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Abstract— Smart powered wheelchairs offer the possibility
of enhanced mobility to a large and growing population—
most notably older adults—and a key feature of such a chair
is collision avoidance. Sensors are required to detect nearby
obstacles; however, complete sensor coverage of the immediate
neighbourhood is challenging for reasons including financial,
computational, aesthetic, user identity and sensor reliability. It
is also desirable to predict the future motion of the wheelchair
based on potential input signals; however, direct modeling and
control of commercial wheelchairs is not possible because of
proprietary internals and interfaces. In this paper we design a
dynamic egocentric occupancy map which maintains informa-
tion about local obstacles even when they are outside the field
of view of the sensor system, and we construct a neural network
model of the mapping between joystick inputs and wheelchair
motion. Using this map and model infrastructure, we can
evaluate a variety of risk assessment metrics for collaborative
control of a smart wheelchair. One such metric is demonstrated
on a wheelchair with a single RGB-D camera in two scenarios:
a doorway traversal where the near edge of the doorframe
is no longer visible to the camera as the chair makes its
turn, and a longer navigation through a typical cluttered office
environment.

I. INTRODUCTION

Mobility impairment is becoming increasingly common as
the population ages, and a lack of mobility can lead to a host
of further social, mental and physical impairments. Powered
wheelchairs (PWCs) can greatly improve the mobility of
those who are unable to self-propel in manual wheelchairs;
however, existing PWC technology is often inappropriate for
users with, for example, low vision, hemispatial neglect,
spasticity, tremors, dementia, severe Alzheimers, or other
cognitive impairment because they may not be able to
safely drive these large, heavy and powerful machines [1].
Smart PWCs seek to overcome this limitation and could
benefit a sizeable population [2]. Considerable progress has
been made in fully autonomous PWC navigation, but there
are populations for which full autonomy is undesirable;
for example, older adults with cognitive impairments can
become quite agitated when the PWC seems to act on its own
initiative [3]. Consequently, recent efforts have focused on
smart PWCs which can constantly yet seamlessly collaborate
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with the user to accomplish his or her goals. In the context
of this paper, the goal of the shared control is minimal
intervention in the user’s commanded motion while still
avoiding collisions.

Because the majority of PWCs are purchased through in-
surance or public health care plans with significant pressures
to reduce expenses, a critical factor in the success of any
commercial intelligent PWC will be the cost of sensors. With
manufacturer and retailer markups totalling several hundred
percent on parts, few payers will be willing to cover the
cost of surrounding a power wheelchair with a suite of laser
rangefinders (LRFs). For cost purposes, currently available
small and cheap RGB-D cameras (such as the KinectTM ) are
an appealing alternative to LRFs. However, cameras have
much narrower fields of view (less than 60◦ for the Kinect)
than LRFs (typically 120◦–180◦), and camera systems gen-
erate much more data than 2D LRFs; for example, a single
Kinect nearly saturates a typical laptop’s peripheral bus.
Even if it were financially and/or computationally practical
to completely surround a PWC with LRFs and/or cameras, it
is likely that the resulting system’s halo of sensors would be
unappealing to potential users, both for aesthetic reasons [4]
and due to the potential for stigmatization [5].

Consequently, full sensor coverage in a smart PWC system
is an essentially unattainable goal, and gaps in coverage
can lead to collisions. As an example, a system with a
front-facing stereo vision camera was tested with cognitively
impaired older adults in [3]. The camera’s narrow field of
view led to a common failure mode during the trials: The
participant would drive the PWC parallel to a wall (for
example, down a corridor) until it was close enough to a
corner or doorway that the camera could no longer see the
adjacent wall; if the participant then made too tight a turn
the footrest or side of the PWC would hit the corner or
doorframe (see figure 2 for an illustration of this moment).

In this paper we describe a system which can construct
a collision risk assessment for short-term trajectories of the
PWC which may steer it into regions not currently visible
to the sensor system. We adapt a probabilistic mapping
technique [6] to construct an egocentric local occupancy map
which surrounds the PWC and thereby provides information
about (static) obstacles outside the sensor field of view.

In addition to the local obstacle map, a key requirement for
risk assessment is accurate modeling of future trajectories.
Owing to the proprietary design of most PWCs, it is often
infeasible to interact directly with the underlying control
system. To work around this constraint we construct a neural
net model mapping joystick motion to PWC motion.



