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Abstract. Using only the existence and uniqueness of trajectories for a
generic dynamic system with inputs, we define and examine eight types
of forward and backward reachability constructs. If the input is treated
in a worst-case fashion, any forward or backward reach set or tube can
be used for safety analysis, but if the input is treated in a best-case fash-
ion only the backward reach tube always provides the correct results.
Fortunately, forward and backward algorithms can be exchanged if well-
posed reverse time trajectories can be defined. Unfortunately, backward
reachability constructs are more likely to suffer from numerical stabil-
ity issues, especially in systems with significant contraction—the very
systems where forward simulation and reachability are most effective.

1 Introduction

Except for the simplest of examples, analytic verification of safety properties for
continuous and hybrid systems is rarely possible. With the goal of broadening
the applicability and automating the process, numerical methods for verifying or
validating such properties have been the subject of much study. The approxima-
tion of reachable sets is one major category of such numerical methods. There are
two fundamental types of reachability: forward and backward. Many algorithms
have been proposed to compute one of these reachable sets (see Section 3), and
some type of equivalence is often informally mentioned when a problem state-
ment requires computation of the other set. The contribution of this paper is a
detailed examination of the distinctions between these two sets. We make rather
strong assumptions about the existence and uniqueness of trajectories, so it is
the negative conclusions that hold the most significance.

Section 2 informally discusses the relationship between reachability and safety
and defines some of the terminology, while Section 3 covers previous work. The
body of the paper beings in Section 4 by examining the question of when vari-
ous forms of forward and/or backward reachability can be used to prove system
safety: in some cases any form will do, but in some cases only one type of back-
ward reachability gives the correct result. Section 5 then demonstrates that the
formulation of the reachability problem and the algorithm used to solve it need



not work in the same temporal direction, since forward and backward algorithms
can be interchanged for systems which are reversible.

Unfortunately, these algorithms find only approximations. In Section 6, tra-
jectory sensitivity analysis [1] is extended to examine the way in which numerical
error may grow as these algorithms are run. Even though the backward reach-
ability formulation may be applicable to more problems, we conclude that it is
also more likely to experience numerical stability problems, regardless of whether
it is implemented by a forward or backward algorithm.

2 Reachability and Safety Analysis

Safety analysis of a given system seeks to discover whether the system—or more
accurately, the mathematical model representing the system—can enter a speci-
fied set of unsafe states. Since many systems operate correctly only when started
correctly, a set of initial states is also often specified. Mathematically, we will
specify a safety analysis problem by a tuple S = (H,I,T) where H is a system
model, I is the initial set, and T is the unsafe set or target.

We define the concepts more formally in Section 4, but informally reachabil-
ity analysis seeks to determine whether trajectories of H can reach 7' from 1.
There are two types of analysis. Forward reachability starts with states in I and
follows trajectories forward in time. If any of these trajectories intersect with T’
the system is unsafe. Backward reachability starts with states in T' and follows
trajectories backwards in time. If any of these backwards trajectories intersects
I the system is unsafe.

Under these definitions it sounds like reachability can be determined by sim-
ulating individual trajectories of H, and simulation is in fact the typical method
by which safety is disproved. Proof of safety, however, requires a guarantee that
all possible trajectories have been investigated; a challenging task in continuous
and hybrid systems where the number of states is infinite. Consequently, the
term reachability algorithm is usually reserved for techniques that determine the
set of states traversed by all trajectories emanating from a given set.

While the terms are not used consistently in the literature, we will in this
paper distinguish two different objects that a reachability algorithm might gen-
erate: the reach set is the set of states occupied by trajectories at exactly some
specified time, and the reach tube is the set of states traversed by those same
trajectories over all times prior to and including the specified time. Thus, the
reach tube always contains the reach set. Forward and backward versions of both
reach sets and tubes can be specified.

While we examine their properties and appropriateness in terms of the fully
specified safety analysis problem S, forward and backward reachable sets and
tubes may be more or less appropriate for other tasks; for example, backward
reach tubes for finding the set of states which achieves a target set despite the
unknown but bounded disturbance of exogenous inputs, or forward reach sets
for demonstrating system liveness.



