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Abstract

While a number of Lagrangian algorithms to approximate reachability in dozens or even hundreds of dimensions for systems
with linear dynamics have recently appeared in the literature, no similarly scalable algorithms for approximating viable sets
have been developed. In this paper we describe a connection between reachability and viability that enables us to compute
the viability kernel using reach sets. This connection applies to any type of system, such as those with nonlinear dynamics
and/or non-convex state constraints; however, here we take advantage of it to construct three viability kernel approximation
algorithms for linear systems with convex input and state constraint sets. We compare the performance of the three algorithms,
and demonstrate that the two based on highly scalable Lagrangian reachability—those using ellipsoidal and support vector
set representations—are able to compute the viability kernel for linear systems of larger state dimension than was previously
feasible using traditional Eulerian methods. Our results are illustrated on a 6-dimensional pharmacokinetic model and a 20-
dimensional model of heat conduction on a lattice.

Key words: Viability; Reachability; Controlled invariance; Set-theoretic methods; High-dimensional systems; Formal
verification; Safety-critical systems.

1 Introduction

Viability theory plays an important role in safety verifi-
cation for control systems (cf. Aubin, Bayen, and Saint-
Pierre, 2011), a particularly important problem for high
risk, expensive, or safety-critical applications. In many
engineered systems, input constraints limit the system’s
ability to remain within a desired “safe” region of oper-
ation. Consider, for example, problems in aerodynamic
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flight envelope protection (Tomlin, Mitchell, Bayen, and
Oishi, 2003) or underwater vehicle operation under con-
straints (Panagou, Margellos, Summers, Lygeros, and
Kyriakopoulos, 2009). For such systems, constraints on
the state space determine the “safe set”. However, be-
cause the control authority for the system is also con-
strained, there are some configurations in the safe set for
which the state may inevitably exit. Hence it is impor-
tant to identify the subset of the safe set for which the
existence of a control input that keeps the state of the
system within the safe region can be guaranteed.

This subset, known as the viability kernel (or the con-
trolled invariant set), takes into account the system’s dy-
namics and bounded control authority. For a constraint
setK, the viability kernel V iab(K) is the subset ofK for
which a control input exists that keeps the state of the
system within K for the duration of a known (possibly
infinite) time horizon.



The viability kernel has traditionally been approximated
using Eulerian methods such as the Viability Kernel Al-
gorithm (Saint-Pierre, 1994) and level set approaches
(Mitchell, Bayen, and Tomlin, 2005). However, Eulerian
methods require gridding the state space and hence their
time and memory complexity grow exponentially with
the state dimension. In practice, this approach is infeasi-
ble for systems with more than 3 or 4 states. Lagrangian
methods have been applied previously to the computa-
tion of viability kernels, for example in Blanchini and Mi-
ani (2008), but the implementation has relied on polyhe-
dral set representations that also do not scale well with
the number of states.

There has been recent work to compute the viability
kernel for high-dimensional systems based on simulated
annealing (Bonneuil, 2006), approximate dynamic pro-
gramming (Coquelin, Martin, and Munos, 2007) and
supervised classification (Deffuant, Chapel, and Mar-
tin, 2007). The simulated annealing method has been
demonstrated for a chain of integrators in 10 dimen-
sions, taking 22 minutes to compute each point on vi-
ability kernel’s boundary. The dynamic programming
method has been demonstrated on a 4-dimensional sys-
tem, taking 163 seconds to compute a grid of 2 × 105

points. The supervised classification method has been
demonstrated on an ecological model with 51 inputs and
6 states (Chapel, Deffuant, Martin, and Mullon, 2008)
but still relies on a gridding of the state space hence its
applicability to systems with a large number of states is
limited. Our results in Section 3.3.2 show a substantial
improvement over existing methods in terms of scalabil-
ity in the state dimension.

Lagrangian methods have been applied successfully
to the computation of reachable sets (Kurzhanski and
Varaiya, 2000a; Chutinan and Krogh, 2003; Le Guernic
and Girard, 2010). In contrast to Eulerian methods,
Lagrangian methods use representations that follow the
vector field’s flow. Since Lagrangian methods do not de-
pend on gridding the state space, it is computationally
feasible to analyse high-dimensional systems.

In Section 2, we present a connection between the viabil-
ity kernel and reachable sets that allows the large class
of methods developed for reachability analysis to be ap-
plied to the computation of viability kernels. It can be
used for any system and set representation which sup-
ports the backward maximal reach set and intersection
operations (or underapproximations thereof), in theory
including nonlinear dynamics and/or non-convex con-
straints.

In Section 3, we restrict our attention to discrete-time
linear systems under convex input and state constraints,
a case for which a wealth of efficient Lagrangian reacha-
bility techniques exist. We use the results from Section 2
to provide three examples of Lagrangian algorithms for
computing the viability kernel, and we compare these

three algorithms. The polytope method performs well in
terms of accuracy but does not scale well as the state di-
mension grows, becoming infeasible in greater than four
dimensions. In comparison, the time complexity of the
ellipsoidal method increases more slowly with the state
dimension, but its accuracy is limited. The support vec-
tor method strikes a balance between scalability and ac-
curacy. It allows the user to choose a desired accuracy
in terms of the number of points on the boundary of the
viability kernel that they wish to evaluate. We demon-
strate empirically that the runtime of the ellipsoidal and
support vector methods appear to be polynomial in state
dimension.

While the three algorithms presented in Section 3 ap-
ply only to discrete-time systems, the techniques devel-
oped in this paper can equally be applied to continuous-
time systems, provided that we have a method of com-
puting (or under-approximating) continuous-time reach
sets. As an example, in the conference paper (Kaynama,
Maidens, Mitchell, Oishi, and Dumont, 2012) we use the
continuous-time techniques developed in Section 2.2.2 to
under-approximate the viability kernel of a continuous-
time system using ellipsoidal techniques.

In Section 4, we provide two applications of our results.
We compute the viability kernel for a 6-dimensional
discrete-time model of Propofol pharmacokinetics in
children, and a 20-dimensional discretized heat equa-
tion.

2 Establishing connections between viability
and reachability

There is a close relationship between viability theory
(Aubin, Bayen, and Saint-Pierre, 2011) and constrained
reachability (Kurzhanski and Varaiya, 2001). Both
frameworks study the evolution of dynamic systems un-
der input and/or state constraints. The relationship be-
tween the two theories is often discussed in the context
of optimal control theory by formulating both reachabil-
ity and viability problems in terms of Hamilton-Jacobi
equations, for example (Lygeros, 2004).

The Hamilton-Jacobi approach has proven extremely
successful in the analysis of low-dimensional systems.
Level set methods can be used to approximate the vis-
cosity solution of the Hamilton-Jacobi PDE correspond-
ing to a given viability or reachability problem (Tom-
lin, Mitchell, Bayen, and Oishi, 2003). Tools are avail-
able for computing viable and reachable sets numerically
(Mitchell and Templeton, 2005) but they scale poorly
with state dimension.