Given a map and a method to simulate the trajectory that
will be generated by a particular choice of input signal, there
are many approaches to assess risk. In a fully autonomous
system, this process is relatively straightforward: choose an
input signal which has a low risk of collision. In contrast, in
a shared control system the user’s (relatively unpredictable)
input must be taken into account; therefore, the method for
assessing risk must consider both the user’s capabilities and
the ways in which the system is willing to intervene if the
risk becomes too great. For the purposes of the experiments
in this paper we propose a straw man risk assessment to
demonstrate the technique. We expect that the choice of
risk assessment would depend on operator diagnosis, and
therefore we focus our efforts here on mapping and modeling
algorithms on top of which a variety of risk assessments can
easily be constructed.

With that goal in mind, the contribution of this paper is
a system through which a measure of the short-term risk of
collision with nearby objects can be evaluated using only
a single, low-cost, discreetly mounted RGB-D camera and
without detailed knowledge of or access to the PWC control
system. This task is accomplished by maintaining an efficient
egocentric probabilistic occupancy map (to overcome the
camera’s narrow field of view) and constructing a neural
network model of PWC motion (to simulate the response of
the PWC to the user’s chosen inputs). This map and model
infrastructure can easily be modified to handle additional
sensors and/or different PWCs.

A. Related Work on Smart Wheelchairs

Research on smart PWCs has a long and broad history,
so we focus here on relatively recent work. In particular, a
number of prototypes that attempt to provide safe locomotion
and navigation to users with cognitive impairments have
been described, and they use a range of sensor systems
including sonars [7], [8], infrared sensors [8], LRFs [8]–[12],
stereo vision cameras [3], and omnidirectional stereo vision
cameras [13]. In all of these systems the mounting location
for the sensor(s) is chosen to maximize effectiveness, rather
than unobtrustive or aesthetically pleasing locations. Broad
consumer and payer acceptance of smart PWC products will
eventually demand a minimum of sensors placed in less than
ideal locations, and our focus here is on mechanisms to
evaluate risk of collision despite the resulting limited sensor
coverage.

II. HARDWARE AND SOFTWARE PLATFORM

The system described below is implemented in ROS [14]
(Fuerte Turtle release) on top of an Ubuntu version 12.04LTS
host OS. The custom code we developed1 is entirely written
in Python. The runtime hardware is a Lenovo W530 laptop
with Intel R© CoreTM i7-3720QM processor at 2.6 GHz, 8GB
main memory and a 120GB solid state drive. During execu-
tion (without visualization) our system uses approximately
0.1GB memory and 30% of the CPU while grabbing camera
data at roughly 20 frames per second.

1Available at http://code.google.com/p/ubc-canwheel/

(a) PWC with the sen-
sor mounted underneath the
base.

(b) Close-up view of the
RGB-D sensor highlighted
with a white rectangle.

Fig. 1: Photos of our PWC.
Our PWC is a Quickie R© Rhythm modified by AT Sciences

to include their Drive Safe collision avoidance system [15]
and custom rotary encoders on the electric motor driveshafts
that we use for odometry measurement. The only component
of the Drive Safe system that we use in the research described
here is the CANBus to USB interface, which allows us to
read the odometers and the joystick and write joystick-like
commands to the PWC’s motor controller (we have removed
the non-embedded components of the Drive Safe software,
as well as the infrared, sonar and bump sensor pods which
surrounded the PWC). Our sensor is an Asus Xtion Pro
Live RGB-D camera connected to the laptop through a USB
2.0 bus. The camera is mounted almost invisibly below the
battery enclosure, looking forward from under the footrests.
Figure 1 shows both the PWC and a close-up identifying the
location of the camera.

III. BUILDING AN EGOCENTRIC LOCAL MAP

Robust mapping techniques for obstacle representation and
robot navigation in unstructured and unknown environments
have taken different forms over the years. From Vector Field
Histograms [16] to Dynamic Windows [17] to occupancy
grid maps (for example, see [6]), each adopt a distinct
obstacle representation that is well suited to their more
primary tasks—navigation and obstacle avoidance in most
cases. Unlike autonomous navigation, however, our goal is
not to find the best trajectory, to find the set of feasible
trajectories, or even to reject a subset of trajectories as
infeasible; rather we seek a way to measure some risk
function for any possible trajectory of the PWC.