3 Related Work

There are two main classes of direct reachability algorithms, those that work
directly with continuous representations. Lagrangian approaches represent the
set or tube with information that moves with the flow of the underlying dy-
namics, and are typically described in terms of forward reachability. A few are
designed for systems without inputs [2], many permit inputs which expand the
size of the reach set [3-6] and some permit inputs which shrink the reach set [7].
The theory is often based on linear continuous dynamics, although most schemes
have demonstrated computational extensions to handle the nonlinear case. These
schemes have also shown the best scalability; for example, results for systems
with hundreds of dimensions have been reported in [6, 2].

Eulerian approaches work with a discretization that is not moving with the
dynamics (although it may be refined during computation), and are typically
described in terms of backward reachability [8-10]. All schemes can support
systems with inputs which expand the size of the reachable set, and most handle
those that shrink it as well. The theory works directly with nonlinear systems,
although scalability much beyond four dimensions has not been demonstrated.

The results in Section 6 are derived by a sensitivity analysis of trajectories.
Lagrangian reachability algorithms that depend on numerical integration of these
(or related) trajectories are clearly affected by such sensitivity. Despite the fact
that they do not directly integrate the dynamics, Eulerian schemes will also be
subject to similar numerical stability problems since the approximations that
they use are based on the evolution of the underlying system.

In addition to the classes of direct algorithms, there are at least two other
classes of indirect algorithms related to reachability for continuous and/or hy-
brid systems. Discretization of the state space and dynamics can yield a system
on which discrete reachability algorithms can be run; for example [11,12]. Al-
ternatively, automated Lyapunov type methods can be used to prove invariance
properties, such as [13,14]. How the sensitivity results might apply to these
algorithms has not yet been investigated.

The conclusions of Sections 4 and 5 apply to discrete systems as well; in
fact, forward and backward reachability have been combined to verify some
discrete systems (see [15] and the citations within). However, the nature of the
approximation errors (if any) in discrete algorithms is different enough that
Section 6 may not apply.

4 Comparing Forward and Backward Reachability

In this section we compare properties of forward and backward reachability for
a very generically defined dynamic system H. Trajectories of H will be denoted
by

Enls;z, tyu(r) : T — Z,

where T = [—7,+7] C R is the time interval over which the trajectory exists.
We employ the semicolon to distinguish between the argument s of &y and the



trajectory parameters: initial state z € Z, initial time ¢t € T and input signal
u(-) € U. For systems lacking an input signal, we omit it and denote trajectories
s Gu(s; 2, 1).

Existence and uniqueness of trajectories £y for various types of dynamic sys-
tems is a challenging subject by itself; for example, see [16,17] and the citations
within. To maintain the focus of this paper, we make the following rather ideal-
ized assumption.

Assumption 1. For given initial state z, time t, and input signal u(-) drawn
from an appropriate class, there exists a unique trajectory &u(s;z,t,u(-)) for
seT.

By making this strong but generic assumption, many of the results in the next
two sections will apply to a broad group of dynamic systems, although we focus
on continuous and hybrid systems. It is the negative conclusions that we draw
that have the most relevance to future research—if a technique or formulation
fails under such a strong but generic assumption, there is little point in pursuing
its concrete implementation.

In continuous systems, the dynamics are given by an ordinary differential
equation (ODE) of the form 2(t) = f(z(t), u(t)), where the state z is continuous.
Typically Z C R¢, although some state variables may use other domains; for
example, angles are often drawn from the periodic set [0,27[. If f : Zx U — TZ
is uniformly continuous, bounded and Lipschitz continuous in z for fixed u, then
Assumption 1 is satisfied [18] for fixed u(-) € U, where

U2 {¢:T— U]|¢() is measurable} (1)

and U C R% is convex and compact. Consequently, we can specify a continuous
system as a tuple He = (Z, f,U).

