise when
solving (18) and (19), of which we briefly describe the three most important.

• In practice, the unmodeled dimension should be chosen from a slightly
bloated version of X (t) to avoid the chance that Fk(X (t), yij) = ∅ for
some yij on the boundary of Yij(t). Choosing d as a small multiple of
the grid spacing, we use Fk(X

d(t), yij) instead.

• The computational domain in Yij is always larger than Yij(t). Assum-
ing that d is chosen to be relatively small (to avoid excessive overap-
proximation), for those yij /∈ pij

[

X d(t)
]

, we will still get Fk(X
d(t), yij) =

∅. One way of solving (18) and (19) in those cases is to use velocity
extension [44] to extend the vector field artificially into Yij(t)

{.

• Some projections approximate the reachable set better than others;
however, each projection is individually an overapproximation of the
reachable set, so if pi [Yij(t)] ⊂ pi [Yik(t)], then we know that the extra
range in pi [Yik(t)] is not actually feasible. Thus, we can clip Yik(t)
along dimension xi until pi [Yij(t)] = pi [Yik(t)]. More generally, we
can safely clip any portions of Yij(t) which lie outside of pij [X (t)].
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Without this clipping process, poorly behaved projections can quickly
grow larger than practical computational domains.

3.4 Evolving the Linear Rotation Example’s Projections

The presentation in the previous section was somewhat abstract, so in this
section we will apply the algorithm to the example from section 3.2. Con-
sider how to evolve the initial projective overapproximation Y13(0). From (9)
and (13)

φ13(x1, x3, 0) =
√

(x1 − c1)2 + (x3 − c3)2 − r,

which is a circle in Y13. We can evolve Y13(t) by solving the HJI PDE

∂φ13(x1, x3, t)

∂t
+ H

(

x1, x3,
∂φ13(x1, x3, t)

∂x1
,
∂φ13(x1, x3, t)

∂x3

)

= 0, (20)

with Hamiltonian (using the dynamics (11))

H(x1, x3, p1, p3) = min
x2∈F2(X (t),x1 ,x3)

π(−p1x2 + p30). (21)

While F2(X (t), x1, x3) is a set valued function of x1 and x3, for illustration
we can describe its value (an interval of Y2) at a few points for t = 0 based
upon (9) and (13)

F2(X (0), 0, 0) = [c2 − r, c2 + r],

F2(X (0), r, 0) = [c2, c2].

Similar PDEs are used for Y12(t) and Y23(t).

Figure 10 shows the results of applying the projective evolution algorithm
to the linear rotation example. The upper left figure shows the initial condi-
tions and is the same as figure 9. The remaining subplots show the progress
of the overapproximation through a half rotation of the dynamics. By t = 1,
the projection Y13(t) has grown from its initial circle into a rectangle. This
growth occurs because of the freedom in choosing x2 in (21). Similar growth
occurs in Y23(t) because there is freedom in choosing x1 for the dynamics
in Y23. In contrast, Y12(t) remains a circle, because the free dimension x3

in Y12 has no effect on the dynamics (11). In fact, Y13(t) and Y23(t) would
grow larger than the squares shown were it not for the clipping procedure
mentioned in the previous section. Figure 11 compares X (t) with the true
reachable set G(t) at a variety of times in a closer view. As advertised,
G(t) ⊆ X (t).
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Figure 10: Evolution of the linear rotation example’s projective overapprox-
imations Yij(t) (contours on the walls) and X (t) (solid object).

3.5 Solving the Collision Avoidance Example Projectively

In this section we examine the projective overapproximation algorithm’s
application to the reachable set problem from section 2.1. We will use the
single projection into the relative location plane Y12. Because the unmodeled
dimension—the relative heading x3—is already restricted to Y3 = [0, 2π],
there is no need to keep track of any other projections. We simply solve

∂φ12(y12, t)

∂t
+ min [0,H(y12,∇φ12(y12, t))] = 0,

with Hamiltonian

H(y12, p) = max
a∈A

min
b∈B

min
y3∈Y3

p1f1(y1, y2, y3, a, b) + p2f2(y1, y2, y3, a, b)
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Figure 11: Comparing the projection based approximation X (t) (mesh) to
the true reachable set G(t) (solid) at several times.

(where f(x, a, b) is given by (2)) and terminal conditions

φ(y12, 0) =
√

y2
1 + y2

2 − dc.

The leftmost subplot of figure 12 shows the initial capture circle Y12(0),
while the remaining subplots show the growth of Y12(t) until it converges
to a fixed point Y12 in the rightmost for t & 2.6. Figure 13 compares the
overapproximation of the reachable set p

−1
12 [Y12] to the true reachable set

G from two angles. Although p
−1
12 [Y12] is significantly larger than G, in the
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Figure 12: Growth of Y12(t) for the collision avoidance example.
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Figure 13: Two views comparing the true reachable set G (solid) with the
back projection p

−1
12 [Y12] of the approximation (mesh).

Figure 14: Evader keeps pursuer from entering the projective overapproxi-
mation Y12 of the reachable set, and hence conservatively avoids collision.

left hand view it can be seen that to within grid resolution, Y12 = p12 [G],
which is the best that any projective representation could hope to achieve.
The real payoff is computational time. While the full dimensional reachable
set G takes about 20 minutes to compute on a three dimensional grid, the
projective overapproximation Y12 takes less than one minute on a higher
resolution two dimensional grid.