Because our goal is to evaluate the risk associated with
short-term trajectories, we construct an egocentric occupancy
map: the origin of the map coordinate system is always
centered on the camera. We furthermore represent the map
in a polar coordinate system with angle φ ∈ [−π,+π],
where φ = 0 is directly in front of the PWC, and radial
distance ρ ≥ 0. The map is stored on a curvilinear grid
generated by a tensor product of samples in φ and ρ (the
white, grey and black dots in figure 2). The φ samples are
equally spaced over the interval [−π,+π]. The ρ samples are
drawn from an interval [ρmin, ρmax] where ρmin is chosen



(a) Polar map representation be-
fore reaching the corner and
while the adjacent wall is still
in the perceptual field.

(b) Polar map representation
where the adjacent wall is not
in the field of view.

Fig. 2: Screenshot of the polar map with actual boundaries
(walls) and field of view superimposed on top. White dots
correspond to empty spaces, grey dots correspond to un-
known cells and darker dots correspond to occupied cells.
Dark blue dots are the raw range readings.

such that all points ρ < ρmin would be within the PWC
and ρmax is chosen based on the maximum range of the
RGB-D camera. Furthermore, the spacing of samples in the ρ
direction grows quadratically, to match both the degradation
of accuracy of the camera’s depth readings as the distance
to obstacles grows as well as the decreased importance of
distant obstacles in the short-term risk assessment process.

The egocentric map requires that the entire map is updated
whenever the chair moves, but there is no need to maintain
a localization estimate within the map. While updating the
map is as much as or slightly more expensive than updating
a typical localization estimate, a significant computational
benefit accrues during the simulation of future trajectories
for risk assessment: There is no need to deal with uncertainty
in the initial position from which these trajectories start. We
choose the polar coordinate system because updates from
the camera (or any range sensor at the origin) are cheap to
apply to the map—a distance reading in a particular direction
updates all ρ values for the corresponding φ—and movement
updates are no more expensive than they would be in a
rectangular coordinate system.

The algorithm for maintaining the map follows a fairly
standard approach [6] with minor modifications to account
for limited sensor coverage and the fact that the egocentric
map can change due to either obstacle or PWC movement.
At each node in the map (ρ, φ) we maintain a log odds ratio

lt(ρ, φ) =
p(mt(ρ, φ)|mt−1, zt, ut)

1− p(mt(ρ, φ)|mt−1, zt, ut)

where p(mt(ρ, φ)|mt−1, zt, ut) is the probability that the
location (ρ, φ) is occupied at time t given the previous map
mt−1, the most recent sensor reading zt and the most recent
movement ut. A binary Bayes filter is used to update the
log odds ratio every time a new sensor reading arrives or
movement is performed. Full details can be found in [18].

Figure 2 shows a visualization of the mapping results for
a scenario with limited sensor coverage while navigating a

corner. The dots in concentric circles are the map nodes;
white corresponds to nodes with low log-odds of being
obstacles, black to high log-odds, and grey to intermediate
log-odds. The blue dots are raw sensor readings from a single
camera frame. The wheelchair (grey rectangle), camera field
of view (crosshatched cone) and corridor walls (blue grey
lines) are overlayed for the convenience of the reader;
only the map nodes and sensor readings are known to the
algorithm. Not surprisingly the map shows appropriate colors
for nodes lying within the sensor’s field of view; however, its
key feature is that in the right subfigure it likewise correctly
shows nodes which are black under the left corridor wall and
white just inside the doorway, even though these nodes are
not within the camera’s current field of view (nodes further
through the doorway remain grey because they were never
viewed by the camera).

IV. RISK ASSESSMENT

Because the appropriate measure of and response to risk
in a collaboratively controlled PWC may be diagnosis and
even user specific, our goal in this paper is not to propose a
particular approach to risk assessment, but rather to construct
components from which a variety of assessments can be built.

The fundamental tool for constructing a risk assessment
in this framework is the simulation of the PWC’s future
pose (i.e. xt+1) through the local map mt. To that effect, a
neural network is trained using empirical data collected from
approximately 60 minutes of driving, which uses (i) current
joystick position vt, (ii) change in joystick position since last
sample δvt = vt−vt−1 (to account for control system delay),
(iii) wheel rotation since last sample ut (a proxy for PWC
velocity), and (iv) change in wheel rotation since last sample
δut = ut−ut−1 (a proxy for PWC acceleration), to estimate
(left and right) wheel rotations at the next sample time
ut+1 = f(vt, δvt, ut, δut). For convenience, we will assume
that both functions are discrete time with a constant sampling
period (e.g.: 200ms – details can be found in [18]). The PWC
has nontrivial size, so at each sample of the simulation it
will overlap with some subset of the map’s grid cells, each
of which has some probability of containing an obstacle.
The design of a risk assessment therefore has a number of
parameters to determine, including: (i) simulation horizon,
(ii) number of times to evaluate risk over that horizon (could
be as often as every 200ms, although the PWC will not
typically move very much over such a short period), (iii) how
to account for the shape of the PWC, (iv) number of future
joystick signals to consider, and (v) what future joystick
signals to consider.

