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Abstract— A common design pattern in cyber-physical sys-
tems features a continuous plant and a discrete controller in
a feedback loop. Sampled data analysis attempts to take into
consideration both the continuous and discrete time elements of
such a design. In this paper we adapt an earlier algorithm for
efficient ellipsoidal approximation of robust sampled data finite
horizon viability kernels to compute capture basins for systems
with linear dynamics. Using these capture basins, we construct a
hybrid automaton which can verify and if necessary modify an
exogenous input signal to ensure safety. The hybrid automaton
can be run online in the controller so that it can handle
exogenous input signals arriving in real time, such as might
be generated by human-in-the-loop control. The technique is
demonstrated on a six dimensional nonlinear longitudinal model
of a quadrotor with a human pilot in the loop. The capture
basins’ robustness is used to handle the model nonlinearity in
a sound fashion.

I. INTRODUCTION

The design of cyber-physical systems often follows the
basic block diagram shown in figure 1, where a continuous
time physical plant is controlled by a discrete time cyber
controller and the interface between the two is provided by
periodically sampled sensors and actuators that maintain a
constant setting over each sample period. Traditional ap-
proaches to safety verification of such systems often ignore
important behaviours: a discrete time analysis can miss
failures caused by the continuous evolution of the plant
between sample times, while a continuous time analysis may
fail to account for the sampled nature of the feedback loop.

In previous work [1], [2] we have proposed algorithms
to compute viability and discriminating kernels for sampled
data systems; however, the main goal was to determine from
which states it was possible to remain safe. In this paper we
focus on a more proactive approach: We construct a hybrid
automaton which can generate a set of known safe input
values at every plant state known to be safe. If in addition
to the plant state the controller has access to an exogenous
input signal—such as might be generated by a human-in-
the-loop—this set of known safe input values can be used
to check and if necessary modify the exogenous signal to
ensure safety.
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Fig. 1. A closed loop sampled data system. In this paper we assume that a
continuous time ordinary differential equation model of the plant is given,
and we focus on verification and/or synthesis of discrete time controllers
which ensure safety of the plant at all (continuous) times.

A second shortcoming of the previous work was that
safety was guaranteed only over a finite horizon. While
the computational algorithms proposed below continue to
apply over a finite horizon, we propose to ensure infinite-
horizon safety of the resulting system using a two-stage
process akin to that frequently used to achieve infinite-
horizon stability through model predictive control (MPC) [3]:
Design a stabilizing controller for some (relatively small)
subset of the safety constraints, and then compute a finite
horizon capture basin within the safety constraints using this
stabilizable subset as a target. In the common case where the
capture basin is larger than the target, we are able to ensure
safety over an infinite horizon by utilizing the input signals
derived from the capture basin calculation to drive the plant
into the stabilizable region. In fact, in some situations it may
never be necessary to invoke the stabilizing controller.

The contributions of this paper are:
• Adaptation of the sampled data discriminating kernel

algorithm [1] to robust fixed time capture basins. We
describe the adaptation for systems with linear dynamics
because we can efficiently implement it with ellipsoidal
set representations.

• Construction of a discrete state automaton for the dis-
crete time controller which, when combined with the
continuous time plant to form a hybrid automaton, can
verify and if necessary filter an exogenous input signal
to ensure infinite horizon safety, provided that a safe
stabilizing controller can be designed for some subset
of the safety constraints.

• Demonstration of these techniques on a partially non-
linear longitudinal model of a quadrotor with six state
dimensions and two input dimensions.



A. Related Work

Since we are borrowing a technique from MPC to achieve
infinite horizon guarantees, why not use MPC to directly
tackle the safety constraint problem in the first place? First,
our implementation is efficient compared to the optimizations
typically required by MPC; for example, the offline compu-
tation for the quadrotor requires on the order of minutes
to complete, while the online effort involves evaluating a
handful of quadratic functions at each sample time. Second,
the proposed hybrid automaton is a representation of a
verified control envelope, which could be used to more
efficiently design, modify or tune proposed controllers to
ensure safety [4].

