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ABSTRACT
A sampled data model falls somewhere between continuous
and discrete time models: The plant evolves in continuous
time, but the controller receives feedback and can modify its
control input(s) only at periodic points in time. In previous
work we have demonstrated how to compute the discriminat-
ing kernel (also called the maximal robust control invariant
set) for sampled data systems and how this kernel can be
used to analyze and even synthesize safe feedback controllers
for systems with state space safety constraints; however, the
algorithm for computing the kernel was conservative. In
this paper we provide an improved abstract algorithm whose
computations are tight to the sampled data discriminating
kernel. The improved algorithm can also take sample time
jitter into account. A level set implementation is used to
demonstrate that the new algorithm is tight and a conser-
vative ellipsoidal implementation is used to demonstrate its
practical benefits on a nonlinear quadrotor model.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; G.1.10 [Numerical Analysis]: Applications

Keywords
sampled data, jitter, robust safety analysis, reachability, vi-
ability, Hamilton-Jacobi equations, ellipsoids

1. INTRODUCTION
Sampled data is a useful modelling paradigm for cyber-

physical systems because it captures key properties of a com-
mon design pattern: a continuous time and continuous state
plant is attached through sensors and actuators to a discrete
time controller. The controller receives state feedback at
discrete sample times and generates a control input which is
applied to the plant through a zero order hold actuator. Un-
like discrete time models, a sampled data model takes into
account the trajectory of the plant between sample times.
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Maintaining safety is a common challenge in the design of
controllers for cyber-physical systems, and it typically ap-
pears in the form of constraints on the system state and
control input value. The discriminating kernel (or robust
control invariant set) is the set of states from which at least
one control input signal gives rise to a trajectory which re-
mains inside the state constraint despite the actions of dis-
turbance inputs. In [17] we described an abstract algorithm
to conservatively approximate the finite horizon discriminat-
ing kernel for sampled data systems and then demonstrated
how the results can be used to construct a set-valued control
policy which ensures finite horizon safety. We also provided
two concrete implementations of the abstract algorithm: one
based on Hamilton-Jacobi (HJ) partial differential equations
(PDEs) which handles nonlinear dynamics but which is not
dimensionally scalable, and a second based on ellipsoidal
reachability which requires linear time invariant (LTI) dy-
namics but which scales well with dimension.

In this paper we propose an improved algorithm for com-
puting sampled data discriminating kernels. The contribu-
tions are:
• A proof that the improved algorithm is tight to the

sampled data discriminating kernel for systems with
fixed sample time sequences.
• A proof that the improved algorithm can compute dis-

criminating kernels which are robust to uncertainty in
the sample time sequence; in other words, it can con-
servatively approximate the kernel for systems that are
subject to timing jitter.
• An empirically derived nonlinear model of quadrotor

height maintenance is used to show that the ellipsoidal
implementation of the improved algorithm is faster
and more accurate than the original algorithm, and
that the ellipsoidal implementation can generate us-
able control sets for a realistic model despite the in-
herent accuracy limitations of ellipsoidal set represen-
tations and LTI dynamics.

1.1 Problem Definition
We assume a Markovian system with state x ∈ Ω, where

the state space Ω ⊆ Rdx (or some similar vector space of
dimension dx). The system’s evolution is modeled by an
ordinary differential equation (ODE) with initial condition
x(0) = x0 and dynamics

ẋ = f(x, u, v), (1)

where f : Ω × U × V → Ω is Lipschitz continuous in x and
continuous in u and v, u ∈ U is the control input, v ∈ V is
the disturbance input and U ⊂ U ⊆ Rdu and V ⊂ Rdv are



assumed to be compact. Input u seeks to keep the system
within the state constraints, while input v seeks to drive the
system outside the constraints. The disturbance can be used
to model uncertainty or error in f in a worst case fashion so
as provide a robust safety analysis.

The sampled data system evolves in continuous time and
state according to (1), but the controller only receives state
feedback and can set the control signal at sampling times tk
in the sequence T = {tk}Nk=0. In order to handle jitter, we
divide the time between samples into two components

tk+1 − tk = δF + δJ
k (2)

where δF ≥ 0 is the fixed minimum time between samples,
δJ
k ∈ [0, δJ] is the jitter for sample period k, and δJ ≥ 0

is a bound on the jitter. The actual sequence of sample
times T is not known a priori, so in order to characterize
the viability constructs discussed in this paper we define the
set of feasible sample time sequences

T =
{
T = {tk}Nk=0

∣∣∣ ∀tk ∈ T , tk ∈ [tk−1 + δF, tk−1 + δF + δJ
]}

.

(3)
For a given sequence of sample times, the dynamics of the
system take the form

ẋ(t) = f(x(t), upw(t), v(t)) (4)

where the piecewise constant input signal upw(·) is chosen
according to

upw(t) = ufb(x(tk)) for tk ≤ t < tk+1 (5)

and ufb : Ω→ U is a feedback control policy. Note that the
feedback control policy cannot take into account the actual
sequence of sample times that are encountered; however, be-
cause the input is chosen at the sample times and then held
constant, the dynamics (4) cannot be written in stationary
form ẋ = f(x, v).

The state constraint K0 ⊂ Ω that we seek to maintain for
safety is assumed to be the complement of an open set [3].
We divide the state space Ω as in [17]. The outermost set
is the safety constraint K0. It contains a series of nested
finite horizon safe sets Kk which identify states which give
rise to trajectories which satisfy the safety constraint for at
least k sample times; in other words, a minimum horizon of
kδF, but the actual safe time will depend on the encountered
sample time sequence T . The safety guarantee provided by
Kk requires that the control input ufb(·) be chosen from a
subset of U . In this paper we focus on an improved algorithm
for computing the finite horizon constrained control safe sets
Kk. A discussion of how to compute a subset of states Kfree

with no control constraint and the possibility of finding an
infinite horizon safe set K∞ are available in [17].