The recent emergence of accurate and scalable meth-
ods and tools for approximating reachable sets in high-
dimensional systems (Kurzhanski and Varaiya, 2000a;
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Frehse, Le Guernic, Donzé, Cotton, Ray, Lebeltel, Ri-
pado, Girard, Dang, and Maler, 2011) has inspired us
to attempt to find analogous methods for the approx-
imation of viability kernels. In this section, we expose
a connection between viability theory and reachability
theory. The results presented here appeared in prelim-
inary form in a conference paper (Kaynama, Maidens,
Mitchell, Oishi, and Dumont, 2012).

2.1 Preliminaries

We are concerned with analysing systems of the form{
L(x(t)) = f(x(t), u(t))

u(t) ∈ U
(1)

where the time t ranges throughout a time domain
T. The time domain T can be either continuous
(T = [0, τ ] ⊆ R+) or discrete (T = [0, τ ] ∩ Z+). If
0 < τ < ∞ this problem is said to have a finite hori-
zon; otherwise, if τ = ∞, it is said to have an infinite
horizon. L is the differential operator corresponding to
the given time domain (differentiation in the case of a
continuous-time system and differencing in the case of a
discrete-time system). The system’s state x ranges over
the finite-dimensional vector space Rd and the system’s
input is constrained to a nonempty, compact, convex
subset U ⊆ Rm. 1 When (1) evolves under continuous
time, we assume that the function f : Rd × U → Rd
is sufficiently smooth to guarantee the existence and
uniqueness of solutions to the corresponding initial
value problem.

Viability theory is concerned with ensuring that a sys-
tem’s state x remains within a set of viability constraints
K ⊆ Rd. Any trajectory of system (1) that leaves the
set K at some point in time is considered to be no longer
viable.

We call a set S viable under K if for every initial state
x0 ∈ S there exists some measurable input u0 : T → U
such that the solution x(·) to the initial value problem{

L(x(t)) = f(x(t), u0(t))

x(0) = x0

(2)

satisfies x(t) ∈ K for all t ∈ T.

The viability kernel of a set of viability constraints K is
the largest viable set contained in K. Equivalently, the
viability kernel is defined as follows:

V iabT(K) = {x0 ∈ K | ∃u0 : T→ U ∀t ∈ T x(t) ∈ K}.

1 This is not the most general context in which viability
theory can be developed. Aubin (1991) allows the constraint
set U to depend on the state x.

The related constructs of constrained reachability anal-
ysis are a popular technique for formal safety verification
(for example Mitchell, 2007). They provide a method of
simulating all possible trajectories of a dynamic system
under all admissible inputs. Essentially, they are con-
cerned with determining if any trajectories of the system
(1) that begin in a set of initial conditions I can reach a
set of terminal states T .

There are two ways to approach the problem of reach-
ability analysis. We can begin by considering the set of
initial states and follow this set forward in time under
the flow of (1) to compute what is known as the forward
reachable set. The other approach considers the set of
terminal states T and follows the flow of (1) backward
in time to compute the backward reachable set.

For our purposes, it is appropriate to use the backward
approach. We define the set backward reachable from T
over a time domain T with finite horizon τ as follows:

Reachτ (T ) = {x0 ∈ Rd | ∃u0 : T→ U x(τ) ∈ T}.

2.2 Computing viability kernels using reachability tech-
niques

In this section, we present a method of expressing finite
horizon viability kernels in terms of reachable sets. This
provides a modified version of Saint-Pierre’s Viability
Kernel Algorithm that can be implemented using effi-
cient and scalable techniques developed within the con-
text of reachability analysis. We present the algorithm
first for discrete-time systems then for continuous-time
systems. In the discrete-time case the viability kernel is
computed exactly, while in the continuous-time case we
compute an under-approximation of the true viability
kernel.

Throughout this paper, whenever we cannot compute
a set exactly we ensure that our approximation is an
under-approximation. This guarantees that the set we
compute to approximate V iab(K) is indeed viable under
K.

2.2.1 Discrete-time systems

We consider the case when the system (1) evolves in
discrete time. The system’s dynamics can be described
by the constrained difference equation{

x(t+ 1) = f(x(t), u(t))

u(t) ∈ U .
(3)

For discrete-time systems, the viability kernel can
be computed using Saint-Pierre’s Viability Kernel
Algorithm via the following recursive formula that
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gives the finite-horizon viability kernel Kn+1 :=
V iab[0,n+1]∩Z+

(K) in terms of the finite-horizon viabil-
ity kernel Kn at the previous step (Saint-Pierre, 1994):

{
K0 = K

Kn+1 = {x ∈ Kn | Kn ∩ F (x) 6= ∅}
(4)

where F (x) = {f(x, u) | u ∈ U}. We can reformulate this
recursive definition of the finite horizon viability kernels
Kn in terms of the backward reach set over one discrete
timestep Reach1(·):

Theorem 1 The sequence of finite horizon viability ker-
nels Kn can be computed recursively in terms of reach
sets as {

K0 = K

Kn+1 = K0 ∩Reach1(Kn).
(5)

Proof. Let the constrained difference equation (3) be
expressed as the difference inclusion x(t+ 1) ∈ F (x(t)).
Then using the definition of Kn+1,

x ∈ Kn+1⇐⇒ x ∈ Kn ∧ (F (x) ∩Kn 6= ∅)
⇐⇒ x ∈ Kn ∧ ∃y(y ∈ F (x) ∧ y ∈ Kn)

⇐⇒ x ∈ Kn ∧ ∃y(∃u ∈ U y = f(x, u) ∧ y ∈ Kn)

⇐⇒ x ∈ Kn ∧ ∃u ∈ U f(x, u) ∈ Kn

⇐⇒ x ∈ Kn ∧ x ∈ Reach1(Kn)

⇐⇒ x ∈ Kn ∩Reach1(Kn).

Thus Kn+1 = Kn ∩ Reach1(Kn). We prove that Kn ∩
Reach1(Kn) = K0∩Reach1(Kn) by induction. The base
K0∩Reach1(K0) = K0∩Reach1(K0) is clear. It follows
from Kn+1 ⊆ Kn that K0 ∩ Reach1(Kn+1) ⊆ K0 ∩
Reach1(Kn) = Kn ∩ Reach1(Kn) = Kn+1. Hence we
have the first inclusion K0 ∩ Reach1(Kn+1) ⊆ Kn+1 ∩
Reach1(Kn+1). The opposite inclusion follows from the
fact that Kn+1 ⊆ K0. 2

Though they are both equivalent when the reach sets
and intersections can be computed exactly, we intersect
Reach1(Kn) with K0 rather than Kn because this leads
to better behaviour in implementations where sets must
be under-approximated. Since the set K0 is given as in-
put to the algorithm, it is more accurate and its repre-
sentation is typically simpler than the computed set Kn

with n > 0.

The recursive formula given in Theorem 1 leads to Algo-
rithm 1 for computing the finite horizon viability kernel
over the discrete time interval T = {t ∈ Z+ | t ≤ N}.