The generalization to hybrid systems involves a form of hybrid automaton
(HA) adapted from [10]: we simplify to a single input, but that input may affect
the guards and domains. The state of a hybrid system is z = (¢,z) € Qx X =Z,
where ¢ is the discrete state and z is the continuous state. The full HA is given
by the tuple Hy = (Q, X, f, D,G,r,U), where

Q discrete states;

X continuous states;

F:QxXxUs - TX continuous dynamics (vector field);
D:QxUp — P(X) domain of continuous evolution; (2)
G:QxQxUp — P(X) guard conditions for discrete evolution;
r:QxQxXxU — X reset function;

U= (Uc¢,Up) continuous and discrete input sets;

where P(X) is the power set (set of all subsets) of X. As in [10], we assume that
the discrete inputs are constant during continuous evolution. We will call the



boundaries of the domains and guards the switching surfaces. Formal mathemat-
ical conditions under which Assumption 1 holds are available for some subclasses
of this hybrid automata [16,17]. At a minimum, Assumption 1 will require that
Hy be non-Zeno and non-blocking, and that f statisfies conditions to ensure
existence of the continuous components of the trajectories.

The proofs for many of the propositions in this section were omitted due to
space limitations, but can be found in [19].

4.1 Maximal Reachability

When performing safety analysis with forward reachability, the single input’s
authority is used to make the reach set and tube as large as possible. We will
use the subscript “1+” to denote a single input used to maximize the size of the
reachable set and tube and call these constructs mazimal.

Fii(H,S,t)2{2€Z|3u()eU,3ze S8 ult;2,0,u(-) = 2}, (3)
Fii(H,8,[0,t) 2{2€Z|Fu()eU,3ze S 3s €[0,t],u(s;2,0,u(-)) =2}.  (4)

In the corresponding backward reachability problems, the input is used to drive
as many states as possible towards the target set. The result is that the size of
the reachable set and tube are again maximized.

B1+(H:57t) £ {Z €Z | Elu() € [U: EEAS S:EH(O;Zy _tau(')) = 2}7 (5)
Bii(H,8,[0,t) £{z€Z|3u(-) €U,32 € §,3s € [0,t],£u(0; 2, —s, u(-)) = 2}.  (6)

The relationships between these four sets is easy to establish and should not be
surprising.

Proposition 1.
FiiH,S0,4)= |J Fie(H, 88  Bip(H,S[0,6) = |J Biy(H,S,9)
iefo,t] telo,t]

Reachability for zero input systems is a special case of maximal reachability;
for example, the forward reach set is given by

Fo(H,S,t) 2 {2 € 7|3z € S,&u(t; 2,0) = 2}.

4.2 Minimal Reachability

Instead of the sets defined above, we can choose to seek only those states that
trajectories are forced to reach no matter what input is chosen. Consequently,

the reachable sets and tubes are as small as possible, we use the “1—" notation,
and call these constructs minimal.
1—(H,S,t) £ {2 € Z|Vu(-) € U,32 € S,&u(t; 2,0,u(-)) = 2} (7)
1_(H,S[o th) 2 {2€Z|Vu(-) €U,3z € S,3s € [0,1],&u(s; 2,0, u(")) = 2}, (8)
Bi_(H,S,t) 2 {z € Z |Vu(-) € U,32 € S, & (0; 2, — ,u())—z} (9)
1-(H,5,[0,]) £ {2 € Z | Vu(-) € U,32 € S,3s € [0,t],£n(0; 2, —s,u(-)) = 2}.  (10)



Unfortunately, the properties that hold in the purely existential maximal case
above no longer apply.

Proposition 2.

U Fl—(Ha‘S’ai) g Fl—(H757 [Oat]) U Bl—(Hasaf) g Bl—(Ha‘S’ﬂ [O’t])
telo,t] tefo,t]

The problem arises because the choice of ¢ in the reach set definitions is
fixed before any other variable is quantified, while the choice of s € [0,¢] in the
reach tube definition occurs after all other variables are quantified. For maximal
reachability all the quantifiers are existential, so their ordering does not matter.
However, once the input’s quantifier is changed to be universal, the order in
which the trajectory’s time interval is chosen matters a great deal.