1.2 Related Work
Sampled data systems (with and without sample time un-

certainty) are a well-studied area of control engineering, but
the focus of much of this research has been on traditional
control objectives such as stability, observability and con-
trollability; for example, see [6, 19, 20] and the citations
within. In [7] the authors do define a finite time, constant
control input reachability construct (r-robust reachability)
which is then used to build a piecewise constant control
strategy that guarantees robust global asymptotic stabil-
ity despite sample time uncertainty; however, demonstrat-
ing this reachability property for a given system requires a

Lyapunov-like function and no general algorithm is discussed
for finding such a function.

A full discussion of related work on reachability, viability
and verification in the context of sampled data systems can
be found in [17], so here we mention only those papers most
relevant and/or recent. In [22] the authors study sampled
data systems subject to a more restrictive class of sample
time jitter: the sample times are always within a fixed in-
terval of a periodic sequence of times. They consider non-
deterministic hybrid system dynamics but the controller’s
input can only influence discrete mode switching rules and
they assume that system trajectories are known explicitly
in the analysis. They then derive necessary and sufficient
conditions for a supremal control invariant predicate which
is conceptually similar to the discriminating kernel studied
here. In [21] the authors present a tool for verifying sam-
pled data systems which combines Taylor models to explore
reachability of the continuous states of the plant with an
SMT solver to handle the discrete states of a software con-
troller, but the only non-determinism in the model lies in
the initial states. In [5] a different algorithm for approx-
imating the sampled data viability kernel for LTI systems
is described which uses a polytopic representation of sets.
Based on previous experience with both ellipsoidal and poly-
topic representations, we suspect that the polytopic scheme
is more accurate and scalable, but it is unclear how to cre-
ate a robust version of that scheme to handle discriminating
kernels and/or sample time uncertainty. In [2] the authors
use a theorem prover to verify (or even synthesize) invariants
and control envelopes robust to very general types of param-
eter variation, including sample time uncertainty. The class
of sample time sequences considered here (3) corresponds to
the class “upper and lower bounds on sampling time” in that
paper, the discriminating kernel algorithm discussed here is
an alternative to the use of a theorem prover in constructing
their robust “safe invariant,” and the set-valued control pol-
icy Uctrl described in [17] (and repeated here) corresponds
to their “control envelope.” Finally, the algorithm in [4] ap-
proximates a (robust) reach set which is the complement of
the (jitter free) discriminating kernel discussed here. This
set is then used to ensure collision avoidance in a pursuer-
evader game using real robots (including implementation of
elements of the algorithm on an embedded microcontroller).

2. IMPROVED ALGORITHM
In this section we provide an improved algorithm for the

sampled data discriminating kernel after defining some no-
tation. Key properties of the algorithm’s output are then
proved, including its conservativeness under jitter and its
tightness in the jitter-free case. Finally the algorithm is
demonstrated on two toy examples: one from [17] to demon-
strate that the jitter-free case is tight and a new one to
demonstrate robustness to jitter.

2.1 Preliminary Definitions
The (jitter robust) sampled data discriminating kernel

that we seek is defined by

Discsd ([0, T ],S) ,

{
x0 ∈ S

∣∣∣∣∣ ∃upw(·), ∀T ∈ T, ∀v(·),
∀t ∈ [0, T ], x(t) ∈ S

}
,

(6)
where x(·) solves (4) with initial condition x(0) = x0. In
addition to the robustness required of the sampled data dis-



criminating kernel discussed in [17], this kernel requires that
the feedback policy (5) which generates the piecewise con-
stant input signal upw(·) must be robust to variation in the
sample time sequence T as characterized by (3). Given the
horizon of interest T , define the maximum relevant sample
time sequence length

N̄ ,

⌈
T

δF

⌉
and note that N in (3) must be chosen such that N ≥ N̄ .

We repeat a number of definitions from [17]. The approxi-
mation of (6) will be performed in an augmented state space

x̃ ,

[
x
u

]
∈ Ω̃ , Ω× Rdu

with dynamics

d

dt
x̃ =

d

dt

[
x
u

]
=

[
f(x, u, v)

0

]
, f̃(x̃, v). (7)

Movement from Ω̃ back into Ω or U is accomplished through
projection operators

Projx

(
X̃
)
,

{
x ∈ Ω

∣∣∣∣ ∃u, [xu
]
∈ X̃

}
, (8)

Proju

(
X̃ , x

)
,

{
u ∈ U

∣∣∣∣ [xu
]
∈ X̃

}
, (9)

for X̃ ⊆ Ω̃ and x ∈ Ω.
In [17] we defined a general invariance kernel operator

which was then used to construct both Kk and Kfree, but in
this paper we are not constructing Kfree so we can simplify
the invariance kernel definition

Inv ([ts, tf ],S) , {x̃(ts) ∈ S | ∀v(·), ∀t ∈ [ts, tf ], x(t) ∈ S},
(10)

In comparison with the definition in [17], this invariance ker-

nel is always applied in the augmented state space Ω̃ using
the augmented dynamics f̃ and input v treated as a dis-
turbance. The improved algorithm will also make use of a
robust reach set construct

Reach ([ts, tf ],S) , {x̃(ts) ∈ Ω̃ | ∀v(·), x̃(tf ) ∈ S} (11)

Note that this construct is not a reach tube—it is the set of
states from which all possible trajectories will lead to S at
exactly time tf ; however, those trajectories may be outside
of S for earlier times ts ≤ t < tf . In general reach sets are a
weak tool for robust safety analysis; for example, for systems
with disturbance inputs in their dynamics, the union of reach
sets may be a subset of the reach tube and hence reach sets
cannot be used to compute an invariance kernel [16]. In the
sampled data case, however, this robust reach set will turn
out to be useful.