Algorithm 1 Exact computation of the viability kernel
(discrete-time)

K0 ← K
n← 0
while n ≤ N do

if Kn = ∅ then . If true, V iabT(K) = ∅
KN ← ∅
break

end if
if Kn = Kn−1 then . If true, V iabT(K) = Kn

KN ← Kn

break
end if
L← Reach1(Kn)
Kn+1 ← K0 ∩ L
n← n+ 1

end while
return (KN ) . KN = V iabT(K)

2.2.2 Continuous-time systems

We now consider the case when the system (1) evolves
in continuous time. In this case, the system’s dynamics
are described by the constrained differential equation{

ẋ(t) = f(x(t), u(t))

u(t) ∈ U .
(6)

Before we can present our algorithm, we require a few
definitions.

We say that a vector field f : Rd × U → Rd is bounded
by M > 0 on K ⊆ Rd in the norm || · || : Rd → R+ if
for all x ∈ K and u ∈ U we have ||f(x, u)|| ≤ M . We
also define the || · ||-distance of a point x ∈ Rd from a
nonempty set S ⊂ Rd as

dist||·||(x, S) = inf
s∈S
||x− s||. (7)

Computing an under-approximation of the viability ker-
nel

Let K be the set of viability constraints for the con-
strained differential equation (6). We assume that the
vector field f is bounded by M on K in the norm || · ||.
Given a discretization time interval ρ, we begin by defin-
ing an under-approximation of the viability constraint
set (Figure 1a):

Kρ := {x ∈ K | dist||·||(x,K
c) ≥ ρM}. (8)

We under-approximate K by a distance ρM because we
are only considering the system’s state at discrete times
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tn = nρ. At a time t in the interval [tn, tn+1], a solution
x(·) of (6) can travel a distance of at most

||x(tn)− x(t)|| ≤
∫ t

tn

||ẋ(s)||ds ≤M(t− tn) ≤ ρM

from its initial location x(tn). Thus the under-
approximation (8) ensures that the state does not leave
K at any time in the interval [tn, tn+1].

We proceed by defining a sequence of sets {Kn(ρ)}
analogously to the discrete-time case. The under-
approximation Kρ of the viability constraints is the
base case. We then define subsequent sets {Kn(ρ)}
recursively:

{
K0(ρ) = Kρ

Kn+1(ρ) = K0(ρ) ∩Reachρ(Kn(ρ)).
(9)

At each time step, we calculate the set of states from
whichKn(ρ) is reachable, then intersect this set with the
set of safe states. This process is illustrated in Figure 1.
Each computed set Kn(ρ) is an approximation of the
finite horizon viability kernel V iab[0,τ ](K) for τ = nρ.
Note that the resulting set depends on our choice of the
time step ρ. We claim that for any ρ > 0, Kn(ρ) under-
approximates V iab[0,nρ](K).

Theorem 2 Suppose that the vector field f : Rd × U →
Rd is bounded by M > 0 on a set K ⊆ Rd in the norm
|| · ||. Then for any time step ρ the sets {Kn} defined by
Equations (8) and (9) satisfy

Kn(ρ) ⊆ V iab[0,nρ](K). (10)

Proof. Since f is bounded by M on K, ||f(x, u)|| ≤M
for all x ∈ K. Now, take a point x0 ∈ Kn(ρ). By the
construction of Kn(ρ), this means that for each k =
1, . . . , n there is some point xk ∈ Kk(ρ) and an input
uk : [0, ρ]→ U such that xk can be reached from xk−1 at
time ρ using input uk. Thus, taking the concatenation of
the inputs uk, we get an input u : [0, nρ]→ U such that
the solution x : [0, nρ]→ Rd to the initial value problem
ẋ = f(x, u), x(0) = x0, satisfies x(kρ) = xk ∈ Kk(ρ) ⊆
{x ∈ K | dist||·||(x,K

c) ≥ Mρ}. We claim that this
guarantees that x(t) ∈ K for all t ∈ [0, nρ]. Indeed, any
t ∈ [0, nρ) lies in some interval [tk, tk+1) = [kρ, (k+1)ρ).
Since f is bounded by M , we have

||x(tk)− x(t)|| ≤
∫ t

tk

||ẋ(s)||ds ≤M(t− tk) ≤ ρM

Further, x(tk) ∈ Kk(ρ) implies that dist||·||(x(tk),Kc) ≥

(a) We define the ini-
tial under-approximation
of the safe set K0(ρ) =
Kρ.

(b) We calculate the set
of backward reachable
states from K0(ρ).

(c) We intersect the back-
ward reachable set with
the initial set to get
K1(ρ)

(d) Next, we calculate the
set of backward reachable
states from K1(ρ).

(e) Again, we intersect
the backward reachable
set with the initial set to
get a new set K2(ρ)

(f) By repeating this pro-
cess, we eventually reach
an under-approximation
Kn(ρ) of the viability
kernel.

Fig. 1. Iteratively constructing an under-approximation of
V iab[0,τ ](K).

ρM . Combining these, we see that

dist||·||(x(t),Kc)≥ dist||·||(x(tk),Kc)− ||x(t)− x(tk)||
> ρM − ρM = 0

and hence x(t) ∈ K. Thus, x0 ∈ V iab[0,nρ](K). 2
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Accuracy of the Approximation

By choosing a sufficiently small time step, the approxi-
mation can be made arbitrarily accurate in the follow-
ing sense: fix a time horizon τ and partition the interval
[0, τ ] into N subintervals [tn−1, tn] of width ρN = τ/N .
The union of the approximating setsKN (ρN ) taken over
all N ∈ N is bounded between the viability kernels of K
and its interior K̊.

Theorem 3 Suppose that the vector field f : Rd × U →
Rd is bounded by M on a set K ⊆ Rd. Then we have

V iab[0,τ ](K̊) ⊆
⋃
N∈N

KN (ρN ) ⊆ V iab[0,τ ](K). (11)

Proof.The second inclusion
⋃
N∈NKN (ρN ) ⊆ V iab[0,τ ](K)

follows directly from Theorem 2. To prove the first in-
clusion, take x0 ∈ V iab[0,τ ](K̊). Then there exists an
input u : [0, τ ] → U such that the solution x(·) to the
initial value problem ẋ = f(x, u), x(0) = x0, satisfies

x(t) ∈ K̊ for all t ∈ [0, τ ]. Since K̊ is open, for any x ∈ K̊
we have dist||·||(x,K

c) > 0. Further, x : [0, τ ] → Rd
is continuous so the function t 7→ dist||·||(x(t),Kc) is
continuous on the compact set [0, τ ]. Thus, we can de-
fine d > 0 to be its minimum value. Now take N large
enough such that ρN < d/M . We need to show that
x0 ∈ KN (ρN ) = K0(ρN ) ∩Reach[0,ρN ](KN−1(ρN )).