We close by mentioning that systems with competing inputs (such as con-
trol and disturbance) are subject to the same negative results as the minimal
reachability constructs (such as Propositions 2, 4 and 5); for more details see [19].

4.3 Application to Safety Analysis

Having defined the maximal and minimal forward and backward reach sets and
tubes, we examine which can be used to solve the safety problem S = (H,1,T)
under various assumptions about the input’s behaviour. Throughout this section
we assume that H satisfies Assumption 1.

Proposition 3. The following properties are equivalent.

. H is safe over horizon t <T for all possible inputs u(-) € U.
. Fi (H I, s)NT =0 for all s € [0,1t].

. Fi (H, L[0,t)nT = 0.

. Bi (H,T,s)NI =0 for all s € [0,1].

. By (H,T,[0,t))yn I =0.

G Lo o~

Based on this proposition, we can use any of the reach sets or tubes to
demonstrate the safety of systems despite the actions of bounded exogenous
inputs, or of systems without any inputs. The situation is not quite so favourable
for proving the existence of an input which guarantees safety.

Proposition 4. Given horizont < T, there exists an input u(-) € U (which may
depend on initial state) that keeps H safe if and only if Bi—(H,T,[0,¢))N I = 0.
Such an input may exist only if Bi_(H,T,s) NI = ( for all s < t, but the
converse is not necessarily true.

Proof. We first prove the claims for the reach tube. Let S = By_(H,T,[0,¢]) N 1.

H safe = (S = 0)): Assume z € S but that H is safe for input u(-) € U
and derive a contradiction. By (10), there exists 2 € T and s € [0,t] such that
&nu(0; 2z, —s,u(-)) = 2. But then this trajectory reaches from I to T' under input
u(+), which is a contradiction that H is safe for input u(-)



H safe <= (S = 0): Assume that S = (). Then for all z € I, z is in the
complement of By_(H,T,[0,t]). Negating (10), there exists u(-) € U such that
for all 2 € T and s € [0,¢t], &n(0; 2z, —s,u(:)) # 2; in other words, for any initial
state in I, there is an input which gives rise to a trajectory which does not reach
T during the interval [0,¢]. Hence, there is an input u(-) which makes H is safe
during this interval.

The “only if” claim for the reach set is a simple outcome of combining Propo-
sition 2 and the proof for = above. The converse is not necessarily true because
for the reach set the input is chosen after the time ¢, and for larger ¢ the input
may drive trajectories right through the unsafe set T and out the other side [9].
An example can be found in [19]. O

Based on this proposition, we can use the minimal backwards reach tube to
prove the existence of a safe input for any state in the initial set. Unfortunately,
the same cannot be said of the minimal forward reachability constructs.

Proposition 5. The forward minimal reach set and tube provide no information
about whether there exists an input u(-) € U that makes H safe.

Proof. Consider first the forward reach tube. Let S = Fy_(H,I,[0,t]) N T. We
show that any combination of S empty or nonempty with H safe or unsafe is
possible. The two easy cases are the ones that should hold. For S # § and H
unsafe, take INT # (). For S = () and H safe, take T = §).

Now consider S = ). Then for all 2 € T', 2 is in the complement of Fy_(H, I, [0, ¢]).
Negating (8), there exists u(-) € U such that for all z € I and s € [0,1],
&u(s; 2,0,u(-)) # 2; in other words, for any unsafe state Z in T, there is an
input such that no trajectory emanating from the initial set I arrives at 2 dur-
ing the interval [0,#]—so far, so good. Unfortunately, this proof only applies
once z € T is selected; there is nothing in this proof to stop the chosen input
from driving all those trajectories into some other part of 7', thus rendering the
system unsafe.

Finally, consider 2 € S. By (8), for all u(-) € U there exists z € I and
s € [0,t] such that £u(s; z,0,u(-)) = Z; in other words, for all inputs there exists
a trajectory starting from somewhere in I that will arrive at 2 at or before time
t. However, this is not the safety question that we sought to answer. For all these
z € I, there may still exist some other @(-) € U that ensures &y(s; 2,0,4(-)) ¢ T
for all s € [0,¢], and hence that H is safe.