In addition to the algorithms from [1], [2] that we extend
here, one of us (CJT) has also studied alternative mechanisms
for verifying sampled data systems. In [5] a sampling based
approach to approximation of sampled data viability kernels
for systems with linear dynamics is considered. That scheme
is more accurate than the ellipsoidal implementations used
here, but cannot yet provide results robust to uncertainty in
the dynamics or synthesize control signals. The paper [6]
focuses on a ground robot collision avoidance scenario;
although the Hamilton-Jacobi techniques used therein are
very similar to the high level ideas outlined in [2], successful
application to a particular problem requires working out
many details (we tackle a similar challenge in the example
below). In [7] another one of us (IMM) used ellipsoidal ap-
proximations of discriminating kernels to construct a hybrid
control automaton to ensure system safety; however, that
system assumed a continuous time controller.

In [8] the authors combine SMT and Taylor models to
bound the reach tubes of sampled data hybrid systems,
and apply their technique to models of adaptive cruise
control, glucose control through insulin, and watertanks. The
approach is more rigorous numerically, but it is not clear
how it might be adapted to synthesize controllers or operate
online to analyze exogenous input signals.

In [9] the authors construct outer approximations of the
capture basin (called therein the region of attraction) by
solving (in the end) a single semi-definite program. Their
approach, based on occupational measures, allows treatment
of a much more general class of dynamics but does not
provide inner approximations or handle disturbance inputs.

We note that there has been considerable work done on
stabilization of sampled data systems; for example, see [10]
and the citations therein. These techniques are less relevant
to the problem of interest in this paper because they cannot
easily enforce general state and input constraints.

B. Problem Definition

We will focus in this paper on systems with linear dynam-
ics because we are able to efficiently implement the resulting
capture basin algorithm. We assume that the plant’s dynamics
take the form

ẋ = Ax+ Bu+ Cv (1)

where x ∈ Ω ⊆ Rdx is the state, u ∈ U is the control
input constrained to compact subset U ⊂ U of a control
input subspace U ⊆ Rdu , v ∈ V is the disturbance input
constrained to compact set V ⊆ Rdv , and the matrices A, B
and C are known.

We study a safety problem in which the control input seeks
to keep the plant state within a set of prespecified constraints
SC ⊂ Ω. The disturbance input is used to model uncertainty,
nonlinearity or error in the dynamics. We assume that it seeks
to drive the plant state outside of SC ; in other words, that it
adversarially chooses the worst possible value for safety. In
this manner we ensure that the resulting analysis is robust to
any modeled disturbance input.

While the plant evolves in continuous time and state
according to (1), as shown in figure 1 the controller only
receives state feedback and can set the control signal at
sampling times tk = kδ for some sample time period δ > 0.
For simplicity we only consider fixed sample time period δ in
this paper, although it is straightforward to use the techniques
from [1] to adapt the algorithms described below to handle
some forms of sample time jitter. Taking into account the
sample times, the closed loop dynamics of the system take
the form

ẋ(t) = Ax(t) + Bupw(t) + Cv(t) (2)

where the piecewise constant input signal upw(·) is chosen
according to

upw(t) = ufb(x(tk)) for tk ≤ t < tk+1 (3)

and ufb : Ω→ U is a feedback control policy.
In order to extend our safety guarantee to an infinite hori-

zon, we will assume the existence of a feedback controller
uinf

fb : SC → U which can ensure safety for the sampled
data system if x ∈ ST ⊂ SC ; for example, uinf

fb (x) might
be a controller which stabilizes to an equilibrium in ST .
For technical reasons [11], we assume SC and ST are the
complements of open sets.

In the rest of the paper, algorithms will be described as
online if they are designed to run in the controller block
(and must hence satisfy its periodic cycle time), or offline
if they can be run in advance and provide fixed data to be
incorporated into the controller block. Offline algorithms are
assumed to have access to the plant model (1), sample period
δ, constraint set SC and target set ST . Online algorithms will
have access to this information, the current state x(t), and
must also be able to evaluate the exogenous input signal and
possibly the feedback controller uinf

fb (x) at the sample times.

II. COMPUTING CAPTURE BASINS

In this section we adapt the algorithm for sampled data
discriminating kernels from [1] to robust sampled data cap-
ture basins. As in [1] an abstract version can be formulated
for general nonlinear dynamics, but here we present only
the version for linear systems which uses the efficient and
conservative ellipsoidal representation of sets. The algorithm
in this section is intended to be run offline, and scales
polynomially (roughly cubicly) with dx + du and linearly
with the time horizon.