Figure 14 shows a series of frames from an animation of the collision avoid-
ance scenario when the evader uses the projective overapproximation Y12 of
the backwards reachable set. When comparing figure 14 to figure 7, notice
that the slice of reachable set in the frames of figure 14 does not depend on
relative heading, since that is the unmodeled dimension in the projection.
By construction, the evader can keep the pursuer from entering Y12, and
as long as the pursuer does not enter a collision is impossible. Using Y12

is a conservative strategy—it is an overapproximation of the true reachable
set—but it is guaranteed to be safe, and in the event that model parame-
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ters change, it can be recomputed much more rapidly than the true three
dimensional reachable set.

4 Discussion

While the outline of the projective overapproximation algorithm above was
specific to projecting a three dimensional space into coordinate aligned two
dimensional subspaces, the power of this HJI based approach is that it can
be generalized so easily. Both the full dimensional space and the projection
subspaces can be higher dimensional. The projection subspaces need not
be aligned with the coordinate axes, nor need all subspaces be of the same
dimension; in fact, there are systems in which it might be useful to allow
the projection subspaces to change smoothly with time. In a projection
with multiple unmodeled dimensions, all the unmodeled dimensions would
be treated as a disturbance input vector constrained by the appropriate
projection of X (t) into the subspace spanned by the unmodeled dimensions.
There is no theoretical reason to constrain the number of projections—for
example, we could add to the linear rotation problem a projection into the
subspace whose coordinate axes are e1 + e3 and e1 − e3, if we thought that
such a projection would help restrict excessive overapproximation in X (t).
The only constraints are implementation complexity and computational re-
sources.

All this flexibility in the choice of projections leads to the question of how
to choose appropriate projections for a particular system. For the linear
rotation example, the natural coordinate axis projections turned out to be
very effective (see section 3.4). In particular, the Y12 projection captured
the relevant system dynamics and thus constrained the other two less ef-
fective projections through the clipping procedure. We can simulate the
effect of poorly chosen projections by using the same three coordinate axis
aligned projections, but rotating the system dynamics counterclockwise by
45◦ around the e1 axis. To do that, replace the matrix A in (11) by

A′ = GAGT ,

where

G =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 ,
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Figure 15: Evolution of the linear rotation example with poorly chosen
projections.

and θ = π/4. Figure 15 shows the growth of the projective reachable set X (t)
for this version of the linear rotation example. Comparing it with figure 10
we can see how much greater the overapproximation becomes when none of
the projections capture the system’s dynamics.

There is also some concern, based on results from topology, that the pro-
jections’ evolution may be pathological even if the true reachable set is well
behaved under the system’s dynamics. While we believe that this problem
is unlikely to occur in practice when we are working with X (t)—which is an
intersection of prisms derived from the projections themselves—we are still
investigating techniques for identifying appropriate projections for general
systems.

The idea of subspace projections works well when we are trying to overap-
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Figure 16: A square overapproximating the unit circle in z space becomes a
cloverleaf underapproximating the same circle in x space.

proximate reachable sets, because inverting these projections back up into
the full dimensional space generates a prism overapproximating the true
reachable set. There are problems in which we wish to underapproximate
the reachable set; for example, in aircraft envelope protection [5], safety re-
quires that we stay within the flight envelope. If we are going to approximate
that envelope we need an underapproximation, since an overapproximation
would incorrectly mark as safe some states outside the true envelope. Safe
flight envelopes are just one example of controlled invariant sets, and to
compute these sets we need underapproximations of the true reachable set.

The projection scheme outlined above cannot directly compute underap-
proximations, since the back projected prisms are unbounded in the pro-
jection’s unmodeled dimensions; thus, those prisms could never represent
underapproximations of the true reachable set. We are instead investigating
a coordinate inversion that could turn overapproximations into underap-
proximations. Consider underapproximating a circle centered at the origin
in R

2 by a pair of one dimensional projections (intervals of R). Map x ∈ R
2

to z ∈ R
2 through the transformation

zi =
xi

‖x‖2
2

. (22)

While the circle stays a circle, this transformation could be applied to more
general shapes by transformation of their implicit surface function represen-
tation, provided that the coordinate origin did not lie on the boundary of
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the shape (we could shift the origin if it did). System dynamics can like-
wise be mapped through this nonlinear transformation, so that reachability
could be calculated in the transformed coordinates. Now build a projective
overapproximation of the circle in z space, using projections onto the coor-
dinate axes. The left side of figure 16 shows the slabs that are the inverse
projections of the two overapproximating intervals. The intersection of these
two slabs is a square overapproximating the circle. The key observation is
that we can invert (22) back into the original coordinate frame, and in the
process the overapproximation in z space becomes an underapproximation
in x space—the square that was an intersection of slabs becomes a cloverleaf
made from a union of circles. The right side of figure 16 shows this underap-
proximation of the circle. The gray points on the left side map to the gray
points on the right, and lie in the region of each state space that would be
considered unsafe in an envelope protection problem. If the circle represents
the true safe flight envelope, notice that the projective safe region (no gray
points) on the left is an underapproximation of the true safe region.

Projective schemes based on Hamilton-Jacobi-Isaacs equations are a pow-
erful way to tackle Bellman’s “curse of dimensionality” and calculate ap-
proximations to reachable sets for systems larger than dimension two or
three. The goal of this paper was to present motivation for and a gentle
introduction to the computation of reachable sets, and to outline the basic
ideas behind projective approximation algorithms. We continue to work on
the many remaining theoretical and implementation details, and hope that
this paper will stimulate further innovation in accurate, scalable schemes for
calculating approximations of reachable sets.
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