The forward reach set can fail for safety verification in either of the ways
that the forward reach tube or the backward reach set fails. O

The essential problem with minimal forward reachability is that the state lying
in the initial set is chosen after the input while the state lying in the target set
is chosen before, rather than the other way around.
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Fig. 1. Fixed points of the forward minimal reach tubes. The two cases on the left are
actually safe, while the case on the right is unsafe. The forward reach tube demonstrates
that it is inappropriate for existential safety verification in the two cases on the right.
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Fig. 2. Fixed points of the backward minimal reach tubes. Safety is correctly deter-
mined for the two cases on the left, and a lack of safety for the case on the right.

4.4 Examples of Forward and Backward Reachability for Safety

In this section we examine the various reachability constructs in terms of the
purely continuous system H, for z € R2.

= [21] , where |u| < 1. (11)

The motion of Hy is easy to visualize: translation to the right at unit speed, and
the choice of input determines vertical motion at unit speed.

Examples demonstrating Proposition 3 and the reach set components of
Propositions 4 and 5 can be found in [19]. For the reach tube components of
these latter two propositions, we choose two initial and two target sets.

I3 =[0,42] x [-2,42] T3 =[+5,47] x [-2,+2]
Iy = [0,42] x [-4,+4] Ty = [+5,47] x [—4, +4]

These initial and target sets are horizontally aligned, so for any initial state with
xz > 0, choose u(t) = +1 and for any initial state with z2 < 0, choose u(t) = —1.
With these input signals it is easy to see that either initial set with T3 is safe,
while either initial set with T} is unsafe.



Figures 1 and 2 show the two minimal reach tubes for three of the combina-
tions of initial and target sets (the unsafe case Iy and T} is not shown but is an
easy extrapolation from those given). Both tubes reach a fixed point at ¢t = 2
(for Iy or Ts) or t = 4 (for Iy or Ty), and it is that fixed point which is shown.
The failure of the forward reach tube to correctly distinguish safe and unsafe
situations can be seen in the two right subplots of Figure 1.

5 Exchanging Forward and Backward Reachability

Despite the negative conclusions regarding the minimal forward reach tube
Fi_(H, S,]0,¢]), algorithms for its computation may still be useful if they can be
used to compute backward reach tubes. In order to establish the situations under
which forward and backward reachability may be interchanged, we must be able
to reverse the direction of time in our dynamic system. Under Assumption 1,
the following assumption will be relatively easily satisfied.

Assumption 2. For a given dynamic system H, there exists a backward dy-
namic system (ﬁ such that for all t,s € T

Eu(s;z,t,u(v)) =2 = §q(s52,tu(r) =
Furthermore, &4 satisfies the conditions of Assumption 1.

For the continuous He, €F<|_c satisfies the ODE

5(t) = T (().u() 2 —F(2(t), u(t)) (12)

and <H_c = (Z,—f,U). If f satisfies the sufficient conditions mentioned above for
&nc to satisfy Assumption 1, then so will Eﬁc'

The case for the HA Hy is considerably more complex. In addition to the
reversed continuous evolutions satisfying (12), there must exist reversed versions

G and ¥ of the guards and reset which satisfy

N N <~
T € G(q,q,UD) <~ T € G(qaqauD) (13)
q4,49,r

r(qan7x7u) = <~ ?( ) zx.

— <
With these definitions, Hy = (Q,X,—f,D, G, " ,U). Conditions under which
f% would satisfy Assumptlon 1 are even more challenging to come by, although

there has been some work [20]. However, if we can find a well posed ﬁ then the
temporal direction of our favourite reachability algorithm is irrelevant.