A. Prelminary Definitions

Define the robust fixed time sampled data capture basin

Captsd ([0, T ],ST ,SC)

,

x0 ∈ SC

∣∣∣∣∣∣∣
∃upw(·),∃i ∈ {0, 1, . . . , N̄},

∀v(·),∀t ∈ [0, iδ],

x(t) ∈ SC ∧ x(iδ) ∈ ST

 ,
(4)

where T = N̄δ and x(·) solves (2) with initial condition
x(0) = x0. We call this construct a “fixed time” capture
basin because we fix the maximum time at which the
trajectory must achieve the target set ST . The sampled data
capture basin must also achieve the target set at a sample
time; passing through the target set between sample times
is insufficient. This fixed time sampled data construct is
in contrast to the standard capture basin (trajectories may
reach the target set at any finite time) or the viability /
discriminating kernel with target (trajectories may either
reach the target set at any finite time or remain within the
constraint SC for infinite time) [11].

We now repeat some definitions from [1], [2]. The approx-
imation of (4) is performed in an augmented state space

x̃ ,

[
x
u

]
∈ Ω̃ , Ω× U

with dynamics

d

dt
x̃ =

d

dt

[
x
u

]
=

[
Ax(t) + Bupw(t) + Cv(t)

0

]
. (5)

Projection operators move from Ω̃ back into Ω or U

Projx

(
X̃
)
,

{
x ∈ Ω

∣∣∣∣∃u, [xu
]
∈ X̃

}
, (6)

Proju

(
X̃ , x

)
,

{
u ∈ U

∣∣∣∣ [xu
]
∈ X̃

}
, (7)

for X̃ ⊆ Ω̃ and x ∈ Ω. We apply two reachability constructs
in this augmented state space: An invariance kernel

Inv ([ts, tf ],S) ,

{
x̃(ts) ∈ S

∣∣∣∣∣ ∀v(·),∀t ∈ [ts, tf ],

x̃(t) ∈ S

}
(8)

and a robust reach set

Reach ([ts, tf ],S) , {x̃(ts) ∈ Ω̃ | ∀v(·), x̃(tf ) ∈ S}. (9)

Note that this latter construct is not a reach tube.
Sets are represented by ellipsoids. An ellipsoid E ⊂ Rd

is parameterized by center vector q ∈ Rd and symmetric
positive definite shape matrix Q ∈ Rd×d as the set

{y ∈ Rd | (y − q)TQ−1(y − q) ≤ 1},

Let E(S) denote the ellipsoidal approximation of a set S. In
order to ensure conservativeness, we choose an ellipsoidal
overapproximation of the set of possible disturbance inputs
V (in other words, V ⊆ E(V)), while all other sets will be
underapproximated (for example, E(U) ⊆ U).

Finally, we use the operator Inscribedα (∩iYi) to compute
a maximum weighted trace ellipsoid contained within the

intersection of a set of ellipsoids {Yi} which lie in the space
Ω×U. The weight factor α ∈ [0, 1] determines whether the
result should favour dimensions in Ω (α → 0), dimensions
in U (α → 1), or all dimensions equally (α → 0.5). For a
full definition of this operator and how to implement it with
a convex optimization, see [1].

B. Capture Basin Algorithm

We adapt the iterative algorithm from [1] to compute the
finite time robust sampled data capture basin.

Ei , E(Capti (ST ,SC)) (10a)
E0 = E(ST ) (10b)

E(I1) , E(Inv ([0, δ],SC × U)), (10c)

E(Ri) , E(Reach ([0, δ], Ei−1 × U)), (10d)

E(Ci) , Inscribedα (E(Ri) ∩ E(I1)) , (10e)
Ei = Projx (Inscribed0 (E(Ci) ∩ E(Ω× E(U)))) , (10f)

for i = 1, 2, . . . , N̄ . We note in passing that the ellipsoidal
underapproximations of the invariance kernel and robust
reach set are parameterized by a direction vector ` ∈ Rdx+du ,
and so given a set of such vectors the algorithm above can be
used separately on each vector to generate a set of ellipsoids
whose union is an underapproximation of the capture basin.
To avoid notational complexity we omit the direction vector
parameter in the remainder of the discussion.