First note thatN is chosen such that dist||·||(x(t),Kc) >
ρNM for all t ∈ [0, τ ]. Hence x(tN−n) ∈ K0(ρN )
for all n = 0, . . . , N . To show that x(tN−n) ∈
Reach[0,ρN ](Kn−1(ρN )) for all n = 1, . . . , N , consider
the sequence of inputs un : [0, ρN ]→ U defined as

un(t) = u(tn−1 + t). (12)

It is easy to verify that for all n, we can reach x(tn) from
x(tn−1) at time tn using input un. Thus, in particular,
we have x0 = x(0) ∈ Reach[0,ρN ](KN−1(ρN )). So x0 ∈
KN (ρN ). Hence V iab[0,τ ](K̊) ⊆

⋃
N∈NKN (ρN ). 2

Corollary 1 When K is open,⋃
N∈N

KN (ρN ) = V iab[0,τ ](K). (13)

Algorithm 2 computes an approximation of the viability
kernel in the continuous-time case using the recursive
formula (9). Theorem 2 guarantees that the computed
set always under-approximates the true viability kernel
while Theorem 3 guarantees that the approximation is
asymptotically tight as the time step ρ→ 0.

Algorithm 2 Under-approximation of the viability ker-
nel (continuous-time)

Choose ρ > 0 . Determines approximation accuracy
N ← τ/ρ . Number of time steps
K0 ← Kρ . Initial under-approximation of K0

n← 0
while n ≤ N do

if Kn = ∅ then . If true, V iab[0,τ ](K) = ∅
KN ← ∅
break

end if
if Kn = Kn−1 then . If true, V iab[0,τ ](K) = Kn

KN ← Kn

break
end if
L← Reach[0,ρN ](Kn)
Kn+1 ← K0 ∩ L
n← n+ 1

end while
return (KN ) . KN ⊆ V iab[0,τ ](K)

3 Lagrangian algorithms for computing viabil-
ity kernels in linear systems

In Section 2 we demonstrated that the viability kernel of
an input-constrained dynamic system can be computed
in terms of reachable sets. In this section we use this
result to develop efficient algorithms for computing or
approximating the viability kernel in high-dimensional
discrete-time linear systems.

As the viability kernel is often used for safety verifi-
cation, it is desirable that any approximations made
are conservative so that the computed safe set under-
approximates the true viability kernel. This way, we can
guarantee that any point within the computed kernel is
truly a safe initial state.

There are numerous Lagrangian algorithms for approx-
imating reachable sets in discrete-time linear systems.
These algorithms rely on particular geometric represen-
tations such as polytopes (Chutinan and Krogh, 2003),
ellipsoids (Kurzhanski and Varaiya, 2000b), zonotopes
(Girard, Le Guernic, and Maler, 2006), or support func-
tions (Le Guernic and Girard, 2010). Each representa-
tion has advantages and disadvantages in terms of rep-
resentation size, approximation fidelity and ease of per-
forming geometric operations.

We begin by comparing various set representations. We
then develop a number of practical implementations of
Algorithm 1 and compare their performance on a pair
of benchmark examples.
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3.1 Set representations for linear reachability

We now restrict our attention to linear dynamics 2

{
L(x(t)) = Ax(t)− v(t)

v(t) ∈ V.
(14)

under compact, convex constraints K and V. In the
discrete-time case, the backward reachable set over a
single time step is computed as

Reach(K) = A−1(K ⊕ V). (15)

HereA−1(·) denotes the preimage of a set under the map
A : Rd → Rd. Throughout the remainder of this sec-
tion, we will assume that A is non-singular, and thus the
preimage of A can be calculated simply by applying the
linear transformation A−1 to the set K ⊕ V. This is a
fair assumption because we are mainly concerned with
discrete-time systems that arise from the discretization
of continuous time systems. Such systems have a dynam-
ics matrix of the form A = exp(ρAc) which is always
invertible.

As the operations performed on sets include Minkowski
summation, linear transformation and intersection, the
ideal set representation would be a class of objects
closed under these three operations. We also hope for a
representation under which all three operations can be
performed accurately, efficiently and using a constant
amount of memory.

3.1.1 Convex polytopes

A convex polytope P ⊂ Rd (hereafter simply polytope)
is a bounded geometric object with flat sides. A polytope
can be defined as the convex hull of a finite set of points
v1, · · · , vk. This is known as the vertex representation
and in this case, P is called a V-polytope. A polytope
can also be defined as an intersection of half-spaces

P =

f⋂
i=1

{x ∈ Rd | hi · x ≤ bi} = {x ∈ Rd | Hx ≤ b}

This is known as the facet representation and in this
case, P is known as an H-polytope.

The problem of switching between theH-representation
and the V-representation is known as the vertex/facet
enumeration problem (Avis and Fukuda, 1992). It is a
well-studied problem and many algorithms have been
proposed to solve it. These algorithms tend to be slow,

2 A general linear system L(x(t)) = Ax(t) + Bu(t) u(t) ∈
U ⊆ Rm can be written in this form by setting V = −BU =
{−Bu|u ∈ U} ⊆ Rd.

however, taking O(dkf) time where k is the number of
vertices and f the number of facets in the polytope.

Polytopes are a good choice of set representation for our
purposes because the class of polytopes is closed under
all three operations that we wish to perform. Let P1 =
{x ∈ Rd | A1x ≤ b1} and P2 = {x ∈ Rd | A2x ≤ b2} be
two polytopes described by their H-representation. We
can compute the image of P1 under the linear transfor-
mation T as

TP1 = {x ∈ Rd | A1T
−1x ≤ b1}.

The intersection of P1 and P2 can also be easily com-
puted simply by combining the constraints as follows

P1 ∩ P2 = {x ∈ Rd | A1x ≤ b1 and A2x ≤ b2}

=

{
x ∈ Rd :

[
A1

A2

]
x ≤

[
b1

b2

]}
.

The Minkowski sum however is difficult to compute us-
ing the H-representation and is typically done by first
converting to the V-representation.

Given two polytopes P1 = Conv{v1, · · · , vk} and P2 =
Conv{u1, · · · , ul} their Minkowski sum is computed as

P1 ⊕ P2 = Conv{vi + uj | i = 1, · · · , k j = 1, · · · , l}.

The linear transformation of P1 under T is also easily
computed as

TP1 = Conv{Tv1, · · · , T vk}.

The disadvantage of the V-representation is that it is
difficult to perform intersections.

The Multi-Parametric Toolbox (Kvasnica, Grieder,
Baotić, and Morari, 2004) provides a comprehensive set
of tools for computations using polytopes.

3.1.2 Ellipsoids

An ellipsoid E ⊂ Rd is a smooth geometric object con-
tained by a bounded quadratic surface. Any ellipsoid
E ⊂ Rd can be expressed as the image of the Euclidean
unit ball under an affine transformation T : Rd → Rd. E
is called nondegenerate if the transformation T is nonde-
generate (i.e. invertible). Ellipsoids can also be defined
uniquely by a symmetric, positive definite shape matrix
Q and a centre q ∈ Rd as

E(q,Q) = {x ∈ Rd | (x− q) · Q−1(x− q) ≤ 1}.

The class of ellipsoids is closed under nondegenerate lin-
ear transformations but it is not closed under either

7



Minkowski summation or intersection. However, the El-
lipsoidal Toolbox (Kurzhanskiy and Varaiya, 2006) pro-
vides a set of routines to efficiently compute tight under-
and over-approximations of Minkowski sums and inter-
sections of ellipsoids.