2.2 Abstract Algorithm
We use an iterative algorithm to construct the jitter robust

sampled data discriminating kernel. First, we define some
notation for intermediate sets

I1 , Inv
(

[0, δF + δJ],S × U
)
, (12)

Rj , Reach
(

[0, δF],Discj−1 (S)× U
)
, (13)

Ij , Inv
(

[0, δJ],Rj
)

(14)

where j = 2, 3, . . . , N̄ in (13) and (14). Intuitively
• I1 is the set of states and corresponding constant con-

trol values from which (no matter what the distur-
bance v(·)) the trajectory will stay within S for an
entire maximum length sample period.
• Rj is the set of states and corresponding constant

control values from which (no matter what the dis-
turbance v(·)) the trajectory will be in Discj−1 (S) in
exactly δF time units.
• Ij is the set of states and corresponding constant con-

trol values from which (no matter what the distur-
bance v(·)) the trajectory will remain in Projx (Rj) for
the next δJ time units, which from (13) implies that
the trajectory will be in Discj−1 (S) during the time
interval [δF, δF + δJ].

Because there is no projection step between Rj and Ij , the
control value remains fixed over the entire corresponding
time interval. We also define

Îj , Ij ∩ I1; (15)

for j = 1, 2, . . . , N̄ . The algorithm’s output is a sequence of
sets approximating the sampled data discriminating kernel
over various horizons

Discj (S) , Projx

(
Îj
)

(16)

for j = 1, 2, . . . , N̄ .
At this point we note that the algorithm from [17] was

designed to treat the case of time samples with fixed period
δ, which corresponds to δF = δ and δJ = 0 in the nota-
tion of this paper. However, because the old algorithm used
invariance kernels for all set evolution, it turns out to be
equivalent to the new algorithm with δJ = δ and δF = 0; in
other words, the sets produced by the old algorithm were in
fact robust to any amount of sample jitter up to and includ-
ing the entire sample period. In light of this observation, it
is not surprising that the old algorithm was conservative for
the jitter-free case we intended to treat in [17].

In order to solve the problem from section 1.1, we define
the finite horizon safe sets in the same way as [17]

Kj = Discj (K0) . (17)

The control policy which maintains safety is typically set-
valued. For x ∈ K0, define the safety horizon of x as

n(x) ,

{
N̄ , if x ∈ KN̄ ;

j, if x ∈ Kj \ Kj+1;
(18)

for j = N̄ − 1, N̄ − 2, . . . , 0. The control policy is given by

Uctrl(x) , Proju

(
În(x), x

)
(19)

in other words, Uctrl(x) is the set of constant control values
which are guaranteed to keep the trajectory from x inside
S and lead it into Kn(x)−1 at the next sample time for any

sample period in the range [δF, δF + δJ] and for any distur-
bance signal. These are the control values which permit x
to be part of Kn(x).

2.3 Algorithm Output Properties
Before showing the relationship between (16) and the ker-

nel (6), we characterize the location of trajectories at the
sample times.



Lemma 1. For any sample time sequence T if x(tk) ∈
Discj (S) for some j ∈ 1, . . . , N̄ , then there exists a constant
uk ∈ U such that

x(tk+1) ∈

{
S, if j = 1;

Discj−1 (S) if 2 ≤ j ≤ N̄ ;

for any disturbance input v(·).
Proof. Let tk+1 − tk = δF + δJ

k. By (16), there exists

uk ∈ U such that
[
x(tk) uk

]T ∈ Ij . We consider the two
cases separately:

If j = 1: By (10) and (12), for any v(·) and δk ∈ [0, δF+δJ],[
x(tk + δk) uk

]T ∈ S × U , which implies that x(tk + δF +

δJ
k) = x(tk+1) ∈ S.
If 2 ≤ j ≤ N̄ : By (10) and (14), for any v(·) and δJ

k ∈
[0, δJ], we have that

[
x(tk + δJ

k) uk
]T ∈ Rj . By (11) and (13),[

x(tk + δJ
k + δF) uk

]T ∈ Discj−1 (S) × U , which implies

that x(tk + δJ
k + δF) = x(tk+1) ∈ Discj−1 (S).

With this characterization in place, we can map out the
relationship between the algorithm’s representation (16) and
the true kernel (6):

Proposition 2. The (jitter robust) sampled data discrim-
inating kernel is given by

DiscN̄ (S) ⊆ Discsd ([0, T ],S) .

Proof. We seek to show

x0 ∈ DiscN̄ (S) =⇒ x0 ∈ Discsd ([0, T ],S) .

Assume that x0 ∈ DiscN̄ (S). We first show that for any
T and v(·), x(tk) ∈ DiscN̄−k (S) for k = 0, 1, . . . , N̄ − 1 by
induction. The base case x(t0) = x0 ∈ DiscN̄ (S) is true by
assumption. For the inductive step, if x(tk) ∈ DiscN̄−k (S)
then by lemma 1 there exists a constant input uk ∈ U such
that x(tk+1) ∈ DiscN̄−k−1 (S) for any v(·).