The only significant difference between this capture basin
version and the discriminating kernel version in [1] is that
computations start from the target set ST instead of the
entire constraint set SC . However, this small change has
the important implication that intermediate sets are not
monotonic in time: It is not necessarily true that Ei contains
or is contained by Ei+1. Because of this (lack of) relationship,
we define a set-valued capture horizon function N : Ω →
P({0, 1, 2, . . . , N̄}), where P(S) is the power set of S

i ∈ N (x) iff x ∈ Ei. (11)

For any i ∈ N (x), a control policy is given by

Uc(x, i) , Proju (E(Ci), x) ∩ E(U). (12)

The proofs of the following two claims about the capture
basin approximations are straightforward modifications of
the proofs in [1] about discriminating kernel approximations.

Lemma 1: If x(tk) ∈ Ei for some i ∈ 1, . . . , N̄ , then
applying any upw(t) ∈ Uc(x(tk), i) for tk ≤ t < tk+1 will
result in x(tk+1) ∈ Ei−1 for any disturbance input v(·).

Proposition 2: If T = N̄δ for some integer N̄ > 0 then

N̄⋃
i=0

Ei ⊆ Captsd ([0, T ],ST ,SC) (13)

III. CONTROL SIGNAL FILTERING

In this section we use the capture basin computed in
the previous section to analyze and if necessary modify an
exogenous input signal ũ ∈ U. The algorithm in this section
is designed to be run online so that it could be applied to an
exogenous signal only available in real-time, such as might
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Fig. 2. Discrete automaton for the controller block. Not every mode
transition is shown; in fact, every mode is connected to every other mode
(including self-loops). When combined with the continuous plant (following
figure 1), the result is the control filtering hybrid automaton (CFHA).

come from a human-in-the-loop scenario; however, it could
also be used in a more comprehensive offline analysis such
as proposed for verified control envelopes [4].

For notational convenience, we will extend the definition
of Uc(x, i) from (12) to include i = 0:

Uc(x, i = 0) , uinf
fb (x), (14)

where uinf
fb (x) is the feedback controller which ensures the

infinite horizon safety of the system for x ∈ ST .
Because the capture basins are defined by the union of a

discrete collection of sets, we find it convenient to implement
our controller as a discrete time, discrete state automaton.
Note that this controller automaton requires the periodically
sampled state x(tk) at tk = kδ as input, and generates a
control value u(tk) as output. A graphical sketch of the
automaton is shown in figure 2, and it consists of:

• Discrete modes: One for each sample time in the fixed
horizon plus one for the end of the horizon. We denote
modes by m(i) for i = 0, 1, . . . , N̄ .

• Invariants: Mode m(i) has invariants ST for i = 0 and
Ei for i = 1, 2, . . . , N̄ .

• Edges: Every pair of modes is joined by an edge (so that
we do not have to explicitly keep track of edges). Note
that edges may be infeasible if the outgoing mode’s
invariant does not overlap the edge’s guard. Every mode
also has a self-loop.

• Guards: The guard for an edge entering mode m(i) is
the invariant of mode m(i).

Note that the discrete evolution of this automaton will be
nondeterministic if there exists any i and ı̃ 6= i− 1 such that
Eı̃ ∩ Ei−1 6= ∅.

To generate the control value from this automaton, first
define

Clip (Uc(x, i), ũ) =

{
ũ, if ũ ∈ Uc(x, i);

ū, otherwise;
(15)

where the value ū ∈ Uc(x, i) is “near” the value ũ in
some sense; for example, choose ū to minimize ‖ũ− ū‖ or
‖Bũ− Bū‖ for some norm. When the controller automaton

transitions—which it must do at every sample time tk—the
control signal generated upon transitioning into mode m(i)
at time tk is

upw(t) = Clip (Uc(x(tk), i), ũ(tk)) (16)

for tk ≤ t < tk+1, where Uc(x(tk), i) is given in (12) for
i = 1, 2, . . . , N̄ and (14) for i = 0.

In what follows we use

ū = q +
ũ− q

‖L(ũ− q)‖2
(17)

where L is the Cholesky factorization of Q−1, Q is the shape
matrix for Uc(x(tk), i) and q is its center vector. This choice
is cheap to evaluate but other choices of ū are possible.

When we combine this discrete automaton with the contin-
uous state, continuous time plant through the time sampling
sensors and zero-order hold actuators shown in figure 1, we
arrive at the control filtering hybrid automaton (CFHA).