Proposition 6. If H satisfies the conditions of Assumptions 1 and 2, then

Fio(H,5,00.) = By (H,8,00,)  Fuy(H,8,0) = By (H, 5,0
Fi_(H,5,0,]) = Bi_(H,5,0,4]) F_(H,S,t) = B,_(H,5,t)



Proof. We prove the claim for the minimal reach tubes; the proofs for the re-
maining claims are similar. Assume 2 € Fy_(H, S,[0,¢]). By (7), for all u(-) € U
there exists z € S and s € [0,¢] such that {u(t, 2,0,u(-)) = 2. Under Assump-

tion 2, {47 (¢; 2,0,u(-)) = z. Because H is time independent, we can shift the time

variable to get §7(0; 2, —t,u(-)) = 2, which by (9) implies z € Bl,(ﬁ,S, [0,]).
The proof in the converse direction is similar. O

6 Reachable Set Sensitivity

Section 4.3 demonstrated that the backward reach tube is the most generally
applicable of the reachability operators to verification tasks. However, reach sets
and tubes can rarely be determined analytically, so they must be approximated
numerically. In this section we examine equations for the sensitivity of trajec-
tories with respect to initial conditions. From these equations we can draw the
conclusion that for some types of systems accurate numerical approximation of
backwards reachability may not be possible.

The sensitivity analysis techniques used in this section force us to abandon
the very general dynamic system definition used in the previous sections. Fur-
thermore, we will assume that the number of states in discrete systems or the
discrete component of hybrid systems is small enough that the discrete compo-
nent of the reachable sets or tubes can be represented exactly. Therefore, we
will focus our attention on continuous systems and the continuous component
of hybrid systems. Since the former are a subset of the latter, we perform the
analysis for hybrid systems and except where noted assume that H = Hy and
that Assumptions 1 and 2 hold.

For the purposes of this analysis the domains D and guards G are specified
by implicit surface functions

D(qauD) = {.CIZ' eX | ¢D(Q;$;UD) S 0}
G(¢,4,up) ={z € X |¢¥g(q,4,2,up) <0}

for all ¢,q € Q and up € Up. The switching surfaces are then given by the
zero level sets of these functions, and the normals of those switching surfaces
by the local gradients. In order to study perturbations, we make the following
assumption about the components of the hybrid system; the assumption also
ensures that the switching surfaces and their normals are well defined.

Assumption 3. The vector field f, reset r and implicit surface functions of the
domains vp and guards Vg are differentiable with respect to their continuous
parameter © when all other parameters are held fized.

Sensitivity equations for a class of hybrid systems called differential-algebraic-
discrete were derived in [1]. Here we adapt these results to HA of the form (2)
by ignoring sensitivity with respect to parameter or discrete state, removing the
algebraic component and adding a continuous reset. Details are omitted because
the derivation follows directly from [1]. Sensitivity with respect to (constant)



problem parameters can be derived in a similar manner. We do not consider
sensitivity with respect to the input, and hence assume throughout that u(-) € U
is fixed.
For convenience, define the matrices
A af(q,:v,u) A 61"((],6,.1’,11/)

F(Qamau) = T R(deaxau) = o

6.1 Trajectory Sensitivity Analysis

In this section we examine the effects on a trajectory’s position due to small
perturbations of the continuous portion of its initial state.

En(t; 20 + 02, 0,u(-)) = &t 20,0,u(-)) + En(t; En())0z + O(627), (14)

where the initial state is zo = (qo, o), the perturbation is purely continuous
20 + 0z = (qo,xo + 02), En(-) = &u(:; 20,0,u(-)), and the sensitivity matriz is

defined as et 0
i 20, 0, u(-
Zn(s () & 2200,

The continuous evolution of the HA is governed by an ODE, and sensitivity
analysis of ODEs is well established; for example, see [21, section 4.6 and ex-
ercise 6.4]. Using what is essentially a Taylor series expansion, it can be shown
that the sensitivity matrix solves the ODE

%EH(t) = F(qvw7u)EH(t)a (15)
where z = (q,z) = &u(t; 20,0, u(+)) and u = u(t). The initial condition for (15)
is Z4(0) = I, where I is the identity matrix of appropriate size.