3.1.3 Support functions

An arbitrary compact, convex set A ⊂ Rd can be rep-
resented in terms of its support function. The support
function σA : Rd → R of A is a convex function defined
as

σA(`) = max
x∈A

x · `. (16)

The support function σA is a complete representation of
A in the sense that A can be reconstructed from σA as
the intersection of all its supporting half spaces

A =
⋂
`∈Rd

{x ∈ Rd | x · ` ≤ σA(`)}. (17)

Support functions are convenient for our purposes be-
cause all three operations that we wish to perform can be
performed directly on the support functions. This fact
is given in Theorem 4.

Theorem 4 Let A ⊂ Rd and B ⊂ Rd be compact, con-
vex sets and let A : Rd → Rd be a linear transformation
represented by a matrix A. We have the following prop-
erties:

• σAB(`) = σB(AT `)
• σA⊕B(`) = σA(`) + σB(`)
• σA∩B(`) = infw∈Rd{σA(`− w) + σB(w)}.

Proof. The first two properties follow directly from the
definition. The proof of the third is given in (Rockafellar
and Wets, 1998). 2

Thus given support functions forA and B, it is simple to
compute the support functions of A⊕B, AB and A∩B.

A compact, convex setA ⊂ Rd can be over-approximated
by an H-polytope with arbitrary accuracy by sampling
its support function. Consider a finite set of vectors
L ⊂ Rd. Following (Le Guernic, 2009), we can define an
over-approximation of A by restricting the intersection
in (17) to the set L, giving us

A↑ =
⋂
`∈L

{x ∈ Rd | x · ` ≤ σA(`)}.

This over-approximation is tight (i.e. the approximation
touches the boundary of A) in the directions of L. An
example of this approximation is shown in Figure 2.

Fig. 2. A compact, convex set A (white) and the correspond-
ing tight over-approximation (grey) in the set of directions
L shown at left.

3.1.4 Support vectors

When computing viability kernels, it is usually desirable
to under-approximate rather than over-approximate a
given set. Again following (Le Guernic, 2009), for a com-
pact, convex set A ⊂ Rd we can construct an under-
approximation of A using support vectors.

Given a direction vector ` ∈ Rd the set of support vectors
of A is defined as

vA(`) = argmax
x∈A

x · `. (18)

The support vectors and support function of a convex
set are related via the subgradient operation ∂ (see Ap-
pendix) as vA(`) = ∂σA(`). In particular, when σA is
differentiable at `, the set of support vectors in the di-
rection ` is the singleton set vA(`) = {∇σA(`)}.

As was the case for support functions, all three opera-
tions that we wish to perform can be performed directly
on the support vectors. This result is given in Theorem
5.

Theorem 5 Let A ⊂ Rd and B ⊂ Rd be compact, con-
vex sets and let A : Rd → Rd be a linear transformation
represented by a matrix A. We have the following prop-
erties:

• vAA(`) = AvA(AT `)
• vA⊕B(`) = vA(`)⊕ vB(`)
• vA∩B(`) = vA(`− w̄) ∩ vB(w̄)

where w̄ ∈ arg infw∈Rd{σA(`− w) + σB(w)}.

Proof. Again, the first two properties follow directly
from the definition. The proof of the third requires some
background in convex analysis and is given in the Ap-
pendix. 2

As was the case for support functions, the set A can be

8



Fig. 3. A compact, convex set A (white) and the correspond-
ing tight under-approximation (grey) in the set of directions
L shown at left.

reconstructed from its support vectors:

A = Conv

 ⋃
`∈Rd

vA(`)

 .

Now, given a subset L of directions, we can define an
under-approximation of A that is tight in the directions
L by selecting a support vector u` ∈ vA(`) in each direc-
tion ` ∈ L. An under-approximation of A is then given
by

A↓ = Conv({u` | ` ∈ L}).
This approximation is illustrated in Figure 3.

3.2 Algorithms

We now present three algorithms that compute an ap-
proximation of the viability kernel of the discrete-time
system {

x(t+ 1) = Ax(t)− v(t)

v(t) ∈ V.
(19)

3.2.1 Exact polytopic method

The class of polytopes is closed under linear transfor-
mation, Minkowski summation and intersection. There-
fore when the input constraint set V and the viability
constraints K are both polytopes, we can compute the
viability kernel of the system (19) exactly.

This method is similar to other methods of computing vi-
ability kernels and controlled invariant sets as described
in (Blanchini and Miani, 2008) and implemented in the
Multi-Parametric Toolbox (Kvasnica, Grieder, Baotić,
and Morari, 2004).

Algorithm 3 computes the viability kernel using Algo-
rithm 1 with Reach(Kn) computed using (15).

Algorithm 3 Exact polytopic method

K0 ← K
n← 0
while n ≤ N do

if Kn = ∅ then
KN ← ∅
break

end if
if Kn = Kn−1 then

KN ← Kn

break
end if
L← A−1(Kn ⊕ V)
Kn+1 ← K0 ∩ L
n← n+ 1

end while
return (KN ) . KN = V iabT(K)

Since no approximations are made, the accuracy of this
algorithm is perfect. However, the amount of informa-
tion required to represent the polytope Kn increases
exponentially with successive Minkowski sums as the
number of vertices of Kn ⊕ U is (in the worst case)
|V (Kn)| · |V (U)|. A possible remedy to this problem is to
under-approximate the polytope generated at each step
by a polytope of fixed complexity (Kanade, Alur, Ivan-
cic, Ramesh, Sankaranarayanan, and Shashidhar, 2009).

3.2.2 Ellipsoidal method

Using ellipsoids provides an approach to keeping the
complexity of our set representation constant. This
leads to a scalable method of computing an under-
approximation of the viability kernel over large time
horizons in high-dimensional spaces.

The details of this algorithm are given in (Kaynama,
Maidens, Mitchell, Oishi, and Dumont, 2012) and
are not repeated here. The issue with this algorithm
is that the class of ellipsoids is closed under neither
Minkowski sum nor intersection. Hence both must be
under-approximated, leading to a reduction in accuracy.

3.2.3 Support vector method

We now present a method of under-approximating the
viability kernel using support vectors. This method
is based on ideas developed in (Le Guernic, 2009)
which uses support functions to compute an over-
approximation of reachable sets. The computation of
the viability kernel presents an additional challenge
compared with the computation of reach sets in that
intersections must also be performed.

We first present a method of computing the support
function of the viability kernel in a given direction by

9



finding the solution to a convex optimization problem.
The solution to this optimization can then be used to
compute a support vector in the same direction by means
of a recursive formula.

Approximating the viability kernel using support func-
tions and support vectors provides an advantage over
ellipsoids in terms of accuracy. Given an arbitrary direc-
tion ` ∈ Rd, the support function method allows us to
find a hyperplane tangent to the viability kernel in the
direction `. Performing this computation in multiple di-
rections `k allows us to over-approximate the discrete-
time viability kernel as the intersection of half-spaces
bounded by the tangent hyperplanes. Similarly, we can
compute a tight under-approximation of the viability
kernel as the convex hull of a set of support vectors in
the directions `k. This procedure can be made arbitrar-
ily accurate simply by choosing a sufficient number of
directions `k.