Proposition 3: Let plant trajectory x(·) solve (2)–(3) with
initial condition x(0) = x0. If

x0 ∈
N̄⋃
i=0

Ei

and (16) is used to generate the control signal, then x(t) ∈
SC for all t > 0. Furthermore, for any i ∈ N (x0), there
exists a control signal which can be generated by the CFHA
such that x(iδ) ∈ ST .

Proof: We prove the second claim first. Choose any
i ∈ N (x0). We show inductively that the CFHA can generate
a control signal upw(·) such that x(tk) ∈ Ei−k for all k =
0, 1, . . . , i. The base case is true by observing that x0 =
x(t0) ∈ Ei. Now assume that x(tk) ∈ Ei−k and that the
CFHA is in mode m(i−k). By (16), upw(t) ∈ Uc(x(tk), i−
k), which by lemma 1 implies that x(tk+1) ∈ Ei−k−1. In
particular, x(iδ) ∈ E0 = E(ST ) ⊆ ST .

Now we show by induction that all control signals (16)
generated by the CFHA maintain safety for all t > 0. If
x(tk) ∈ Ei for i > 0, then for any choice of input allowed
by (12), lemma 1 ensures that x(tk+1) ∈ Ei−1. By (10f)
and (10e),

[
x(tk) uk

]T ∈ I1; and by (8) and (10c), x(t) ∈
SC for all t ∈ [tk, tk+1]. Finally, consider the base case
x(tk) ∈ E0 = E(ST ) ⊆ ST . By (14) upw(t) = uinf

fb (x(tk))
for tk ≤ t < tk+1; furthermore, by the assumption made
in section I-B, continued use of uinf

fb (x(tk̂)) for k̂ > k will
ensure that the trajectory remains in SC for all t > tk.

Proposition 4: If there exists i ≥ 1 such that

Ei−1 ⊆ Ei (18)

and x(tk) ∈ Ei for any k, then the CFHA can ensure
satisfaction of the safety constraint for all t > 0 without
use of uinf

fb (x).
Proof: We show that the CFHA can choose mode

m(i) at all sample times tk̂ for k̂ ≥ k. For the base case,
assumption x(tk) ∈ Ei implies the CFHA can be in mode
m(i). By lemma 1 any upw(t) allowed by (16) will yield
x(tk+1) ∈ Ei−1, which implies by (18) that x(tk+1) ∈ Ei.



Consequently, the CFHA can take the self-loop back to
m(i), completing the inductive step. Because this is a valid
behaviour of the CFHA, proposition 3 guarantees infinite
horizon safety; however, only mode m(i) for i > 0 is visited,
so uinf

fb (x) is never invoked.
If the conditions of proposition 4 hold and Ei is large

enough to serve as an operational envelope for the system,
then the discrete components of CFHA can be collapsed to
the single mode m(i) and a self-loop transition. This option
may be convenient when online memory and/or processing
resources are limited.

The computational cost of evaluating the CFHA is rel-
atively modest: Transitioning from mode m(i) requires an
evaluation of the invariant ellipsoid (a quadratic function
of state) for each alternative transition considered other
than mode m(i − 1) (which is guaranteed to be feasible
by lemma 1 and the choice of invariants for modes m(i)
and m(i − 1)), plus the cost of projecting the exogenous
input into the set of safe inputs for the chosen mode (17).
However, the computational cost of considering these alter-
native transitions is likely to be a key driver in resolving the
remaining degrees of freedom made available to the designer
by the discrete nondeterminism that remains in the CFHA.
We further explore one point in this space of safe designs in
section IV-D.

IV. QUADROTOR CONTROL EXAMPLE

In this section we demonstrate the application of the
algorithms described above to a longitudinal nonlinear model
of a quadrotor.

A. Modeling

The state of the longitudinal model is six dimensional:
• Horizontal position x1 [m] (positive rightward),
• vertical position x2 [m] (positive upward),
• horizontal velocity x3 [m/s],
• vertical velocity x4 [m/s],
• roll x5 [rad] (positive clockwise),
• roll velocity x6 [rad/s].

The control input is two dimensional:
• Total thrust u1,
• Desired roll angle u2.