By (16), for that same uk ∈ U ,
[
x(tk) uk

]T ∈ I1. By (12),

for any t ∈ [tk, tk + δF + δJ],
[
x(t) uk

]T ∈ S × U for any
v(·), which implies that for any T and v(·), x(t) ∈ S for any
t ∈ [tk, tk+1], where tk and tk+1 are consecutive elements of
T . Since

N̄−1⋃
k=0

[tk, tk+1] = [t0, tN̄ ] ⊇ [0, T ]

we have shown that x(t) ∈ S for all t ∈ [0, T ] for any T and
v(·), and hence that x0 ∈ Discsd ([0, T ],S).

Intuitively, the substitution of the reach set (13) into the
algorithm seems dubious because it allows the trajectory to
be outside Discj−1 (S) during the fixed portion of the sam-
pling period as long as it is inside before the end. However,
the constraint we need to satisfy is that the trajectory re-
mains in S for all times, not Discj−1 (S). By (15) and (16),
only states in Projx (I1) are under consideration; consequen-
tially, even though the trajectory may leave Discj−1 (S) dur-
ing the sample period, by (12) it does not leave S.

Proposition 2 shows that the improved algorithm’s results
remain conservative. For systems without jitter (δJ = 0) it
is straightforward to show that the improved algorithm’s
Discj (S) is always a subset of the corresponding kernel ap-
proximation generated by the algorithm in [17] and is hence
at least as accurate; however, we can in fact show that the
improved algorithm is tight in this case.

Proposition 3. If δJ = 0 and T = NδF for some integer
N > 0 then

DiscN (S) = Discsd ([0, T ],S) .

Proof. We only need to show

x0 ∈ Discsd ([0, T ],S) =⇒ x0 ∈ DiscN (S)

because the converse implication has already been proven
in proposition 2. Assume x0 ∈ Discsd ([0, T ],S) and observe
that if δJ = 0 and T = NδF then T is a singleton containing
only the time sample sequence tk = kδF for k = 0, 1, . . . , N .
By (6) there exists a upw(·) such that for all v(·) and t ∈
[0, T ], x(t) ∈ S. Let uk = upw(tk) ∈ U . Because x(t) ∈ S
for all v(·) and t ∈ [tk, tk+1] for k = 0, 1, . . . , N − 1, by (10)
and (12) [

x(tk)
uk

]
∈ I1. (20)

We proceed by induction to show that x(tk) ∈ DiscN−k (S)
for k = N−1, N−2, . . . , 0. By (8), (16) and (20), we have the
base case x(tN−1) ∈ Disc1 (S). Now assume that x(tk+1) ∈
DiscN−k−1 (S). By (14) and (13),

[
x(tk) uk

]T ∈ IN−k =
RN−k, which by (8), (16) and (20) implies that x(tk) ∈
DiscN−k (S). In particular, x(t0) = x0 ∈ DiscN (S).

Conservativeness of the approximation Disck (S) was the
key property of the algorithm from [17] which made it pos-
sible to synthesize a control policy which guaranteed finite
horizon satisfaction of constraint K0. Because the improved
algorithm maintains this conservativeness, it is straightfor-
ward to show a similar result.

Theorem 4. Let trajectory x(·) solve (4)–(5) with ini-
tial condition x(0) = x0 and sampled feedback control policy
ufb(x) ∈ Uctrl(x) given by (19). If x0 ∈ K0 then x(t) ∈ K0

for all sample time sequences T ∈ T, all disturbance inputs
v(·) and all t ∈ [0, n(x0)δF].

Proof. A straightforward modification of the proof of [17,
Theorem 4] to use the improved approximation (16).

2.4 Improved Algorithm Demonstration
We demonstrate the two key improvements to the algorithm—

tightness and jitter robustness—through two examples. Both
examples are implemented using an HJ PDE formulation;
see [17, section 5] for the details. The only new operator
required by the improved algorithm is the reach set (11),
which is approximated using the same machinery as the in-
variance kernel (10) except that the HJ PDE for the reach
set

Dtφ+ maxH(x̃, Dx̃φ) = 0

omits the “max with zero” constraint on the sign of the
time derivative which ensures that the invariance kernel only
shrinks. Otherwise, the rest of the HJ PDE for the reach
set is the same as that for the invariance kernel in [17, equa-
tion (18)]. Because both the invariance kernel and reach
set solve essentially the same PDE, the execution time of
the new algorithm using the HJ formulation is essentially
unchanged from that of the old algorithm. We use the Tool-
box of Level Set Methods [18] to approximate the solution
to the HJ PDEs.

As a demonstration of proposition 3, we revisit the exam-
ple from [17, section 4.3] which was used to prove that the



Sampled Data Viability Kernel δ = 2.0, N = 3

x1

x 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1
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1

2
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Figure 1: A demonstration of proposition 3. In this
case S is the Y-shaped shaded region. The states in
Discj (S) for j = 0, 1, 2, 3 are shown darkest to light-
est (darker colored sets also contain all lighter col-
ored states). The solid blue line shows a trajectory
starting from the upper right which remains in S for
three sample periods; the input for this trajectory is
sampled at the points marked by small circles. Us-
ing the improved algorithm, the starting point for
this trajectory is correctly identified as being inside
Disc3 (S). In fact, all of the lightest shaded regions in
this figure are part of Disc∞ (S), but the computation
of Discj (S) is only performed for j ≤ 3.

old algorithm was strictly conservative. This example has no
jitter (δJ = 0) and no disturbance input v; consequently, we
are computing a viability kernel instead of a discriminating

kernel. Let f(x, u, v) =
[
u −1

]T
in (4) with U = [−1,+1].