The support vector method has an advantage over the
polytope method in terms of scalability. After present-
ing Algorithm 4, we demonstrate its scalability experi-
mentally using a chain of integrators of varying length.

By Theorem 4 we can express the value of the support
function of Kn+1 = A−1(Kn ⊕ V) ∩K0 in the direction
` as

σKn+1(`) = inf
w∈Rd

{σK0(`− w)

+ σV(A−Tw) + σKn(A−Tw)
}

(20)

where A−T = (AT )−1 is the inverse transpose of A. The
function w 7→ σK0

(` − w) + σV(A−Tw) + σKn
(A−Tw)

is convex so if the functions σK0
, σV and σKn

could be
evaluated in constant time, this problem could be solved
efficiently. However, since σKn in turn depends on σKn−1 ,
a naive implementation of this formula would result in
a number of calls to σK0 that is exponential in n.

This problem can be avoided by writing a closed-form
expression for σKn .

Theorem 6 The value of the support function σKn in
the direction ` can be expressed as the solution to a convex
optimization over an nd-dimensional space. It is given by

σKn
(`) = inf

w∈Rnd
ξ(`, w)

where

ξ(`, w) = ξ(`, w1, · · · , wn)

= σK0
(`− wn) +

n−1∑
k=1

σK0
(A−Twk+1 − wk) (21)

+σK0
(A−Tw1) +

n∑
k=1

σV(A−Twk).

Proof. Follows from (20) by induction on n. 2

Using Theorem 5 we can express the set of support vec-
tors of the set Kn+1 in the direction ` as

vKn+1(`) = vA−1(Kn⊕V)∩K0
(`)

= vK0(`− w̄) ∩A−1
(
vV(A−T w̄)⊕ vKn(A−T w̄)

)
where

w̄ ∈ arg inf
w∈Rd

{
σK0(`− w) + σV(A−Tw) + σKn(A−Tw)

}
.

We have the following algorithm for computing under-
approximations P↓ and over-approximations P↑ of the
viability kernel that are tight in the set of directions L.
Although it contains states that are not viable, the over-
approximation can be used to provide an upper bound
on the error in the under-approximation, and the latter
is guaranteed to contain only states that are viable under
the discrete dynamics.

Algorithm 4 Support vector method

for ` ∈ L do
minimize

ξ(`, w) = σK0
(`− wn) +

n−1∑
k=1

σK0
(A−Twk+1 − wk)

+σK0
(A−Tw1) +

n∑
k=1

σV(A−Twk).

subject to w ∈ Rnd
σ(`)← ξ(`, w̄) . Minimum value stored as σ(`)
V0 = vK0

(A−T w̄n)
for k = 1 . . . n do

Vk = vK0
(A−T w̄n−k − w̄n−k+1) ∩

A−1
(
vV(A−T w̄n−k+1)⊕ Vk−1

)
end for
v(`)← Vn

end for

P↓ ← Conv

(⋃
`∈L

v(`)

)
P↑ ←

⋂
`∈L

{x | x · ` ≤ σ(`)}

return (P↓, P↑) . P↓ ⊆ V iabT(K0) ⊆ P↑
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3.3 Comparison of algorithms

We now compare the three Lagrangian algorithms that
we have presented. The polytope, ellipsoid and sup-
port vector algorithms are implemented in MATLAB
using the Multi-Parametric Toolbox v. 2.6.3 (Kvas-
nica, Grieder, Baotić, and Morari, 2004), Ellipsoidal
Toolbox v. 1.1.3 (Kurzhanskiy and Varaiya, 2006) and
CVX (Grant and Boyd, 2008) respectively. Computa-
tions were performed using MATLAB release 2009b on
a machine with an Intel Pentium 4 processor running
at 3.00 GHz and 2GB RAM. The MATLAB code to
generate the figures in this section and Section 4 can be
downloaded from the web at http://www.ece.ubc.ca/

~jmaidens/viability_supplement.zip

3.3.1 Accuracy

We compare the accuracy of the three algorithms by
comparing their performance on a standard example.
Consider the discrete-time double integrator

[
x1(t+ 1)

x2(t+ 1)

]
=

[
1 ρ

0 1

][
x1(t)

x2(t)

]
+

[
1
2ρ

2

ρ

]
u(t)

u(t) ∈ U = [−u0, u0]

(22)
with time step ρ > 0. Figures 4 – 6 show the results of
our three algorithms run on the model (22) with ρ = 0.1,
a horizon of 40 steps and input constraint |u(t)| ≤ 0.3.
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Fig. 4. Viability constraints K = {x : ||x||∞ ≤ 0.5} (light
grey) and the corresponding viability kernel V iabZ+(K)
(dark blue) for the double integrator (22) computed using
Algorithm 3. The finite horizon viability kernel converges to
the infinite horizon viability kernel within 16 steps. The via-
bility kernel contains 34 vertices and took tp = 1.65 seconds
to compute.

The polytope algorithm performs best in terms of ac-
curacy, computing the discrete time viability kernel ex-
actly. The ellipsoidal method provides a conservative
under-approximation of the viability kernel due to the
approximations that must be performed at each intersec-
tion step. Adding additional approximation directions
improves the approximation to a limited extent. The
support vector method provides only a rough approxi-
mation when evaluated in a small number of directions
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(a) |L| = 5
t5 = 105.4s
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t20 = 279.7s

Fig. 5. Viability constraints K = {x : ||x||2 ≤ 0.5} (light
grey) and the corresponding viability kernel V iabR+(K)
(dark blue) for the double integrator (22) computed using
Algorithm 2 from (Kaynama, Maidens, Mitchell, Oishi, and
Dumont, 2012). This computation was performed for two
different uniformly-spaced sets of directions L and the corre-
sponding computation times are noted. An Eulerian approx-
imation to the viability kernel based on a 1001 × 1001 grid
of points (which is highly accurate, but infeasible in higher
dimensions) is shown in black.
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(a) |L| = 5
t5 = 27.6s
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(b) |L| = 20
t20 = 55.9s

Fig. 6. Over- (light grey) and under- (dark blue) ap-
proximations of the viability kernel of the constraint set
K = {x : ||x||2 ≤ 0.5} computed using Algorithm 4 for two
different uniformly- spaced sets of directions L. An Eule-
rian approximation to the viability kernel based on a 1001 ×
1001 grid of points (which is highly accurate, but infeasible
in higher dimensions) is shown in black.

but can be made arbitrarily accurate by choosing a suf-
ficiently large number of evaluation directions L.

3.3.2 Scalability

We compare how well the three algorithms scale as a
function of the state dimension by comparing their per-
formance on a discrete-time model of a chain of d inte-
grators
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x(t+ 1) =



9.49(10−1) 2.75(10−2) 1.02(10−2) 5.09(10−6) −1.44(10−5) 1.43(10−5)

1.33(10−2) 9.86(10−1) 7.04(10−5) 1.02(10−7) −1.39(10−7) 9.42(10−8)

8.03(10−4) 1.14(10−5) 9.99(10−1) 6.21(10−9) −8.41(10−9) 5.68(10−9)

0 0 0 −1.22(10−1) −7.93(10−2) 5.66(10−2)

0 0 0 −1.20(10−1) −3.04(10−1) −3.85(10−1)

0 0 0 4.11(10−1) 5.56(10−1) 4.66(10−1)


x(t) +



−1.11(10−7)

4.23(10−9)

2.54(10−10)

−6.04(10−2)

4.11(10−1)

5.68(10−1)


u(t) (23)



x(t+ 1) =



1 ρ 1
2ρ

2 · · · 1
(d−1)!ρ

d−1

0 1 ρ
...