We use the model of plant dynamics derived in [12]:

ẋ1 = x3, (20a)
ẋ2 = x4, (20b)
ẋ3 = u1K sinx5, (20c)
ẋ4 = −g + u1K cosx5, (20d)
ẋ5 = x6, (20e)
ẋ6 = −d0x5 − d1x6 + n0u2, (20f)

where constant K is a gain relating input u1 and the
quadrotor mass. Note that although input u2 appears on
the right hand side of (20f) and hence is related to roll
acceleration ẍ5, it is not differential thrust. The constants
d0, d1 and n0 are the gains in a low-level PD controller
for the roll angle which runs at high frequency on board

the quadrotor; consequently, the pilot and/or CFHA provide
desired roll angle as u2.

The ellipsoidal implementation requires a linear model,
so we must linearize the nonlinear terms (20d) and (20e).
The two variables in these equations are x5 and u1, so
we construct a second order Taylor series expansion about
fixed values x̄5 and ū1 respectively and derive affine dynam-
ics (19). Given a bounded range of x5 and u1 it is possible to
bound the linearization error, treat the error as a disturbance
input v, and thereby construct a conservative capture basin
using the affine dynamics.

It turns out that the leading term of the linearization error
is the (K2 )x5u1 cos x̄5 term in the error for ẋ3. To reduce
the size of this error, we must bound the range of x5 and
u1; however, stringent bounds on x5 requires the quadrotor
to stay almost level, while stringent bounds on u1 make it
hard to drive the system to a desired vertical position and
velocity. In order to avoid overly stringent bounds and yet
still keep the linearization error small, we construct a hybrid
automaton model of the plant as shown in figure 3, where
each mode corresponds to linearization about a different pair
of x̄5 and ū1 values. We will define constraint and target sets
for each of these modes appropriate to keep the bounds on the
linearization error small, and then compute a capture basin
for each mode independently. For the experiments conducted
below, we chose x̄5 = 0 or x̄5 = ±0.05 and ū1 = g or
ū1 = g ± 0.5 (a total of five modes).

B. Safety Constraints and Target Sets

While our implementation uses constraint sets that are
ellipsoidal, humans typically prefer to describe constraints
in box form. For our experiments, the state constraint set
was chosen as

x1 ∈ [−1.7,+1.7],

x2 ∈ [+0.3,+2.0],

x3 ∈ [−0.8,+0.8],

x4 ∈ [−1.0,+1.0],

x5 ∈ [−0.15,+0.15],

x6 ∈ [−π2 ,+
π
2 ].

The ranges of x1 and x2 were chosen based on a conservative
estimate of the region of the flight room in which accurate
state estimates were available. The ranges of x3 and x4 were
chosen because it was felt that high linear velocities were too
likely to lead to a crash. The range of x6 was chosen based
on angular velocities that were experimentally observed to
be safe.

The only state constraints which are not driven by physical
considerations are those on x5 (roll angle). We have observed
experimentally that this quadrotor can recover a stable hover
from roll angles as large as 0.5 radians, but we choose
a much smaller range for our safety analysis in order to
keep the linearization error bound small. In addition, we
take advantage of the hybridized dynamics and split the
range of the constraint on x5 into patches centered on the




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =

linear︷ ︸︸ ︷
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1

2Kū1 cos x̄5 0
0 0 0 0 − 1

2Kū1 sin x̄5 0
0 0 0 0 0 1
0 0 0 0 −d0 −d1




x1

x2

x3

x4

x5

x6

+


0 0
0 0

K(sin x̄5 − 1
2 x̄5 cos x̄5) 0

K(cos x̄5 + 1
2 x̄5 sin x̄5) 0

0 0
0 n0


[
u1

u2

]

+


0
0

− 1
2 ū1K(x̄5 cos x̄5)

1
2 ū1K(x̄5 sin x̄5)− g

0
0


︸ ︷︷ ︸

constant

+


0
0

1
2Kx5u1 cos x̄5 − 1

2K(x5 − x̄5)2ū1 sin ξ
− 1

2Kx5u1 sin x̄5 − 1
2K(x5 − x̄5)2ū1 cos ξ
0
0


︸ ︷︷ ︸

linearization error

for some ξ in the
range of possible

values of x5.