Depending on available interventions and how the risk
assessment will be used in these interventions, the form of
the risk assessment might vary from a separate assessment
for each possible input, a time dependent assessment, or
perhaps just a single overall value. It is fairly clear that
the reported risk should not decrease if the PWC overlaps
with a grid cell which is more likely to be occupied, if
more of the PWC overlaps with obstacles, if collision is
reported for more input signals and/or if a collision will occur



sooner; however, these monotonicity constraints still leave
considerable flexibility in choosing aggregation functions
when more compact risk assessments are desired.

As an example of a risk assessment which results in a
single number at a given point in time, consider the greatest
log-odds of collision:

risk = max
v0:tmax−1∈V

max
0≤t≤tmax

max
x̂∈W(xt)

lt(x̂) (1)

where V is a set of input signals, tmax is the time horizon,
W(xt) is the set of all points inside the PWC when it is
at point xt, and lt(x̂) is the log-odds of point x̂ (or its
nearest neighbour in the grid) being occupied by an obstacle
according to the map at time t (as constructed in section III).
Typically W(xt) would be approximated by a sampling of
the PWC’s shape. In the next section we demonstrate our
system using a version of this risk assessment, but there
are many more possibilities. A Bayes’ risk model [19], for
example, has been used for robotic task execution under
uncertainty. Domain-specific risk evaluation measures have
also been applied to ensure task safety in human-robot dia-
log [20]. Another probabilistic model for safety assessment
in dynamic environments under an imperfect sensing model
was proposed in [21].

V. EXPERIMENT

We test the effectiveness of the system described above
in two scenarios. In the first, the system attempts to detect
higher risk maneuvers when the user turns into a doorway
from a corridor, a scenario meant to replicate a common
source of collision observed in the trials described in [3] (as
discussed in section I). In the second, we demonstrate the
effectiveness of the system as the user drives an extended tra-
jectory through a cluttered environment while maneuvering
the PWC in all directions. Note that the system is passively
evaluating the risk metric in all of these experiments; the
user (the first author) is always in full control of the motion.

Fig. 3: Experimental setup and the four tested trajectories.
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Fig. 4: Safe (top) and unsafe (bottom) trajectories in slow-
speed mode.

For the first scenario, the experimental setup uses a 914mm
(36in) wide simulated doorway (a common width in North
American public buildings). It should be noted that our
PWC is 655mm wide and that health care facilities typically
mandate wider doors—for example, 1168mm (46in) in the
province of Ontario [22]—so our doorway poses a moderate
degree of collision risk simply because of the relatively tight
fit.

As shown in Figure 3, we perform four experiments: (i) a
safe slow turn, (ii) an unsafe (early) slow turn, (iii) a safe fast
turn, and (iv) an unsafe (early) fast turn. In every experiment
the PWC starts from rest approximately 2.3m down the
corridor, and the user attempts to drive it parallel to the wall
until the turn is initiated. For the “slow” trajectories, the
speed of the PWC is capped at 50% of the maximum speed
(∼0.4m/s) and the initial portion of the trajectory is ∼30cm
from the corridor wall. For the “fast” trajectories the speed
is 70–90% of maximum (∼0.7m/s) and the distance from the
corridor wall is ∼64cm. A turning point was identified on
the floor for each of the “unsafe” trajectories such that the
PWC would impact about 7.5cm before the corner, although
the PWC was stopped just before impact. For the “safe”
trajectories the turn was initiated approximately 15cm further
along the corridor, so the PWC passed no closer than about
7.5cm from the corner, and was stopped after it had passed
through the doorway. The right side of figure 2 shows a
typical map status just before turning begins; the corner is
not within the field of view of the camera and remains outside
of it throughout the turn.

We report the greatest log-odds of collision risk metric (1).
The horizon was chosen as tmax = 1.4s. The set of future
input signals V considered included only one: that the
joystick was held constant at its current position. The PWC
shape W(x(t)) is represented by 17 samples (5 along each
of the long edges, 3 along the short edges and 1 in the center
of a rectangular bounding box). The risk is recomputed every
time a new joystick input arrives.