Let S be the Y-shaped shaded region shown in figure 1 (the
arms and leg of the Y are assumed to extend outward to
infinity). The upper arms of the Y have constant width and
a 45◦ slope. The vertical leg of S is viable for all δF > 0, but
for δF = 2 there are regions of the upper arms which give
rise to sampled data trajectories which inevitably leave S
because no sample points occur where the upper arms join
and hence the input cannot be switched in time from the
u = ±1 value required to make the upper arms viable to the
u = 0 value required to make the lower leg viable. On the
other hand, there are states along the upper arms which give
rise to trajectories which remain viable for all time; for ex-

ample, the trajectory shown in figure 1 starts at
[
+4 +4

]T
and uses input signal

upw(t) =

{
−1 0 ≤ t < 4;

0 t ≥ 4.

As shown in [17, figures 2 and 3], the old algorithm failed
to detect these patches of viability in the upper arms, while
figure 1 demonstrates that the improved algorithm captures
both the viable and non-viable states in the arms correctly.

As a demonstration of proposition 2 for systems with sam-
pling jitter we consider a similar artificial example with no
disturbance input v. Let f(x, u, v) = u in (4) and let

uup =

[
0
1

]
, uright =

[
1
0

]
;

U = {u | u = λuup + (1− λ)uright for 0 ≤ λ ≤ 1}.

The dynamics can be summarized as “trajectories can move

Sampled Data Viability Kernel δF = 1.0, δJ = 0.0, N = 5
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Sampled Data Viability Kernel δF = 0.9, δJ = 0.1, N = 5
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Sampled Data Viability Kernel δF = 0.8, δJ = 0.2, N = 5

x
1

x 2
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0

0.5

1

Figure 2: A demonstration of proposition 2. Each
plot shows Discj (S) for j = 0, 1, . . . , 5 (from darkest
to lightest shading). The top plot shows δF = 1.0
and δJ = 0.0, the middle plot shows δF = 0.9 and
δJ = 0.1, and the bottom plot shows δF = 0.8 and
δJ = 0.2. Note how the cumulative effect of timing
jitter rapidly removes states in the leftmost horizon-
tal duct from Disc5 (S).

up and/or to the right.” We choose the shaded region shown
in figure 2 as set S (the set is assumed to extend horizontally
outward to infinity). The width of the vertical chimney of
S is 0.5, the height of the two horizontal ducts is 0.2, and
the distance between the bottom (or top) edges of S on the
left and right sides is 1. We fix the maximum sample period
δF +δJ = 1 and number of samples N̄ = 5, and then explore
the effect of changing the maximum jitter. The rightmost
horizontal duct of S is in Disc5 (S) (the lightest shading)
for any jitter (it is actually in Disc∞ (S)), but in the same
manner as the upper arms of the constraint set in the previ-
ous example, the viability of states in the vertical chimney
or leftmost horizontal duct of S depends on whether subse-
quent sampling times will occur where the input value needs
to be changed when switching from the leftmost horizontal
duct into the vertical chimney or from the vertical chimney
into the rightmost horizontal duct.

The uppermost plot in figure 2 shows the case δJ = 0. The
vertical chimney is mostly in Disc5 (S) except for a patch
in the upper right that is not even in Disc1 (S): trajecto-
ries arising from these states cannot round the corner into
the rightmost horizontal duct and hence cannot stay viable
for even one sample period1. The leftmost horizontal duct

1The roughness of the left edge of this patch (and in gen-
eral the boundary of other patches) is a symptom of rela-
tively coarse sampling of U : The discretization of Ω×U was
201× 161× 25. A much better approximation can be easily
achieved by a finer discretization in the input dimension at
the cost of linearly increased computation time.



clearly shows patches in Disc5 (S) which are all the same
width (0.5) as the vertical chimney plus a triangular patch
at the front where it is possible to cut the lower left corner
of S when entering the vertical chimney. The other patches
in this horizontal duct consists of two parts: one darker and
one lighter. The darker states along the top edge of the
duct are those which give rise to trajectories which are un-
able to round the first corner into the vertical chimney and
hence fall outside of Discj (S) for j = 1, 2, 3, 4 (from right to
left), while the lighter states along the bottom edge are those
whose trajectories can round the first corner but land in the
non-viable patch in the chimney, cannot round the second
corner into the upper horizontal duct and hence are inside
Discj (S) but outside Discj+1 (S) for j = 1, 2, 3, 4 (from right
to left).

The middle plot in figure 2 shows the case δJ = 0.1. De-
spite the fact that the maximum sample period is unchanged
and the jitter can only result in more frequent sampling
and opportunities to modify the input, Disc5 (S) has shrunk.
The same pattern of Discj (S) for j < 5 appears, with the
addition of a small patch at the bottom right of the chimney
that lies in Disc1 (S) from which trajectories can stay in the
chimney for one sample period but cannot always round the
upper corner into the rightmost horizontal duct because of
the possibility of an early sample time. More importantly,
the patches in the leftmost horizontal duct that lie within
Disc5 (S) are smaller: the first has width 0.4 at the top, the
second width 0.3, and so on. This shrinking width is due to
the compounding of jitter over multiple sample periods.

The bottom plot in figure 2 shows the case δJ = 0.2.
Because of the compounding effect of jitter, almost none of
the leftmost horizontal duct lies in Disc5 (S) anymore.

3. QUADROTOR ALTITUDE MAINTENANCE
In this section we use a safety problem for a quadrotor

to demonstrate a scalable implementation of the improved
algorithm for systems with LTI dynamics using an ellipsoidal
representation of the various sets and kernels.