(19)

x̅5 = 0, 
u̅1 = g

x̅5 = 0, 
u̅1 = g−0.5

x̅5 = 0, 
u̅1 = g+0.5

Fig. 3. Hybridization of the plant dynamics. Each mode corresponds to
dynamics (19) with a different x̄5 and ū1 pair.

corresponding x̄5:

x̄5 = −0.05 with x5 ∈ [−0.15,+0.05]

x̄5 = 0 with x5 ∈ [−0.10,+0.10]

x̄5 = +0.05 with x5 ∈ [−0.05,+0.15]

The experimental control constraint set also depends on
the hybridization mode:

u1 ∈ [−0.5,+0.5] + ū1,

u2 ∈ [− π
16 ,+

π
16 ] + x̄5.

The range of u1 was also chosen to keep the linearization
error bound small; the quadrotor is actually capable of total
thrust in the range [0, g+2]. The range of u2 was chosen to be
slightly inside the constraint set of x5 for each hybridization
mode because x5 tracks u2.

Unfortunately, ellipsoids make poor approximations of box
constraints. The single largest volume ellipsoid fitting within
the state constraint box for any particular hybridization mode
turns out to contain less than 20% of the volume of that box.
In order to capture more of the safe set, we use two other
constraint sets in addition to this maximum volume ellipsoid.
Both have smaller volume, but are specifically chosen to
stretch into the anti-diagonal corners in x1−x3 and x2−x4

space (for example, the corners where x1 is small and x3 is
large, and vice versa), because such a constraint is favourable
to double integrators. One of the sets is also chosen to stretch
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Fig. 4. Projections of the state constraint approximations. The red
rectangles are the safety constraints, the solid red regions are the union
of the three ellipsoids which are used as constraint sets by the capture basin
algorithm, and the blue outlines are the corresponding target sets.

into the anti-diagonal corners in x1 − x2 space, while the
other into the diagonal corners in x1 − x2 space. All three
constraint sets treat the x5 and x6 constraints identically.
Figure 4 shows the relevant projections of these constraint
sets.

Using a linearization about x̄5 = 0 and ū1 = g (flat hover)
and ignoring the linearization error, a stabilizing LQR feed-
back controller was designed and tested. The cost matrices
in the LQR design were chosen to more heavily penalize
deviations in x2 and u2 in order to promote fast action in
the vertical direction while keeping the angular velocity x6

from becoming too large. Experiments determined that this
LQR controller was capable of stabilizing the quadrotor from
the set

x1 ∈ [−1.2,+1.2],

x2 ∈ [+0.5,+1.7],

x3 ∈ [−0.5,+0.5],

x4 ∈ [−0.8,+0.8],

x5 ∈ [−0.1,+0.1],

x6 ∈ [−0.3,+0.3].
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Fig. 5. Projections of the piecewise ellipsoidal approximation of the capture
basin. The red rectangles are the safety constraints, the solid green region
is the union of the ellipsoids comprising the capture basin approximation,
and the blue contours are the target set(s).

Ellipsoidal underapproximations of this set were therefore
used as the target for the capture basin computations. We
used multiple underapproximations for the same reasons and
stretched in the same fashion as described above for the
constraint set ellipsoids. We note that these ranges ensure
that the quadrotor is well away from the safety constraints,
particularly in x6 (whose dynamics have by far the smallest
time constant), when the LQR controller is activated.

C. Capture Basin Computation
Although it is possible to use multiple direction vectors `

in the capture basin approximation, we determined empiri-
cally that a single direction vector

` =
[
0 0 0 1 0 0 0 0

]T
did a surprisingly good job of finding reasonably large
capture basin approximations. Furthermore, it was found that
among the index sets of the piecewise ellipsoidal representa-
tion of the capture basin, increasing the number of direction
vectors was the least effective use of computational effort.

The computation of the piecewise ellipsoidal approxima-
tion of the capture basin indexed over five hybridization
modes, three approximations of the constraint set, a single
direction vector and ten sample periods was performed
following the steps from section II-B. Projections of the
result are shown in figure 5. It was run on a Lenovo
Thinkpad Yoga with with an Intel Core i7-4600U CPU
running at 2.1 GHz, 8 GB of RAM, 64-bit Windows 8.1
Pro, MATLAB R2014a, Ellipsoidal Toolbox 1.1.3 [13], Se-
DuMi 1.3 [14] and YALMIP 3 [15]. Computation during this
offline phase took about 15 seconds for each combination
of hybridization, constraint set and direction vector over ten
sample periods, for a total offline computation time of less
than five minutes.