Each of the four experiments was repeated 10 times.
Figures 4 and 5 show the time evolution of the risk metric (1)
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Fig. 5: Safe (top) and unsafe (bottom) trajectories in fast-
speed mode.

during each run of each experiment (time shifted so that the
peak of every run for a single experiment is aligned). The
scaling of the vertical axis is essentially arbitrary and the
values of the metric have been capped to ±10, so we are
primarily interested in comparing the value of the metric
between experiments rather than drawing conclusions from
its specific value.

All of the experimental runs follow the same basic pattern.
When the system is first turned on at the start of each run, the
risk metric hovers around zero until the sensors have time
to determine that there is free space in front of the chair;
we will consider this the “baseline” risk of driving through
a region whose obstacles are unknown. At that point the
metric drops significantly as the chair moves safely along
the corridor parallel to the wall. When the chair begins its
turn the metric rises quickly toward a peak, and then falls
again when the chair is stopped at the end of the run.

The distinction between the four experiments lies in the
height of the peak as the chair makes its turn. Consider
first the “slow” experiments shown in figure 4. In the
“slow unsafe” case on the bottom, all runs show the risk
metric rising significantly above the baseline risk detected
at the beginning of the run, indicating that a collision is a
significant threat. In contrast, for the “slow safe” case on the
top all runs show a distinctly lower peak. The fact that the
chair is making a blind turn into a narrow doorway explains
why these peaks are still at or slightly above the baseline risk
at the beginning of the run: toward the end of the run, the
chair is again predicting motion through unknown portions
of the map. Now consider the “fast” experiments shown in
figure 5. In the “fast unsafe” case, all runs show high peaks
similar to those in the “slow unsafe” case, again indicating
that the threat of collision is significant. In the “fast safe”
case the range of peaks displayed by different runs is much
wider—everything from baseline to the top of the scale—
however, we are not terribly concerned that the risk may be
overestimated in this case because most PWC users would
consider a 90◦ turn at nearly full speed around a blind corner
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Fig. 6: Occupancy-grid map of the environment navigated
during the long-run trial.

to be a somewhat dubious maneuver even if they were certain
of avoiding the corner itself.

In the second scenario the PWC is driven in a typical
office environment, as depicted by the occupancy-grid map in
Figure 6 (generated offline), along the path shown in colors
and with arrows indicating wheelchair heading. The green
lines indicate areas evaluated as not risky, yellow indicates
areas of moderate risk, and red indicates areas of high risk
along the path. The time-series plot of risk assessment along
the path is shown in Figure 7. We have added corresponding
annotations (alphabetically ordered in time along the trajec-
tory) to both figures to denote specific areas of interest. As
can be seen, while travelling close to obstacles (such as at
G and L) or through narrow doorways (such as between B
and C), risk assessment is high. Of particular interest is the
section of the map where the wheelchair performs a “backing
up” maneuver between H and I with the wall directly behind
it. This wall was detected by the camera and incorporated
into the egocentric map while the chair was facing toward
it between F and G; however, it is behind the chair and
hence invisible to the camera while the chair is backing up
between H and I. In spite of the obstacle being in the sensor’s
blindspot, the risk assessment goes from low to high as the
chair approaches the wall while backing up after H, and then
drops again when the chair stops backing at I in preparation
for forward motion toward J. This reaction of the risk metric
demonstrates the utility of our egocentric map in detecting
potential collisions with previously observed obstacles now
lying outside the camera’s narrow field of view.

VI. CONCLUSION

We have described a method of constructing a dynamic
egocentric occupancy grid to efficiently represent local ob-
stacles both inside and outside the current sensor coverage,
and a neural network model of PWC motion in response
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Fig. 7: Time-series plot of risk assessment during the long-run trials shown in Figure 6.

to joystick inputs. This infrastructure can be combined to
produce a variety of risk assessment metrics even when it
is not possible to sense all the regions into which the PWC
might be steered. We recognize that deployable smart PWCs
will need more than the single camera and discontinued
PWC product used in this prototype, but modification of
the algorithms to multiple sensors and/or other PWCs is
straightforward. On the flip side, these algorithms allow for
accurate risk assessment despite inevitable sensor blind spots
and black-box PWC controllers.

The specific risk assessment metric used in the experi-
ments reported here is merely a straw man, and we hope
that current Wizard-of-Oz trials with our target population
will yield insight into user-appropriate choices of risk as-
sessment metric(s), which we can then implement using the
infrastructure developed in this paper.
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