. . .
...

0 0 0 ρ

0 0 0 · · · 1


x(t) +



1
d!ρ

d

...

1
2ρ

ρ


u(t)

u(t) ∈ U = [−u0, u0].

Its viability kernel is computed over a horizon of 10 steps,
with ρ = 0.4, input constraint |u(t)| ≤ 0.3 and state
constraint set K = {x : ||x||∞ ≤ 0.5} for the polytope
algorithm and K = {x : ||x||2 ≤ 0.5} for the ellipsoid
and support vector algorithms.

In Figure 7 we plot the time it takes to compute (a) the
viability kernel using the polytope method (b) an ellip-
soidal under-approximation to the viability kernel in a
single direction (c) 2d support vectors on the boundary
of the viability kernel tight in a set of directions consist-
ing of the standard basis vectors in Rd and their nega-
tives.
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Fig. 7. Comparison of the run time for a chain of integrators
of length d.

4 Applications

We conclude by using the support vector algorithm de-
veloped in Section 3.2.3 to tackle two problems which
were previously infeasible using Eulerian methods. In
Section 4.1 we compute the viability kernel for a model
of the pharmacokinetics of the anaesthetic drug Propo-
fol and in Section 4.2, we compute the viability kernel
for a 20-dimensional temperature control problem.

4.1 Closed-loop control of anaesthesia

The Electrical & Computer Engineering in Medicine
group at the University of British Columbia recently
completed a set of clinical tests for a paediatric closed-
loop anaesthesia system at the British Columbia
Children’s Hospital (Soltesz, van Heusden, Dumont,
Hägglund, Petersen, West, and Ansermino, 2012). To en-
sure safe operation, we would like to place hard bounds
on the Propofol administration rate (the input) and
compartmental Propofol concentrations (the states).

In this context, we compute the viability kernel for
the purposes of “fallback mode” initiation (ISO/IEC,
2007). Due to modeling inaccuracies or unmodeled dis-
turbances in the surgical theatre, it is possible that the
system’s state might leave the “safe” viable region. Thus
if at any point in time the control system determines
that the system’s state is outside the viability kernel, an
alarm should be sounded and a fallback mode initiated.

Consider the three-compartment pharmacokinetic sys-
tem


ċ1(t)

ċ2(t)

ċ3(t)

 =


−(k10 + k12 + k13) k12 k13

k21 −k21 0

k31 0 −k31



c1(t)

c2(t)

c3(t)


+


1/V1

0

0

u(t− td)

u(t) ∈ U = [0, u0]
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(a) Viability constraints
(red ellipsoid) and under-
approximation of the viabil-
ity kernel (blue polytope)

(b) Viability constraints
(red ellipsoid) and over-
approximation of the viabil-
ity kernel (grey polytope)

Fig. 8. Viability kernel for the 6-dimensional discrete-time
pharmacokinetic model given in (23) computed using Algo-
rithm 4. Constraints and viability kernels are shown pro-
jected onto the first 3 coordinates of the 6-dimensional state
space. These approximations were computed in 693s.

with input delay td = 0.5 minutes and the model pa-
rameters for an 11 year-old child of 35 kg taken from
the Paedfusor data set (Absalom and Kenny, 2005).
The delay is approximated using a third order Padé ap-
proximation and then the system is discretized with a
time step ρ = 0.25 minutes, yielding the 6-dimensional
discrete-time model given in (23). We simulate a 90
minute surgery (time horizon τ = 90 minutes) with in-
put constraint u(t) ∈ [0, 7 000] µg/min (200µg/kg/min)
to compute the viability kernel of the state constraints
given by a tight ellipsoid inscribed in the box [1, 6] ×
[0, 10]× [0, 10]× [−100, 100]× [−100, 100]× [−100, 100].
The computed approximation is sampled in the set of
directions

L =


Q−1


`

0

0

0

 : ` ∈ VI


∪


Q−1


0

0

0

±ei

 : i = 1, 2, 3


where VI is the set of the 12 vertices of an icosahedron
in R3, ei are the standard basis vectors in R3 and Q is
the shape matrix for the ellipsoid of state constraints.
The computed over- and under-approximations of the
viability kernel for (23) are shown in Figure 8.

We see that initial states with a low concentration in
the slowly-equilibrating compartment c3 are not viable
under the delayed dynamics. This result emphasizes the
importance of providing a bolus dose, or high-rate infu-
sion, during the induction of anaesthesia to allow a suf-
ficient concentration of Propofol to accumulate in the
slowly-equilibrating tissues before limiting the infusion
rate to ≤ 200µg/kg/min.

4.2 Forced heat equation

The forced heat equation

∂ξ

∂t
(x, t) = α

∂2ξ

∂x2
(x, t)− β(ξ − ξ0) + u(x, t)

describes how the temperature distribution over a finite,
one-dimensional rod evolves over time when a heat input
u is provided to the system. We assume that heat is lost
from the rod at a rate (with proportionality constant β)
dependent on the difference between the rod’s temper-
ature and the ambient temperature ξ0 (assumed to be
zero), that the system’s thermal diffusivity is α and that
the rod is heated from one end. To study solutions to
this equation numerically, we consider the temperature
ξi at d discrete points xi on a uniform one-dimensional
lattice of spacing ∆x. After finite difference approxima-
tion of the spatial derivative, followed by a discretization
with time step ∆t, we get the dynamics

ξ(t+ 1) = exp

(
−∆t

(
α

2(∆x)2
L+D

))
ξ(t) +Bdu(t)

where ξ is now the vector of temperatures at the lattice
points, L is the lattice’s Laplacian matrix, D is the di-
agonal matrix with entries β and

Bd =

∫ ∆t

0

exp

(
−t
(

α

2(∆x)2
L+D

))
dt · e1.

We compute the viability kernel for this system over a
time horizon τ = 5 for the state constraint set consist-
ing of a sphere of radius 10 centred at [10, . . . , 10]T using
a lattice of 20 points, yielding a 20-dimensional system.
We set α = 8, β = 0.015, ∆x = 1, ∆t = 0.25 and con-
strain the input u to the set [0, 5]. We compute an ap-
proximation of the viability kernel in a set of 120 direc-
tions consisting of 12 uniformly-spaced unit vectors in
the ξ2k−1 × ξ2k plane for k = 1, . . . , 10. Figure 9 shows
the resulting approximation of the viability kernel pro-
jected onto a selection of coordinate planes.

Note that under- and over-approximations appear tight
in the projections onto the ξ1 × ξ2 and ξ19 × ξ20 planes
since we sampled more support vectors in these sub-
spaces. The projections onto the ξ1 × ξ10 and ξ1 × ξ20

subspaces could be improved simply by sampling in more
directions.