3.1 Modeling and Constraints
Consider the problem of altitude control for the autonomous

quadrotor testbed modeled in [1]:

ẋ1 = x2,

ẋ2 = kTx
2
3 − g,

ẋ3 = kp(u− x3);

(21)

where x1 is the vertical position of the vehicle, x2 is the
vertical velocity, and x3 is the current average angular ac-
celeration (related to thrust) while the input u ∈ R is the
commanded average angular acceleration. The actuator re-
sponse to input commands is modeled as a first order system
with a time constant of 1/kp to account for inherent rotor
delay. The effect of x3 on the acceleration of the vehicle
is modeled as a quadratic function with a normalizing co-
efficient kT . Values of kp = 6.6667 and kT = 0.1222 were
empirically identified. The constant g = 9.8 is the gravita-
tional acceleration.

The input is constrained as 0 ≤ u ≤ 10 (measured in
counts). The position and velocity constraints are chosen
based on the ceiling height of the room and the physical
characteristics of the quadrotor: 0.5 m ≤ x1 ≤ 2.8 m and
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Figure 3: For fixed x1 and u, the perturbation mag-
nitude to x2 depends on x3. In the neighborhood of
the hover xeq (shown as a red dot) the disturbance
is small, while away from this linearization point the
unmodeled nonlinearities are magnified.

−1.5 m/s ≤ x2 ≤ 1.5 m/s. The bounds on x3 are discussed
when we linearize the dynamics below.

For the purposes of this example we assume that control
commands can only be modified every δ = 100 ms; the cor-
responding 10 Hz update cycle is somewhat low but within
an order of magnitude of the rate at which typical quadro-
tors read sensors and update actuators. We also assume no
timing jitter so that δF = δ and δJ = 0. We wish to ana-
lyze the safety of this quadrotor as it moves vertically in the
room, and synthesize the set-valued safety-preserving state-
feedback control that ensures the vehicle does not crash into
the floor or the ceiling over the time interval [0, 1].

The scalable ellipsoidal representation requires LTI dy-
namics, so we linearize (21) about a hover condition at state

xeq =
[
2 0 8.96

]T
; (22)

in other words, at an altitude of 2 m using the empirically
measured input of ueq = 8.96 counts. In order to ensure
that our results are safe despite this linearization, we take
any linearization error into account through the disturbance
input. The linearized model is

˙̄x =

0 1 0
0 0 2(8.96)kT
0 0 −kp

 x̄+

 0
0
kp

 ū+

0
1
0

 v, (23)

where x̄ , x−xeq, ū , u−ueq, and v ∈ R is the disturbance.
The bounds on v depend on the range of x3: Looser bounds
on x3 require a larger set of possible disturbances to account
for more pronounced nonlinearities in the velocity dynamics
(see figure 3). Here we choose the constraint x3 ∈ [8, 10],
which yields a worst-case linearization error of 0.1. Since
the error dynamics force x2 to move in the positive direction,
the disturbance v is constrained to the set V = [0, 0.1].

3.2 A Scalable Algorithm for Safety Analysis
In [17] we described an implementation of that paper’s

abstract algorithm using ellipsoidal techniques from reach-
ability [11, 12, 13] that scale polynomially with state space
dimension. In this section we describe two modifications
that were made to analyze the quadrotor example. First,
we use a slightly different semi-definite program (SDP) to
find the “best” inscribed ellipsoid when implementing the in-
tersection operator. Second, we use the improved sampled
data discriminating kernel algorithm from section 2.2.



In this implementation, sets are represented by ellipsoids.
An ellipsoid in Rd is defined by

E(q,H) , {Hy + q ∈ Rd | ‖y‖2 ≤ 1}

= {y ∈ Rd | (y − q)TH−2(y − q) ≤ 1},

where q ∈ Rd is the center, H = HT ∈ Rd×d, and HHT = H2

is the symmetric positive definite shape matrix. For matrix
A, the linear mapping of an ellipsoid is also an ellipsoid

AE(q,H) = E(Aq,AH)

We call a finite union of ellipsoids a piecewise ellipsoidal set.

3.2.1 Maximum Trace Inscribed Ellipsoids
A key operation in the sampled data discriminating ker-

nel algorithm is set intersection. It is well known that the
intersection of nonempty ellipsoids {Yi} is not an ellipsoid
but that an ellipsoidal underapproximation of that intersec-
tion can be found through one of several SDPs. In [17] we
sought a maximum volume underapproximation (using a log
det objective function in the SDP), but here we switch to
a maximum trace underapproximation (using a trace objec-
tive function in the SDP) because the latter is more easily
adapted to use separate scaling factors for the dimensions
in Ω and U.

A further twist in the intersection issue arises because the
intersection is performed (16) in the space Ω×U but is then
projected into Ω via (8) or U via (19) and (9). For that
reason it is not immediately clear how to define the “best”
underapproximating ellipsoid. In [17] we only demonstrated
the case using the maximum volume ellipsoid in Ω×U, but
here we consider a spectrum of possibilities.

To explore different projections of ellipsoids, let P ∈ Rd1×d2

with d1 ≤ d2 be a matrix such that PTP is a projection ma-
trix (so (PTP)2 = PTP). In particular, we will use matrices

Px =
[
Idx 0dx×du

]
and Pu =

[
0du×dx Idu

]
where Id ∈ Rd×d is an identity matrix and 0d1×d2 ∈ Rd1×d2

is a zero matrix. Given an augmented state x̃ =
[
x u

]T
,

we then have that Pxx̃ = x and Pux̃ = u.
A maximum trace inscribed ellipsoid is the ellipsoid with

maximum semi-axis lengths lying within a given constraint.
In particular, we will use the maximum trace inscribed ellip-
soid E∩iYi to underapproximate the intersection of nonempty
ellipsoids {Yi}. It can be determined by solving a convex
semi-definite program. We slightly extend the technique to
allow sets Yi which can be either an ellipsoid Yi = E(qi,Hi)
or the tensor product of lower dimensional ellipsoids

Yi = Yi,x × Yi,u
where Yi,x , E(qi,x,Hi,x) ⊂ Rdx

and Yi,u , E(qi,u,Hi,u) ⊂ Rdu .