To treat the discrete jumps that occur in hybrid systems, let ¢~ and ¢+
indicate values just before and just after the instantaneous jump respectively,
27 =(q¢,z7) = &u(t™; 20,0, u(-)) be the state just before the jump, and ¢ be
the discrete state just after the jump (so 2= € G(q~, ¢, u)). For jumps that
occur on switching surfaces the difference in post-jump state for two neighboring
trajectories depends both on the reset and the difference in time when the jump is
enabled (for guard switching surfaces) or forced (for domain switching surfaces).
Let t(zo) be the time of the jump as a function of initial state and 7 be its
sensitivity. Then

_0uw) V)T E)
920 Vo (xm)Tflgm 2, u)
where ¢ (x7) is ¢¥p(q~, 2™, up) for domain switching surfaces and v¢(¢~, ¢", 27, up)
for guard switching surfaces. This equation is only valid if the vector field sat-
isfies a transversality condition such that Vi (z =)L f(¢~, 2~ ,u) # 0 [1]. During

this period, one trajectory is subject to the old vector field and one to the new
vector field, so

En(tT) =R(q,q%, 27, u) (Bu(t") + fl¢" a7, u)r) — f(g" 2T, w)r,  (17)

where 27 = r(q~,q", 27, u) and 7 is given in (16). Away from switching surfaces
trajectories in a neighborhood can all jump at the same time, so 7 = 0.

(16)



6.2 Implications for Approximating Reach Sets and Tubes

Given a nominal system trajectory &y, the sensitivity evolution equations (15)
and (17) can be solved as if they were a dynamic system to provide quantitative
estimates of the form (14) for the effects of small perturbations on the initial
conditions. Here, though, we will use them to ascertain conditions under which
we cannot expect accurate results from approximate reachability algorithms.
Most such algorithms use floating point instead of exact arithmetic, and hence
make small errors throughout computation. Taking dz as a small numerical error
incurred, for example, by a single floating point operation at time ¢ and state z,
algebraic manipulation of (14) arrives at a bound for the error at another time
s (ignoring the O(dz?) terms)

16n(s; 2 + 0, t,u(-)) — Euls; 2,8 u( )] < NIZnls; €[ [[0]]- (18)

This trajectory-based sensitivity analysis is relevant to direct reachability al-
gorithms because they either track trajectories explicitly (for Lagrangian ap-
proaches) or implicitly (for Eulerian); consequently, errors in locating a trajec-
tory translate directly into errors in the approximation of the boundary of the
reachable set or tube. It should be noted that Assumption 3 and the vector
field transversality condition ensure that the two trajectories in (18) follow the
same sequence of discrete states, so we need only consider the difference in their
continuous states.

The multiplicative factor ||[Zn(s;&n(-))|| in (18) depends on the trajectory
&n(-), but there are three ways in which it might grow large.

Real[A(F)] >0 continuous evolution, (19)
AR)|>1 discrete jumps, (20)
vyl f~~0 grazing contact with switching surface, (21)

where A(A) are the eigenvalues of matrix A and f~(z) = f(¢~,x,u). Because F,
R, ¢ and f depend on state (and potentially input), checking these conditions
explicitly will usually be impractical. However, systems satisfying any of the
conditions (19)—(21) are inherently unpredictable; consequently, deterministic
models of the form studied here are rarely constructed for such systems. With
the notable exception of chaotic systems, conditions (19)—(21) are unlikely to
occur in practice when computing forward reachability.

Unfortunately, the same cannot be said of backward reachability. It may be
defined in terms of the forward dynamics, but computational approximations
will begin with the target set and work backwards along trajectories of the time
reversed system. Therefore, let us consider the form of conditions (19)—(21) for

in terms of the elements of a given H. From (12),
%
F=-f = F=-F = \F)=-\®).
From (13), r(q,d, % (4, ¢, z,u),u) = x. Taking the derivative with respect to

RR=1 — R=R! = AxR)=2®R)"



The equivalent of (21) is a little more difficult to deduce, but as explained in [20]
the concern is that the flow field after a forward time jump (before the reverse
time jump) is nearly parallel to the switching surface which triggered the jump.