5 Conclusions

We presented a connection between viability and reach-
ability that enables us to compute viability kernels in
terms of backward reachable sets. While this theoretical
connection applies to systems with nonlinear dynamics
and general state constraints, we take advantage of it
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Fig. 9. Viability kernel for the discretized heat conduction
problem projected onto various coordinate planes. The pro-
jection of the state constraint set is outlined in red and under-
and over-approximations of the viability kernel are shown in
dark blue and light grey respectively. This approximation in
120 directions was performed in 425 seconds. As expected,
we see that the set of viable states appears smaller when pro-
jected onto coordinates farther from the heated end at ξ1.

here to develop scalable Lagrangian algorithms for sys-
tems with linear dynamics and convex, compact input
and state constraints.

The algorithm based on support vectors performed ex-
ceedingly well in the sense that it is scalable as the num-
ber of time steps or the state dimension increases and it
can be made arbitrarily accurate. The algorithm based
on ellipsoids is somewhat less scalable and accurate, but
we are currently extending it to approximate discrimi-
nating kernels / robust viability kernels in a differential
game setting, and to synthesize permissive safety pre-
serving control laws.

The continuous time version of the reachability to vi-
ability connection is detailed in (Kaynama, Maidens,
Mitchell, Oishi, and Dumont, 2012) and applied there to
the ellipsoidal representation. We are currently investi-
gating whether the support vector representation could
also be adapted to continuous time.

Scalable reachability for systems with nonlinear dynam-
ics is still an open problem, but should any such algo-
rithm be developed then the techniques presented here
will permit its use for viability kernel approximation pro-
vided only that the set representation supports a rea-
sonably efficient and accurate intersection operation.

Acknowledgements

Research supported by NSERC Discovery Grants
#327387 (Oishi) and #298211 (Mitchell), NSERC Col-
laborative Health Research Project #CHRPJ-350866-
08 (Dumont), an NSERC Canada Graduate Scholar-
ship, and the Institute for Computing, Information and
Cognitive Systems (ICICS) at UBC.

References

Absalom, A., Kenny, G., 2005. Paedfusor pharmacoki-
netic data set. British Journal of Anaesthesia 95, 110.

Aubin, J.-P., 1991. Viability Theory. Systems and Con-
trol: Foundations and Applications. Birkhäuser.
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Petersen, C., West, N., Ansermino, J., 2012. Closed-
loop anesthesia in children using a PID controller: A
pilot study. In: Proc. IFAC Conf. on Advances in PID
Control.

Tomlin, C. J., Mitchell, I. M., Bayen, A. M., Oishi,
M., 2003. Computational techniques for the verifica-
tion and control of hybrid systems. Proceedings of the
IEEE 91 (7), 986–1001.

A Appendix: Proof of Theorem 5

As the proof of Theorem 5 requires the introduction of
some elementary convex analysis, we have placed it here
in the appendix.

A.1 Convex conjugation and duality

For a proper convex function f : Rd → R̄ = R ∪ {∞},
its conjugate function f∗ : Rd → R̄ is a proper convex
function defined as

f∗(`) = sup
x∈Rd

{〈x, `〉 − f(x)}.

If f is further assumed to be lower semi continuous (lsc)
then we have

f∗∗ = f

and hence there is a duality, or conjugacy correspon-
dence, between lsc proper convex functions.

Define the characteristic function δS : Rd → R̄ of a
nonempty convex set S ⊂ Rd

δS(x) =

{
0 if x ∈ S
∞ if x 6∈ S

The convex conjugate of the characteristic function δS
is the support function σS

σS(`) = sup
x∈S
〈x, `〉 = sup

x∈Rd

{〈x, `〉 − δS(x)} = δ∗S(`).

The conjugation operation also induces a duality be-
tween operations on functions. Define the infimal con-
volution (or epi-sum) f1#f2 of two convex functions f1

and f2 as

f1#f2 (`) = inf
w∈Rd

f1(`− w) + f2(w).

The following proposition establishes that infimal con-
volution is the dual of the summation operation.

Lemma 1 (Theorem 11.23a, Rockafellar and Wets
(1998)) If f1 and f2 are two lsc proper convex functions
whose domains have nonempty intersection then

• (f1 + f2)∗ = f∗1 # f∗2
• (f1 # f2)∗ = f∗1 + f∗2 .
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A.2 Subgradients and support vectors

Let f : Rd → R̄ = (−∞,∞] be convex. The set ∂f(`) of
subgradients of f at ` is the set of vectors x ∈ Rd such
that for all ˜̀∈ Rd

f(`)− f(˜̀) ≥ x · (`− ˜̀)

The following result is standard:

Lemma 2 (Fenchel’s Inequality, Proposition 11.3, Rock-
afellar and Wets (1998)) Let f : Rd → R̄ be a proper
convex function. Then for all `, x ∈ Rd we have

f(`)− ` · x+ f∗(x) ≥ 0.

Further, equality holds if and only if x ∈ ∂f(`).

From Fenchel’s Inequality, we get the following charac-
terization of the set of support vectors of a compact,
convex set U in the direction `:

Theorem 7 Let σU (`) and vU (`) be defined as in (16)
and (18). Then

vU (`) = ∂σU (`)

Proof.

x ∈ vU (`)⇐⇒ x ∈ U and x · ` = σU (`)

⇐⇒ σU (`)− x · `+ δU (x) = 0

⇐⇒ x ∈ ∂σU (`). 2

A.3 Theorem 5

Before proving Theorem 5 we need one final result:

Lemma 3 (Proposition 2.22a and Theorem 10.13, Rock-
afellar and Wets (1998)) Let g : Rd × Rn → R̄ be a
proper convex function. Then g̃(`) = infw∈Rn g(`, w) is a
proper convex function and

(x, 0) ∈ ∂g(`, w̄)⇐⇒ x ∈ ∂g̃(`) and g̃(`) = g(`, w̄).

Proof of Theorem 5.

The first two bullet points in Theorem 5 follow directly
from the definition. We prove only the third. The proof
is adapted from (Rifkin and Lippert, 2007).

Define g(`, w) = σU (` − w) + σV(w) so that g̃(`) =
infw∈Rn g(`, w) = (σU#σV)(`). The assumption
w̄ ∈ arg infw∈Rd{σU (` − w) + σV(w)} means that

g̃(`) = g(`, w̄). Hence it follows from Lemmas 2 and 3
that

x ∈ vU∩V(`) = ∂σU∩V(`) = ∂(σU#σV)(`) = ∂g̃(`)

⇐⇒ (x, 0) ∈ ∂g(`, w̄)

⇐⇒
0 = g(`, w̄)− x · `− 0 · w̄ + g∗(x, 0)

= σU (`− w̄) + σV(w̄)− x · `+ σ∗U (x) + σ∗V(x+ 0)

= [σU (`− w̄)− x · (`− w̄) + σ∗U (x)]

+[σV(w̄)− x · w̄ + σ∗V(x)]

⇐⇒ x ∈ ∂σU (`− w̄) and x ∈ ∂σV(w̄)

⇐⇒ x ∈ vU (`− w̄) ∩ vV(w̄). 2
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