For notational simplicity we have assumed that the lower
dimensional ellipsoids happen to be in the x and u subspaces
of the augmented state space x̃, although the formulation
can easily be generalized.

We will also modify the objective of the optimization and
introduce a tradeoff factor α ∈ [0, 1] that weights the objec-
tive somewhere between finding an inscribed ellipsoid whose
projection has maximal trace in Ω and one that has maxi-
mal trace in U. A value of α = 0.5 will recover the ellipsoid
which has maximal trace in Ω× U.

If ∩iYi 6= ∅, solve the semidefinite program (SDP)

minimize− (1− α) Tr(PxH̄PTx )− αTr(PuH̄PTu )

over H̄ ∈ Rd×d, q̄ ∈ Rd, and λi ∈ R
(24)

subject to constraints for i = 1, 2, . . . either of the form

λi > 0 1− λi 0 (q̄ − qi)T
0 λiI H̄

(q̄ − qi) H̄ H2
i

 ≥ 0,
(25)

if Yi = E(qi,Hi) or of the form

λi,x > 0

λi,u > 0 1− λi,x 0 (Pxq̄ − qi,x)T

0 λi,xI PxH̄PTx
(Pxq̄ − qi,x) PxH̄PTx H2

i,x

 ≥ 0

 1− λi,u 0 (Puq̄ − qi,u)T

0 λi,uI PuH̄PTu
(Puq̄ − qi,u) PuH̄PTu H2

i,u

 ≥ 0

(26)

if Yi = Yi,x × Yi,u, where I and 0 are appropriately sized
identity and zero matrices. The optimal values H̄∗ and q̄∗

define the inscribed ellipsoid for the chosen tradeoff factor
α:

Inscribedα (∩iYi) , E
(
q̄∗, H̄∗

)
.

3.2.2 The Improved Piecewise Ellipsoidal Algorithm
When a set S is not an ellipsoid, its ellipsoidal approxima-

tion is denoted by ES . In this example the sets U and V are
already ellipsoids as they are both intervals in R. However,
sets of the form S×U in (12) and (13) are the tensor product
of two ellipsoids, and hence are very poorly approximated
by a single inscribed ellipsoid. Instead, we over-approximate
S ×U with an ellipsoid whose projection into Ω is tight to S
but whose projection into U is much larger than U (but still
bounded). Call this set ES×U. This overapproximation can
be much tighter to S×U for u ∈ U , although it does allow for
u /∈ U . Fortunately, the augmented dynamics are zero in the
u dimensions, so we can remove these extraneous augmented
states through a later intersection with EΩ×U , which is an
ellipsoid whose projection into U is tight to U but whose
projection into Ω is much larger than S (but still bounded).

As in [17], we use the algorithm from [8, 10, 9] to imple-
ment an ellipsoidal underapproximation EInv(·,·) of invariance
kernels (10) through a sequence of reach sets and intersec-
tions. Unlike [17], the inscribed ellipsoid calculated during
each intersection is chosen using the maximum trace objec-
tive (24) with a prespecified tradeoff factor α. Ellipsoidal
underapproximations EReach(·,·) of robust reach sets (11) can
be implemented directly with the algorithms from [12, 13].
Both of these algorithms generate a piecewise ellipsoidal un-
derapproximation of the desired set parameterized by a finite
collection of direction vectors `.

The key steps of the improved sampled data discriminat-
ing kernel algorithm (12)–(16) for a given direction vector `
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Figure 4: A piecewise ellipsoidal under-approximation of the sampled-data discriminating kernel (green) for
the quadrotor example using (i) the improved algorithm (top row), and (ii) the algorithm presented in [17]
(bottom row). For each case 20 terminal directions ` were chosen, of which 15 and 13, respectively, resulted
in nonempty ellipsoids. The state constraint is also shown (red).

are then

EI1(`) = EInv([0,δF],S×U)(`),

ERj (`) = Reach
(

[0, δF], EDiscj−1(S)×U(`)
)
,

EÎj (`) = Inscribedα
(
EI1(`) ∩ ERj (`)

)
,

EDisc1(S)(`) = Projx (Inscribed0 (EI1(`) ∩ EΩ×U )) ,

EDiscj(S)(`) = Projx

(
Inscribed0

(
EÎj (`) ∩ EΩ×U

))
,

for j = 2, 3, . . .. We use a tradeoff factor of α when com-
puting EÎj in order to keep the resulting inscribed ellipsoid

from collapsing in U and hence producing an empty Uctrl

(defined below), but we can safety use a tradeoff factor of
0 when computing EDiscj(S) because we immediately project
the resulting inscribed ellipsoid into Ω and hence its extent
in U is irrelevant.

For the safety problem, we underapproximate Kj with the
ellipsoid EDiscj(K0), define n(x) as in (18), and create a safe
control policy

Uctrl(x) = Proju

(
EÎn(x)

, x
)
∩ U . (27)

It is necessary to clip the projection of EÎn(x)
by inter-

section with U because ERj was computed starting from
EDiscj−1(S)×U rather than EDiscj−1(S)×U .