To summarize, we restate conditions (19)—(21) for H in terms of the parameters
of H

Real[A(F)] < 0  backward continuous evolution, (22)
IMR)| €1  backward discrete jumps, (23)

VT f+ ~0  backward grazing contact with switching surface,  (24)

where fT(z) = f(q",r(¢”,q¢",x,u),u) includes the action of the reset. As
demonstrated in the next section, these conditions can easily occur for systems
whose forward simulations are very well behaved. From these conditions, we draw
the following conclusion about the challenges of using numerically approximated
backwards reachability.

Remark 1. Systems which display large amounts of contraction in forward time
(ie nearby trajectories get closer together) in either their continuous evolution (of
the form (22)) or discrete evolution (of the form (23)) are likely to be numerically
ill-conditioned for backwards reachability. Poorly conditioned switching events
(of the form (24)) are also more likely to be overlooked when working backward,
because the relevant switching surfaces and vector fields are in different discrete
modes.

As a final comment, we note that this ill-conditioning of backwards reacha-
bility depends on the set being sought, and not the manner in which it is calcu-
lated. Consequently there are unlikely to be issues of ill-conditioning when using
a backward algorithm and Proposition 6 to compute a forward reach set—this
process involves reversing the dynamics twice and ends up back with forward
dynamics. On the other hand, using a forward algorithm and Proposition 6 to
determine the backward reach tube may run into ill-conditioning because the
dynamics are reversed before the algorithm is applied.

6.3 Continuous System Sensitivity Example

To illustrate how sensitivity of the continuous evolution can be a major issue in
computing reachability for real systems, we examine the toggle circuit [22] whose
schematic and typical trace are shown in Figure 3. The model Hjs is based on a
simple, short channel transistor model with velocity saturation [23, pp. 62-63].
All capacitances are to ground and are of fixed value, and interconnect capac-
itance is ignored. To emulate the effect of connecting toggle elements together,
the output node z is given an additional capacitative load equivalent to that seen
by input ¢.

The circuit is correctly operating if the period of the output z is twice the
period of the input signal ¢. Forward reachability has been used to demonstrate
that under suitable constraints on the input, the output has twice the period of



Fig. 3. Left: Yuan’s and Svensson’s toggle circuit [22]. The numbers next to the tran-
sistors are the relative sizing used in the simulations. Right: Simulation of the toggle
model Hs for a typical input signal ¢.

Real[A( F)]

0 01 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1
Time X 1073

Fig. 4. Upper and lower bounds on the real components of the eigenvalues of the
Jacobian F of the dynamics of Hs during the simulation in Figure 3.

the input and satisfies the same constraints as the input; consequently, a chain
of toggle circuits can be used to form a counter [24].

Unfortunately, a similarly successful analysis using backward reachability
would be unlikely to succeed. Figure 4 shows the maximum and minimum real
components of the eigenvalues of the Jacobian F of the dynamics for Hs over the
course of the simulation in Figure 3. Even after scaling by 1078 to account for the
very short time intervals typical of VLSI circuits, the minimum real component
of the eigenvalues of F is —(10?) or less, which indicates a highly contractive
dynamic system. Such systems are great for forward reachability calculations,
since overapproximation errors will be rapidly contracted to the point of being
negligible. But from (22) we see that backward reachability calculations are un-
likely to maintain any accuracy for circuits of this type, since they face expansion
factors of the same magnitude. In this case, error in backward reachability could
grow by a factor of €'%%9 or more on time intervals as short as those in Figure 3.

An example demonstrating sensitivity of the forms (23) and (24), and its
effect on reachability calculations can be found in [19].



7 Conclusions and Future Research

Using a very general definition of dynamic system, we demonstrated that back-
ward reach tubes are the most broadly applicable formulation of reachability
for demonstrating system safety; that forward and backward algorithms can be
interchanged if well-posed backward trajectories can be defined; and that the
backward reachability formulation is more likely to suffer from numerical sta-
bility problems, particularly for systems displaying significant contraction. We
intend to continue studying the sensitivity of reachability algorithms to problem
parameters such as inputs, initial and target sets.

Acknowledgments: The author would like to thank Professor Mark Green-
street, Chao Yan and Suwen Yang for the model, code and help with the toggle
example.
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