D. Controller Execution
The exogenous input is generated by sampling the de-

flection of a joystick in real-time. The vertical deflection is

mapped to the range of u1 (zero deflection corresponding to
u1 = g/K), and the horizontal deflection is mapped to the
full range of u2.

We implement the CFHA from section III. At each sample
time tk the current state x(tk) is read, and then the exogenous
input signal ũ(tk) is compared to the control envelope
Uc(x(tk),m) for multiple modes m.

If the exogenous input lies within the control envelope for
one or more modes, then we choose the mode with largest
horizon i. If the largest horizon is shared among multiple
modes, we choose the mode for which the state x(tk) is
deepest inside the mode’s invariant.

If the exogenous input does not lie within any control
envelope, then we choose the mode whose control envelope
lies closest to the exogenous input; in other words, we choose
a mode to minimize the projection error ‖ū− ũ(tk)‖ in (17).

Evaluating each alternative mode takes time, so we are
constrained in how many can be checked in the online
environment. We have adopted the following heuristic to
prioritize which modes will be tested at each sample time.
We consider the mode indexes in two groups: current horizon
i and everything else (direction vector, hybridization and con-
straint approximation). Fixing the other indexes, we check
modes i (the current mode), i− 1 (guaranteed to be feasible
by lemma 1) and also i+ 1 and i+ 2 (to see if it is possible
to increase the horizon). We then fix the horizon to i and
consider all possible combinations of the other indexes.

When running on the same machine described above,
searching through a total of eighteen modes (each of five
hybridizations and three constraint approximations at hori-
zon i, as well as the current hybridization and constraint
approximation at horizons i − 1, i + 1 and i + 2 took an
average of 0.03 seconds.

E. Simulation Results

The target flight hardware is an Ascending Technologies
Pelican quadrotor running ROS on an Intel Atom processor.
Flights are performed indoors with highly accurate, low
latency state estimates generated by a VICON motion capture
system. Experiments were performed to estimate model pa-
rameters K = 0.89/1.4, d0 = 70, d1 = 17 and n0 = 55 for
the Pelican. The sample period was chosen as 0.1 seconds,
so the ten sample period capture basin horizon corresponds
to one second of flight.

A soft real-time MATLAB simulator was developed using
the nonlinear model (20) to drive system evolution and a
USB joystick to provide the exogenous input from a human
pilot. Figure 6 shows simulation results where the controller
was running the CFHA described in section IV-D based
on the piecewise ellipsoidal approximation of the capture
basin described in section IV-C. During the time period
between 6 and 12 seconds the pilot attempts to roll the
quadrotor clockwise with input u2 > 0, which would result
in the horizontal position x1 exceeding its upper bound;
consequently, the CFHA clips u2 and safety is maintained. In
contrast, around time 16 seconds input u2 is allowed a much
larger positive value before clipping is initiated because x1
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is well below its upper bound at this time. Notice that the
20 second simulated time period is much longer than the
1 second capture basin horizon, yet the system is never forced
to invoke the LQR controller because a mode m(i) with
i > 0 is always found.

The assumption of an infinite horizon stabilizing controller
was not overly strong for this system: as can be seen in
the simulation results, the CFHA rarely exhausts even a
short horizon. On the other hand, the time constants of the
horizontal and vertical velocity are large compared with the
horizon, and the linearization errors for these components of
the dynamics are large enough that it was essentially impos-
sible to get the capture basin to grow in these dimensions;
consequently, we cannot invoke proposition 4 to rigorously
prove that the LQR controller will never be needed.

V. CONCLUSIONS

We have described a method to construct a control automa-
ton for a sampled data cyber-physical system which can en-
sure safe maintenance of state space constraints by checking
and if necessary modifying an exogenous input signal which
is only known at runtime. The algorithm is restricted to
systems with linear dynamics but uses robust capture basins

and hence can handle some nonlinearity through a worst-case
analysis. The technique is demonstrated on a longitudinal
model of an indoor quadrotor with a human-in-the-loop pilot
providing the exogenous input signal. In the future we plan
to investigate methods of handling signal delay and jitter,
and fly the algorithm on the target hardware.
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