3.3 Results
We implement the ellipsoidal operators using the Ellip-

soidal Toolbox (ET) [14] version 1.1.3 and the semi-definite
programs using YALMIP [15] on an Intel Core i7-3520M at
2.9 GHz with 16 GB RAM running 64-bit Windows 7 Pro
and Matlab R2011b.

Applying the above algorithm to the quadrotor altitude
maintenance problem yields a significant improvement over
the results generated by our previous method [17]. Figure 4

compares the approximations ∪`EDiscN (S)(`) of the sampled-
data discriminating kernel for this problem generated using
both algorithms, and it is clear that the result generated by
the algorithm described in this paper is significantly larger.
There are several reasons for the improved results:
• The improved abstract algorithm of section 2 is tight

in this jitter-free case, while the algorithm in [17] was
conservative but not tight.
• The improved piecewise ellipsoidal algorithm does not

attempt to approximate the tensor product set S × U
with a single inscribed ellipsoid, but rather uses two
ellipsoids S ×U and Ω×U (as discussed at the begin-
ning of section 3.2.2) in a manner which is conservative
but much closer to the true tensor product.
• The invariance kernel operator—which is implemented

with alternating reach sets and inscribed approxima-
tions of intersections—is used only during the first
sample period in this algorithm. Subsequent sample
periods are implemented using just a single reach set
and inscribed approximation of an intersection.

In addition to the improvement in accuracy, the new algo-
rithm is also dramatically faster: The sets shown in the top
row of Figure 4 were generated in just 5 min, while those in
the bottom row required 173 min2.

Given x̄ ∈ ∪`EDiscN (S)(`), there exists a set of control in-
puts Uctrl(x̄) ⊆ U from which the quadrotor can choose a
value and remain within the state constraint over at least
the [0, 1] time horizon. Figure 5 shows slices of EÎN̄ (from

which Uctrl is constructed via (27)) for different values of
the state x̄ when the discriminating kernel approximation is

computed for just one direction, ` =
[
0.5 0.5 0.5 0.5

]T
.

Each subplot corresponds to a slice in x̄3 and shows three
slices in x̄2: one through the center of EÎN̄ and two through

2The larger number is likely exaggerated due to ET (or
YALMIP) being repeatedly called in a for-loop, which in
our experience yields artificial slowing of the whole process.
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ū

x̄3 = -0.12

−1.5 −1 −0.5 0 0.5

−1

0

1

← −0.59
← −0.08

← 0.43

x̄1

ū
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Figure 5: Slices of the synthesized safety-preserving control set as a function of the state when the discrimi-
nating kernel is approximated along one terminal direction `. The three ellipsoids in each plot correspond to
slices of the set in the augmented space at three values of x̄2 (marked by arrows pointing at the ellipsoids)
for fixed x̄3. A scaling value of α = 0.01 is used for the inscribed ellipsoids (a value which was experimentally
found to maximize the size of the control sets without reducing the kernel approximation significantly).

±80% of the semi-axis that stretches furthest from the cen-
ter in the negative direction. Also shown (in grey) are the
input values outside of U which will be removed by the inter-
section operation in (27). Choosing a slice in a subplot fixes
x̄3 and x̄2, at which point it is possible to read off a valid
range of ū ∈ Uctrl(x̄) for each value of x̄1 (all ū inside the
ellipsoidal slice but outside the grey patch). We note that
the set valued control policy represented in this figure may
only be applicable at the first time sample because we are
working with a finite horizon discriminating kernel. At time
sample tk trajectories may have left DiscN̄ (K0) and hence
will have to choose from the control policy for DiscN̄−j (K0),
where j ≤ k by construction. We use (18) to choose j such
that N̄ − j = n(x(tk)) at each sample time.

To generate the approximation in figure 5 we used a trade-
off factor of α = 0.01 in the inscribed ellipsoid optimiza-
tion problem. We found in our experiments that this value
yielded the best results in the sense that the sizes of the
discriminating kernel approximation sets as well as the safe
control sets appeared largest. For comparison, figure 6 shows
the same sets approximated using α = 0 (which seeks to
maximize the size of the state space kernel with no consid-
eration for the size of the resulting valid input set). As might
be expected the safety control sets are significantly smaller
in this case; however, the size of the kernel approximation
sets (not shown) does not noticeably improve.

4. CONCLUSIONS
The robust sampled data discriminating kernel algorithm

described in this paper is an improvement on that from [17]
because it is (i) robust to sample time jitter, (ii) tight in
the jitter-free case, and (iii) emprically more accurate. We
proved the first two properties and demonstrated them on

two toy examples, and then used a quadrotor height main-
tenance problem to provide evidence of the third property
and show that the algorithm is practical for real systems.

In the future we plan to further explore how best to han-
dle the tensor product and the intersection operators in the
ellipsoidal algorithm, how to compactly represent and effi-
ciently evaluate the sets Kk and corresponding control poli-
cies Uctrl for online embedded implementation, and the ap-
plication of these techniques to more complex, higher di-
mensional, and hybrid systems. We will also improve the
timing model, which presently assumes zero time between
data sampling and control signal implementation. A more
realistic model should allow a (jittery) time delay between
controller input and output.
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[4] C. Dabadie, S. Kaynama, and C. J. Tomlin. A practical
reachability-based collision avoidance algorithm for
sampled-data systems: Application to ground robots. In
International Conference on Intelligent Robots and
Systems (IROS), 2014.

[5] J. H. Gillula, S. Kaynama, and C. J. Tomlin.
Sampling-based approximation of the viability kernel for
high-dimensional linear sampled-data systems. In Hybrid
Systems: Computation and Control (HSCC), pages
173–182, 2014.
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